nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc8__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (196) hide show
  1. nexaai/_stub.cpython-310-darwin.so +0 -0
  2. nexaai/_version.py +1 -1
  3. nexaai/binds/libnexa_bridge.dylib +0 -0
  4. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/METADATA +1 -1
  5. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/RECORD +7 -196
  6. nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
  7. nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
  8. nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
  9. nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
  10. nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
  11. nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
  12. nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
  13. nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
  14. nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
  15. nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
  16. nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
  17. nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
  18. nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
  19. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
  20. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
  21. nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
  22. nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
  23. nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
  24. nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
  25. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
  26. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
  27. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
  28. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
  29. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
  30. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
  31. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
  32. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
  33. nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
  34. nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
  35. nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
  36. nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
  37. nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
  38. nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
  39. nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
  40. nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
  41. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
  42. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
  43. nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
  44. nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
  45. nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
  46. nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
  47. nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
  48. nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
  49. nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
  50. nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
  51. nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
  52. nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
  53. nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
  54. nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
  55. nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
  56. nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
  57. nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
  58. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
  59. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
  60. nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
  61. nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
  62. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
  63. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
  64. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
  65. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
  66. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
  67. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
  68. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
  69. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
  70. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
  71. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
  72. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
  73. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
  74. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
  75. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
  76. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
  77. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
  78. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
  79. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
  80. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
  81. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
  82. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
  83. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
  84. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
  85. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
  86. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
  87. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
  88. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
  89. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
  90. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
  91. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
  92. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
  93. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
  94. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
  95. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
  96. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
  97. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
  98. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
  99. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
  100. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
  101. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
  102. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
  103. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
  104. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
  105. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
  106. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
  107. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
  108. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
  109. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
  110. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
  111. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
  112. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
  113. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
  114. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
  115. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
  116. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
  117. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
  118. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
  119. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
  120. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
  121. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
  122. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
  123. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
  124. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
  125. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
  126. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
  127. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
  128. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
  129. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
  130. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
  131. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
  132. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
  133. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
  134. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
  135. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
  136. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
  137. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
  138. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
  139. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
  140. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
  141. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
  142. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
  143. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
  144. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
  145. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
  146. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
  147. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
  148. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
  149. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
  150. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
  151. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
  152. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
  153. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
  154. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
  155. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
  156. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
  157. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
  158. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
  159. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
  160. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
  161. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
  162. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
  163. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
  164. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  165. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
  166. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
  167. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
  168. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
  169. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
  170. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
  171. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
  172. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
  173. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  174. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
  175. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
  176. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
  177. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
  178. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
  179. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
  180. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
  181. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
  182. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
  183. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
  184. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
  185. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
  186. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
  187. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
  188. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
  189. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
  190. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
  191. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
  192. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
  193. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
  194. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
  195. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/WHEEL +0 -0
  196. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/top_level.txt +0 -0
@@ -1,312 +0,0 @@
1
- import inspect
2
- from dataclasses import dataclass
3
- from typing import Optional
4
-
5
- import mlx.core as mx
6
- import mlx.nn as nn
7
-
8
- from .config import VisionConfig
9
-
10
-
11
- def check_array_shape(arr):
12
- shape = arr.shape
13
-
14
- # Check if the shape has 4 dimensions
15
- if len(shape) not in [4, 5]:
16
- return False
17
-
18
- B, out_channels, kH, KW, t = shape
19
-
20
- if t == 3:
21
- return True
22
-
23
- # Check if out_channels is the largest, and kH and KW are the same
24
- if (out_channels >= kH) and (out_channels >= KW) and (kH == KW):
25
- return True
26
- else:
27
- return False
28
-
29
-
30
- def rotate_half(x):
31
- """Rotates half the hidden dims of the input."""
32
- x1 = x[..., : x.shape[-1] // 2]
33
- x2 = x[..., x.shape[-1] // 2 :]
34
- return mx.concatenate([-x2, x1], axis=-1)
35
-
36
-
37
- def apply_rotary_pos_emb_vision(tensor, freqs) -> mx.array:
38
- orig_dtype = tensor.dtype
39
-
40
- cos = mx.cos(freqs)
41
- sin = mx.sin(freqs)
42
-
43
- cos = mx.expand_dims(cos, axis=1) # Equivalent to unsqueeze(1)
44
- cos = mx.tile(cos, (1, 1, 2)) # Equivalent to repeat(1, 1, 2)
45
- cos = mx.expand_dims(cos, axis=0) # Equivalent to [None, ...]
46
-
47
- sin = mx.expand_dims(sin, axis=1) # Equivalent to unsqueeze(1)
48
- sin = mx.tile(sin, (1, 1, 2)) # Equivalent to repeat(1, 1, 2)
49
- sin = mx.expand_dims(sin, axis=0) # Equivalent to [None, ...]
50
-
51
- output = (tensor * cos) + (rotate_half(tensor) * sin)
52
- return output.astype(orig_dtype)
53
-
54
-
55
- class VisionRotaryEmbedding(nn.Module):
56
- def __init__(self, dim: int, theta: float = 10000.0) -> None:
57
- super().__init__()
58
- self.dim = dim
59
- self.theta = theta
60
-
61
- def __call__(self, seqlen: int) -> mx.array:
62
- inv_freq = 1.0 / (
63
- self.theta ** (mx.arange(0, self.dim, 2, dtype=mx.float32) / self.dim)
64
- )
65
- seq = mx.arange(seqlen.tolist(), dtype=inv_freq.dtype)
66
- freqs = mx.outer(seq, inv_freq)
67
- return freqs
68
-
69
-
70
- class PatchEmbed(nn.Module):
71
- def __init__(
72
- self,
73
- patch_size: int = 14,
74
- temporal_patch_size: int = 2,
75
- in_channels: int = 3,
76
- embed_dim: int = 1152,
77
- ) -> None:
78
- super().__init__()
79
- self.patch_size = patch_size
80
- self.temporal_patch_size = temporal_patch_size
81
- self.in_channels = in_channels
82
- self.embed_dim = embed_dim
83
-
84
- kernel_size = [temporal_patch_size, patch_size, patch_size]
85
- self.proj = nn.Conv3d(
86
- in_channels,
87
- embed_dim,
88
- kernel_size=kernel_size,
89
- stride=kernel_size,
90
- bias=False,
91
- )
92
-
93
- def __call__(self, hidden_states: mx.array) -> mx.array:
94
- hidden_states = hidden_states.reshape(
95
- -1,
96
- self.in_channels,
97
- self.temporal_patch_size,
98
- self.patch_size,
99
- self.patch_size,
100
- ).moveaxis(1, 4)
101
-
102
- hidden_states = self.proj(hidden_states)
103
- hidden_states = hidden_states.reshape(-1, self.embed_dim)
104
- return hidden_states
105
-
106
-
107
- class PatchMerger(nn.Module):
108
- def __init__(self, dim: int, context_dim: int, spatial_merge_size: int = 2) -> None:
109
- super().__init__()
110
- self.hidden_size = context_dim * (spatial_merge_size**2)
111
- self.ln_q = nn.LayerNorm(context_dim, eps=1e-6)
112
- self.mlp = [
113
- nn.Linear(self.hidden_size, self.hidden_size),
114
- nn.GELU(),
115
- nn.Linear(self.hidden_size, dim),
116
- ]
117
-
118
- def __call__(self, x: mx.array) -> mx.array:
119
- x = self.ln_q(x).reshape(-1, self.hidden_size)
120
- for layer in self.mlp:
121
- x = layer(x)
122
- return x
123
-
124
-
125
- class Attention(nn.Module):
126
- def __init__(self, dim: int, num_heads: int = 16) -> None:
127
- super().__init__()
128
- self.num_heads = num_heads
129
- self.head_dim = head_dim = dim // num_heads
130
- self.scale = head_dim**-0.5
131
- self.qkv = nn.Linear(dim, dim * 3, bias=True)
132
- self.proj = nn.Linear(dim, dim)
133
-
134
- def __call__(
135
- self, x: mx.array, cu_seqlens: mx.array, rotary_pos_emb: mx.array = None
136
- ) -> mx.array:
137
- seq_length = x.shape[0]
138
- qkv = (
139
- self.qkv(x).reshape(seq_length, 3, self.num_heads, -1).transpose(1, 0, 2, 3)
140
- )
141
- q, k, v = mx.split(qkv, 3)
142
-
143
- q = apply_rotary_pos_emb_vision(mx.expand_dims(q, 0), rotary_pos_emb)[0]
144
- k = apply_rotary_pos_emb_vision(mx.expand_dims(k, 0), rotary_pos_emb)[0]
145
- attention_mask = mx.ones((1, seq_length, seq_length), dtype=x.dtype)
146
-
147
- for i in range(1, len(cu_seqlens)):
148
- start = int(cu_seqlens[i - 1])
149
- end = int(cu_seqlens[i])
150
- attention_mask[start:end, start:end] = 0
151
-
152
- q = q.transpose(0, 2, 1, 3)
153
- k = k.transpose(0, 2, 1, 3)
154
- v = v.transpose(0, 2, 1, 3)
155
-
156
- output = mx.fast.scaled_dot_product_attention(
157
- q, k, v, scale=self.scale, mask=attention_mask
158
- )
159
- output = output.transpose(0, 2, 1, 3)
160
- output = output.reshape(seq_length, -1)
161
- return self.proj(output)
162
-
163
-
164
- class MLP(nn.Module):
165
- def __init__(self, dim, hidden_dim):
166
- super().__init__()
167
- self.activation_fn = nn.GELU(approx="fast")
168
- self.fc1 = nn.Linear(dim, hidden_dim)
169
- self.fc2 = nn.Linear(hidden_dim, dim)
170
-
171
- def __call__(self, x: mx.array) -> mx.array:
172
- x = self.activation_fn(self.fc1(x))
173
- x = self.fc2(x)
174
- return x
175
-
176
-
177
- class Qwen2VLVisionBlock(nn.Module):
178
- def __init__(self, config: VisionConfig) -> None:
179
- super().__init__()
180
- self.norm1 = nn.LayerNorm(config.embed_dim, eps=1e-6)
181
- self.norm2 = nn.LayerNorm(config.embed_dim, eps=1e-6)
182
- mlp_hidden_dim = int(config.embed_dim * config.mlp_ratio)
183
-
184
- self.attn = Attention(dim=config.embed_dim, num_heads=config.num_heads)
185
- self.mlp = MLP(dim=config.embed_dim, hidden_dim=mlp_hidden_dim)
186
-
187
- def __call__(self, hidden_states, cu_seqlens, rotary_pos_emb) -> mx.array:
188
- hidden_states = hidden_states + self.attn(
189
- self.norm1(hidden_states),
190
- cu_seqlens=cu_seqlens,
191
- rotary_pos_emb=rotary_pos_emb,
192
- )
193
- hidden_states = hidden_states + self.mlp(self.norm2(hidden_states))
194
- return hidden_states
195
-
196
-
197
- class VisionModel(nn.Module):
198
-
199
- def __init__(self, config: VisionConfig) -> None:
200
- super().__init__()
201
- self.config = config
202
- self.model_type = config.model_type
203
- if self.model_type != "qwen2_vl":
204
- raise ValueError(f"Unsupported model type: {self.model_type}")
205
- self.spatial_merge_size = config.spatial_merge_size
206
-
207
- self.patch_embed = PatchEmbed(
208
- patch_size=config.patch_size,
209
- temporal_patch_size=config.temporal_patch_size,
210
- in_channels=config.in_channels,
211
- embed_dim=config.embed_dim,
212
- )
213
-
214
- head_dim = config.embed_dim // config.num_heads
215
- self.rotary_pos_emb = VisionRotaryEmbedding(head_dim // 2)
216
-
217
- self.blocks = [Qwen2VLVisionBlock(config) for _ in range(config.depth)]
218
- self.merger = PatchMerger(dim=config.hidden_size, context_dim=config.embed_dim)
219
-
220
- def rot_pos_emb(self, grid_thw):
221
- pos_ids = []
222
-
223
- for t, h, w in grid_thw:
224
- h, w = int(h), int(w) # Ensure h and w are integers
225
- hpos_ids = mx.expand_dims(mx.arange(h), 1)
226
- hpos_ids = mx.repeat(hpos_ids, w, axis=1)
227
- hpos_ids = hpos_ids.reshape(
228
- h // self.spatial_merge_size,
229
- self.spatial_merge_size,
230
- w // self.spatial_merge_size,
231
- self.spatial_merge_size,
232
- )
233
- hpos_ids = mx.transpose(hpos_ids, (0, 2, 1, 3))
234
- hpos_ids = hpos_ids.flatten()
235
-
236
- wpos_ids = mx.expand_dims(mx.arange(w), 0)
237
- wpos_ids = mx.repeat(wpos_ids, h, axis=0)
238
- wpos_ids = wpos_ids.reshape(
239
- h // self.spatial_merge_size,
240
- self.spatial_merge_size,
241
- w // self.spatial_merge_size,
242
- self.spatial_merge_size,
243
- )
244
- wpos_ids = mx.transpose(wpos_ids, (0, 2, 1, 3))
245
- wpos_ids = wpos_ids.flatten()
246
-
247
- stacked_pos_ids = mx.stack([hpos_ids, wpos_ids], axis=-1)
248
- pos_ids.append(mx.tile(stacked_pos_ids, (t, 1)))
249
-
250
- pos_ids = mx.concatenate(pos_ids, axis=0)
251
- max_grid_size = mx.max(grid_thw[:, 1:])
252
- rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size)
253
-
254
- rotary_pos_emb_full = rotary_pos_emb_full[pos_ids]
255
-
256
- return rotary_pos_emb_full.reshape(pos_ids.shape[0], -1)
257
-
258
- def __call__(
259
- self,
260
- hidden_states: mx.array,
261
- grid_thw: mx.array,
262
- output_hidden_states: Optional[bool] = None,
263
- ) -> mx.array:
264
-
265
- hidden_states = self.patch_embed(hidden_states)
266
- rotary_pos_emb = self.rot_pos_emb(grid_thw)
267
-
268
- # Assuming grid_thw has shape (batch_size, 3)
269
- batch_size = grid_thw.shape[0]
270
-
271
- # Calculate cu_seqlens for each item in the batch
272
- cu_seqlens = []
273
- for i in range(batch_size):
274
- seq_len = grid_thw[i, 1] * grid_thw[i, 2]
275
- cu_seqlens.append(mx.repeat(seq_len, grid_thw[i, 0]))
276
-
277
- # Concatenate the cu_seqlens for all items in the batch
278
- cu_seqlens = mx.concatenate(cu_seqlens)
279
-
280
- cu_seqlens = mx.cumsum(cu_seqlens.astype(mx.int32), axis=0)
281
- cu_seqlens = mx.pad(cu_seqlens, (1, 0), mode="constant", constant_values=0)
282
-
283
- encoder_states = (hidden_states,) if output_hidden_states else None
284
-
285
- for blk in self.blocks:
286
- hidden_states = blk(
287
- hidden_states, cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb
288
- )
289
- if output_hidden_states:
290
- encoder_states = encoder_states + (hidden_states,)
291
-
292
- return self.merger(hidden_states)
293
-
294
- def sanitize(self, weights):
295
- sanitized_weights = {}
296
- for k, v in weights.items():
297
- if "position_ids" in k:
298
- # Remove unused position_ids
299
- continue
300
- elif "patch_embed.proj.weight" in k:
301
- # PyTorch conv2d weight tensors have shape:
302
- # [out_channels, in_channels, kH, KW]
303
- # MLX conv2d expects the weight be of shape:
304
- # [out_channels, kH, KW, in_channels]
305
- if check_array_shape(v):
306
- sanitized_weights[k] = v
307
- else:
308
- sanitized_weights[k] = v.transpose(0, 2, 3, 4, 1)
309
- else:
310
- sanitized_weights[k] = v
311
-
312
- return sanitized_weights
@@ -1,117 +0,0 @@
1
- import inspect
2
- from dataclasses import dataclass
3
- from typing import Any, Optional
4
-
5
- import mlx.core as mx
6
- from mlx.utils import tree_map
7
-
8
- from .cache import QuantizedKVCache
9
-
10
-
11
- @dataclass
12
- class BaseModelArgs:
13
- @classmethod
14
- def from_dict(cls, params):
15
- return cls(**{k: v for k, v in params.items() if k in inspect.signature(cls).parameters})
16
-
17
-
18
- def create_causal_mask(
19
- N: int,
20
- offset: int = 0,
21
- window_size: Optional[int] = None,
22
- lengths: Optional[mx.array] = None,
23
- ):
24
- rinds = mx.arange(offset + N)
25
- linds = mx.arange(offset, offset + N) if offset else rinds
26
- linds = linds[:, None]
27
- rinds = rinds[None]
28
- mask = linds >= rinds
29
- if window_size is not None:
30
- mask = mask & (linds <= rinds + window_size)
31
- if lengths is not None:
32
- lengths = lengths[:, None, None, None]
33
- mask = mask & (rinds < lengths)
34
- return mask
35
-
36
-
37
- def create_attention_mask(h: mx.array, cache: Optional[Any] = None, return_array: bool = False):
38
- T = h.shape[1]
39
- if T > 1:
40
- offset = 0
41
- window_size = None
42
- if cache is not None and cache[0] is not None:
43
- c = cache[0]
44
- offset = c.offset
45
- if hasattr(c, "max_size"):
46
- window_size = c.max_size
47
- offset = min(window_size, offset)
48
- return_array = return_array or offset + T > window_size
49
- if return_array:
50
- return create_causal_mask(T, offset, window_size=window_size)
51
- else:
52
- return "causal"
53
- else:
54
- mask = None
55
- return mask
56
-
57
-
58
- def quantized_scaled_dot_product_attention(
59
- queries: mx.array,
60
- q_keys: tuple[mx.array, mx.array, mx.array],
61
- q_values: tuple[mx.array, mx.array, mx.array],
62
- scale: float,
63
- mask: Optional[mx.array],
64
- group_size: int = 64,
65
- bits: int = 8,
66
- ) -> mx.array:
67
- B, n_q_heads, L, D = queries.shape
68
- n_kv_heads = q_keys[0].shape[-3]
69
- n_repeats = n_q_heads // n_kv_heads
70
-
71
- queries *= scale
72
-
73
- if n_repeats > 1:
74
- queries = mx.reshape(queries, (B, n_kv_heads, n_repeats, L, D))
75
- q_keys = tree_map(lambda x: mx.expand_dims(x, axis=-3), q_keys)
76
- q_values = tree_map(lambda x: mx.expand_dims(x, axis=-3), q_values)
77
-
78
- scores = mx.quantized_matmul(queries, *q_keys, transpose=True, group_size=group_size, bits=bits)
79
- if mask is not None:
80
- if isinstance(mask, str):
81
- qL, kL = scores.shape[-2:]
82
- q_indices = mx.arange(kL - qL, kL)
83
- k_indices = mx.arange(kL)
84
- mask = q_indices[:, None] >= k_indices[None]
85
- if mask.dtype == mx.bool_:
86
- scores = mx.where(mask, scores, mx.finfo(scores.dtype).min)
87
- else:
88
- scores += mask
89
- scores = mx.softmax(scores, axis=-1, precise=True)
90
- out = mx.quantized_matmul(scores, *q_values, transpose=False, group_size=group_size, bits=bits)
91
-
92
- if n_repeats > 1:
93
- out = mx.reshape(out, (B, n_q_heads, L, D))
94
-
95
- return out
96
-
97
-
98
- def scaled_dot_product_attention(
99
- queries,
100
- keys,
101
- values,
102
- cache,
103
- scale: float,
104
- mask: Optional[mx.array],
105
- ) -> mx.array:
106
- if isinstance(cache, QuantizedKVCache):
107
- return quantized_scaled_dot_product_attention(
108
- queries,
109
- keys,
110
- values,
111
- scale=scale,
112
- mask=mask,
113
- group_size=cache.group_size,
114
- bits=cache.bits,
115
- )
116
- else:
117
- return mx.fast.scaled_dot_product_attention(queries, keys, values, scale=scale, mask=mask)