nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc8__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (196) hide show
  1. nexaai/_stub.cpython-310-darwin.so +0 -0
  2. nexaai/_version.py +1 -1
  3. nexaai/binds/libnexa_bridge.dylib +0 -0
  4. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/METADATA +1 -1
  5. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/RECORD +7 -196
  6. nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
  7. nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
  8. nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
  9. nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
  10. nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
  11. nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
  12. nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
  13. nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
  14. nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
  15. nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
  16. nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
  17. nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
  18. nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
  19. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
  20. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
  21. nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
  22. nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
  23. nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
  24. nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
  25. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
  26. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
  27. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
  28. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
  29. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
  30. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
  31. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
  32. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
  33. nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
  34. nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
  35. nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
  36. nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
  37. nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
  38. nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
  39. nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
  40. nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
  41. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
  42. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
  43. nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
  44. nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
  45. nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
  46. nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
  47. nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
  48. nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
  49. nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
  50. nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
  51. nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
  52. nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
  53. nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
  54. nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
  55. nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
  56. nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
  57. nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
  58. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
  59. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
  60. nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
  61. nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
  62. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
  63. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
  64. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
  65. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
  66. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
  67. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
  68. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
  69. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
  70. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
  71. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
  72. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
  73. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
  74. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
  75. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
  76. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
  77. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
  78. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
  79. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
  80. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
  81. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
  82. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
  83. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
  84. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
  85. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
  86. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
  87. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
  88. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
  89. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
  90. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
  91. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
  92. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
  93. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
  94. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
  95. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
  96. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
  97. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
  98. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
  99. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
  100. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
  101. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
  102. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
  103. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
  104. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
  105. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
  106. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
  107. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
  108. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
  109. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
  110. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
  111. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
  112. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
  113. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
  114. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
  115. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
  116. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
  117. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
  118. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
  119. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
  120. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
  121. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
  122. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
  123. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
  124. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
  125. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
  126. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
  127. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
  128. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
  129. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
  130. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
  131. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
  132. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
  133. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
  134. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
  135. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
  136. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
  137. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
  138. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
  139. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
  140. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
  141. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
  142. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
  143. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
  144. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
  145. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
  146. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
  147. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
  148. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
  149. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
  150. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
  151. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
  152. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
  153. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
  154. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
  155. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
  156. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
  157. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
  158. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
  159. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
  160. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
  161. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
  162. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
  163. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
  164. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  165. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
  166. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
  167. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
  168. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
  169. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
  170. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
  171. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
  172. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
  173. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  174. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
  175. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
  176. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
  177. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
  178. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
  179. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
  180. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
  181. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
  182. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
  183. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
  184. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
  185. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
  186. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
  187. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
  188. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
  189. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
  190. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
  191. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
  192. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
  193. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
  194. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
  195. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/WHEEL +0 -0
  196. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/top_level.txt +0 -0
@@ -1,366 +0,0 @@
1
- import glob
2
- import inspect
3
- import json
4
- import math
5
- from dataclasses import dataclass, field
6
- from pathlib import Path
7
- from typing import List, Optional, Tuple, Union
8
-
9
- import mlx.core as mx
10
- import mlx.nn as nn
11
- from huggingface_hub import snapshot_download
12
- from mlx.utils import tree_map
13
-
14
- from .language import LanguageModel, TextConfig
15
- from .vision import VisionConfig, VisionModel
16
-
17
-
18
- @dataclass
19
- class ModelConfig:
20
- """Configuration class for Florence2."""
21
-
22
- vision_config: VisionConfig
23
- text_config: TextConfig
24
- model_type: str = "florence2"
25
- vocab_size: int = 50265
26
- max_position_embeddings: int = 1024
27
- pad_token_id: int = 1
28
- bos_token_id: int = 0
29
- eos_token_id: int = 2
30
- image_token_index: int = 0
31
- image_feature_source: List[str] = field(
32
- default_factory=lambda: ["temporal_avg_pool", "spatial_avg_pool"]
33
- )
34
- visual_temporal_embedding: Optional[dict] = field(
35
- default_factory=lambda: {"type": "COSINE", "max_temporal_embeddings": 100}
36
- )
37
- image_pos_embed: Optional[dict] = field(
38
- default_factory=lambda: {"type": "learned_abs_2d", "max_pos_embeddings": 50}
39
- )
40
- eos_token_id: Optional[List[int]] = None
41
-
42
- @classmethod
43
- def from_dict(cls, params):
44
- return cls(
45
- **{
46
- k: v
47
- for k, v in params.items()
48
- if k in inspect.signature(cls).parameters
49
- }
50
- )
51
-
52
-
53
- def shift_tokens_right(
54
- input_ids: mx.array, pad_token_id: int, decoder_start_token_id: int
55
- ) -> mx.array:
56
- """Shift input tokens right, adding decoder start token at beginning."""
57
- shifted = mx.roll(input_ids, 1, axis=-1)
58
- shifted = tree_map(lambda x: x.at[:, 0].set(decoder_start_token_id), shifted)
59
- shifted = mx.where(shifted == -100, pad_token_id, shifted)
60
- return shifted
61
-
62
-
63
- class LearnedPositionEmbedding2D(nn.Module):
64
- """2D learned position embeddings."""
65
-
66
- def __init__(self, embedding_dim: int = 256, num_pos: int = 50):
67
- super().__init__()
68
- self.row_embeddings = nn.Embedding(num_pos, embedding_dim // 2)
69
- self.column_embeddings = nn.Embedding(
70
- num_pos, embedding_dim - (embedding_dim // 2)
71
- )
72
-
73
- def __call__(self, x):
74
- batch_size, height, width, channels = x.shape
75
- width_pos = mx.arange(width)
76
- height_pos = mx.arange(height)
77
-
78
- x_emb = self.column_embeddings(width_pos)
79
- y_emb = self.row_embeddings(height_pos)
80
-
81
- pos = mx.concatenate(
82
- [
83
- mx.broadcast_to(x_emb[None, :, :], (height, width, x_emb.shape[-1])),
84
- mx.broadcast_to(y_emb[:, None, :], (height, width, y_emb.shape[-1])),
85
- ],
86
- axis=-1,
87
- )
88
-
89
- return mx.broadcast_to(pos[None, ...], (batch_size, height, width, channels))
90
-
91
-
92
- class PositionalEmbeddingCosine1D(nn.Module):
93
- """
94
- MLX implementation of 1D cosine positional embeddings.
95
-
96
- Args:
97
- embed_dim: The dimension of the embeddings
98
- max_seq_len: The maximum length to precompute the positional encodings
99
- """
100
-
101
- def __init__(self, embed_dim: int = 512, max_seq_len: int = 1024) -> None:
102
- super().__init__()
103
- self.embed_dim = embed_dim
104
- self.max_seq_len = max_seq_len
105
-
106
- # Generate position indices and dimension indices
107
- position = mx.arange(max_seq_len)
108
- dim_pos = mx.arange(0, embed_dim // 2) # Half the dimensions for sin/cos pairs
109
-
110
- # Calculate frequency bands
111
- factor = math.log(10000)
112
- denominator = mx.exp(-factor * dim_pos / embed_dim)
113
-
114
- # Create position-frequency product matrix [max_seq_len, embed_dim//2]
115
- frequencies = mx.reshape(position, (-1, 1)) * denominator
116
-
117
- # Calculate sin and cos values [max_seq_len, embed_dim//2]
118
- sin_values = mx.sin(frequencies)
119
- cos_values = mx.cos(frequencies)
120
-
121
- # Interleave sin and cos values to create final embeddings
122
- pos_idx_to_embed = mx.zeros((max_seq_len, embed_dim))
123
- pos_idx_to_embed = mx.concatenate(
124
- [mx.expand_dims(sin_values, -1), mx.expand_dims(cos_values, -1)], axis=-1
125
- ).reshape(max_seq_len, embed_dim)
126
-
127
- # Store the positional embeddings
128
- self.pos_idx_to_embed = pos_idx_to_embed
129
-
130
- def __call__(self, seq_embeds: mx.array) -> mx.array:
131
- """
132
- Apply positional embeddings to the input sequence.
133
-
134
- Args:
135
- seq_embeds: Input sequence embeddings with shape:
136
- - [T, D] where T is sequence length and D is embedding dimension
137
- - [B, T, D] where B is batch size
138
-
139
- Returns:
140
- Positional embeddings matching input shape
141
- """
142
- shape_len = len(seq_embeds.shape)
143
- assert 2 <= shape_len <= 3, "Input must be 2D or 3D tensor"
144
-
145
- len_seq = seq_embeds.shape[-2]
146
- assert (
147
- len_seq <= self.max_seq_len
148
- ), f"Sequence length {len_seq} exceeds maximum length {self.max_seq_len}"
149
-
150
- # Get relevant portion of pre-computed embeddings
151
- pos_embeds = self.pos_idx_to_embed[:len_seq]
152
-
153
- # Add batch dimension if input is 3D
154
- if shape_len == 3:
155
- pos_embeds = mx.expand_dims(pos_embeds, 0)
156
-
157
- return pos_embeds
158
-
159
-
160
- class Model(nn.Module):
161
- """Florence-2 model for conditional generation."""
162
-
163
- def __init__(self, config: ModelConfig):
164
- super().__init__()
165
- self.config = config
166
-
167
- # Initialize vision model
168
- self.vision_tower = VisionModel(config.vision_config)
169
-
170
- # Initialize language model
171
- self.language_model = LanguageModel(config.text_config)
172
-
173
- # Image projection layers
174
- image_dim = config.vision_config.dim_embed[-1]
175
- text_dim = config.text_config.d_model
176
- self.image_projection = mx.zeros((image_dim, text_dim))
177
-
178
- self.image_proj_norm = nn.LayerNorm(text_dim)
179
-
180
- # Position embeddings
181
- if config.image_pos_embed["type"] == "learned_abs_2d":
182
- self.image_pos_embed = LearnedPositionEmbedding2D(
183
- embedding_dim=image_dim,
184
- num_pos=config.image_pos_embed["max_pos_embeddings"],
185
- )
186
- else:
187
- raise NotImplementedError(
188
- f"Position embedding type {config.image_pos_embed['type']} not supported"
189
- )
190
-
191
- # Temporal embeddings
192
- if config.visual_temporal_embedding["type"] == "COSINE":
193
- self.visual_temporal_embed = PositionalEmbeddingCosine1D(
194
- embed_dim=image_dim,
195
- max_seq_len=config.visual_temporal_embedding["max_temporal_embeddings"],
196
- )
197
- else:
198
- raise NotImplementedError(
199
- f"Temporal embedding type {config.visual_temporal_embedding['type']} not supported"
200
- )
201
-
202
- self.image_feature_source = config.image_feature_source
203
-
204
- def _encode_image(self, pixel_values, extract_features=True):
205
- """Encode image using vision model and add position embeddings."""
206
- T = 1 # Single frame for now
207
-
208
- # Get vision features
209
- if extract_features:
210
- batch_size, C, H, W = pixel_values.shape
211
- x = self.vision_tower(pixel_values)
212
- else:
213
- x = pixel_values
214
- batch_size = pixel_values.shape[0]
215
-
216
- # Assuming this is part of a class method, keeping the same structure
217
- if self.image_pos_embed is not None:
218
- # Reshape to (batch_size * T, -1, feature_dim)
219
- x = mx.reshape(x, (batch_size * T, -1, x.shape[-1]))
220
- num_tokens = x.shape[-2]
221
- h, w = int(num_tokens**0.5), int(num_tokens**0.5)
222
- assert h * w == num_tokens, "only support square feature maps for now"
223
- # Reshape to (batch_size * T, h, w, feature_dim)
224
- x = mx.reshape(x, (batch_size * T, h, w, x.shape[-1]))
225
- pos_embed = self.image_pos_embed(x)
226
- x = x + pos_embed
227
- # Reshape to (batch_size, T * h * w, feature_dim)
228
- x = mx.reshape(x, (batch_size, T * h * w, x.shape[-1]))
229
-
230
- if self.visual_temporal_embed is not None:
231
- # Reshape for temporal embedding
232
- x_temp = mx.reshape(x, (batch_size, T, -1, x.shape[-1]))
233
- temporal_input = x_temp[:, :, 0]
234
- visual_temporal_embed = self.visual_temporal_embed(temporal_input)
235
- # Expand dims for broadcasting
236
- visual_temporal_embed = mx.expand_dims(visual_temporal_embed, axis=2)
237
- x = mx.reshape(x, (batch_size, T, -1, x.shape[-1])) + visual_temporal_embed
238
-
239
- x_feat_dict = {}
240
-
241
- # Spatial average pooling
242
- x_spatial = mx.reshape(x, (batch_size, T, -1, x.shape[-1]))
243
- spatial_avg_pool_x = mx.mean(x_spatial, axis=2)
244
- x_feat_dict["spatial_avg_pool"] = spatial_avg_pool_x
245
-
246
- # Temporal average pooling
247
- x_temporal = mx.reshape(x, (batch_size, T, -1, x.shape[-1]))
248
- temporal_avg_pool_x = mx.mean(x_temporal, axis=1)
249
- x_feat_dict["temporal_avg_pool"] = temporal_avg_pool_x
250
-
251
- # Last frame features
252
- x_last = mx.reshape(x, (batch_size, T, -1, x.shape[-1]))
253
- x = x_last[:, -1]
254
- x_feat_dict["last_frame"] = x
255
-
256
- # Gather features based on source configuration
257
- new_x = []
258
- for _image_feature_source in self.image_feature_source:
259
- if _image_feature_source not in x_feat_dict:
260
- raise ValueError(
261
- f"invalid image feature source: {_image_feature_source}"
262
- )
263
- new_x.append(x_feat_dict[_image_feature_source])
264
-
265
- # Concatenate features
266
- x = mx.concatenate(new_x, axis=1)
267
-
268
- # Final projection and normalization
269
- x = x @ self.image_projection
270
- x = self.image_proj_norm(x)
271
-
272
- return x
273
-
274
- def _merge_input_ids_with_image_features(self, image_features, inputs_embeds=None):
275
- batch_size, image_token_length, _ = image_features.shape
276
- image_attention_mask = mx.ones((batch_size, image_token_length))
277
-
278
- if inputs_embeds is None:
279
- return image_features, image_attention_mask
280
-
281
- task_prefix_embeds = inputs_embeds
282
- task_prefix_attention_mask = mx.ones((batch_size, task_prefix_embeds.shape[1]))
283
-
284
- if len(task_prefix_attention_mask.shape) == 3:
285
- task_prefix_attention_mask = task_prefix_attention_mask[:, 0]
286
-
287
- # Concatenate image features and task prefix embeddings
288
- inputs_embeds = mx.concatenate([image_features, task_prefix_embeds], axis=1)
289
- attention_mask = mx.concatenate(
290
- [image_attention_mask, task_prefix_attention_mask], axis=1
291
- )
292
- return inputs_embeds, attention_mask
293
-
294
- @property
295
- def layers(self):
296
- return self.language_model.model.layers
297
-
298
- def __call__(
299
- self,
300
- input_ids=None,
301
- pixel_values=None,
302
- cache=None,
303
- decoder_input_ids=None,
304
- decoder_attention_mask=None,
305
- labels=None,
306
- **kwargs,
307
- ):
308
- """Forward pass."""
309
- attention_mask = None
310
- decoder_inputs_embeds = None
311
-
312
- # Process image if provided
313
- if pixel_values is not None:
314
- image_features = self._encode_image(pixel_values)
315
-
316
- # Get input embeddings if needed
317
- inputs_embeds = None
318
- if input_ids is not None:
319
- inputs_embeds = self.language_model.model.shared(input_ids)
320
-
321
- # Merge image features with text embeddings
322
- inputs_embeds, attention_mask = self._merge_input_ids_with_image_features(
323
- image_features, inputs_embeds
324
- )
325
- else:
326
- inputs_embeds = None
327
- attention_mask = None
328
-
329
- # Handle decoder input IDs
330
- if labels is not None and decoder_input_ids is None:
331
- decoder_input_ids = shift_tokens_right(
332
- labels, self.config.pad_token_id, self.config.bos_token_id
333
- )
334
-
335
- if decoder_input_ids is None and decoder_inputs_embeds is None:
336
- decoder_start_token_id = getattr(
337
- self.config, "decoder_start_token_id", 0
338
- ) # 2 is common for many models
339
- if decoder_start_token_id is None:
340
- decoder_start_token_id = 0
341
-
342
- decoder_input_ids = mx.array([decoder_start_token_id])[None, :]
343
- decoder_inputs_embeds = self.language_model.model.shared(decoder_input_ids)
344
- decoder_input_ids = None
345
-
346
- # Forward through language model
347
- outputs = self.language_model(
348
- input_ids=input_ids,
349
- inputs_embeds=inputs_embeds,
350
- attention_mask=attention_mask,
351
- decoder_input_ids=decoder_input_ids,
352
- decoder_inputs_embeds=decoder_inputs_embeds,
353
- decoder_attention_mask=decoder_attention_mask,
354
- cache=cache,
355
- )
356
-
357
- return outputs
358
-
359
- @staticmethod
360
- def sanitize(weights):
361
- sanitized_weights = {}
362
- for k, v in weights.items():
363
- if "final_logits_bias" in k:
364
- continue
365
- sanitized_weights[k] = v
366
- return sanitized_weights