nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc8__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (196) hide show
  1. nexaai/_stub.cpython-310-darwin.so +0 -0
  2. nexaai/_version.py +1 -1
  3. nexaai/binds/libnexa_bridge.dylib +0 -0
  4. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/METADATA +1 -1
  5. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/RECORD +7 -196
  6. nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
  7. nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
  8. nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
  9. nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
  10. nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
  11. nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
  12. nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
  13. nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
  14. nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
  15. nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
  16. nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
  17. nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
  18. nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
  19. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
  20. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
  21. nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
  22. nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
  23. nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
  24. nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
  25. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
  26. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
  27. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
  28. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
  29. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
  30. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
  31. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
  32. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
  33. nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
  34. nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
  35. nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
  36. nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
  37. nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
  38. nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
  39. nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
  40. nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
  41. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
  42. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
  43. nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
  44. nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
  45. nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
  46. nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
  47. nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
  48. nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
  49. nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
  50. nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
  51. nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
  52. nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
  53. nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
  54. nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
  55. nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
  56. nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
  57. nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
  58. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
  59. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
  60. nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
  61. nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
  62. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
  63. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
  64. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
  65. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
  66. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
  67. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
  68. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
  69. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
  70. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
  71. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
  72. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
  73. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
  74. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
  75. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
  76. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
  77. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
  78. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
  79. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
  80. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
  81. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
  82. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
  83. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
  84. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
  85. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
  86. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
  87. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
  88. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
  89. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
  90. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
  91. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
  92. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
  93. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
  94. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
  95. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
  96. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
  97. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
  98. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
  99. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
  100. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
  101. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
  102. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
  103. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
  104. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
  105. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
  106. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
  107. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
  108. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
  109. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
  110. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
  111. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
  112. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
  113. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
  114. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
  115. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
  116. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
  117. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
  118. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
  119. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
  120. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
  121. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
  122. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
  123. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
  124. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
  125. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
  126. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
  127. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
  128. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
  129. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
  130. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
  131. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
  132. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
  133. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
  134. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
  135. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
  136. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
  137. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
  138. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
  139. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
  140. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
  141. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
  142. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
  143. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
  144. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
  145. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
  146. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
  147. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
  148. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
  149. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
  150. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
  151. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
  152. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
  153. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
  154. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
  155. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
  156. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
  157. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
  158. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
  159. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
  160. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
  161. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
  162. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
  163. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
  164. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  165. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
  166. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
  167. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
  168. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
  169. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
  170. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
  171. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
  172. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
  173. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  174. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
  175. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
  176. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
  177. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
  178. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
  179. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
  180. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
  181. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
  182. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
  183. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
  184. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
  185. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
  186. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
  187. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
  188. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
  189. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
  190. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
  191. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
  192. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
  193. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
  194. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
  195. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/WHEEL +0 -0
  196. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/top_level.txt +0 -0
@@ -1,274 +0,0 @@
1
- # Copyright © 2023 Apple Inc.
2
-
3
- import math
4
- from typing import List
5
-
6
- import mlx.core as mx
7
- import mlx.nn as nn
8
-
9
- from .config import AutoencoderConfig
10
- from .unet import ResnetBlock2D, upsample_nearest
11
-
12
-
13
- class Attention(nn.Module):
14
- """A single head unmasked attention for use with the VAE."""
15
-
16
- def __init__(self, dims: int, norm_groups: int = 32):
17
- super().__init__()
18
-
19
- self.group_norm = nn.GroupNorm(norm_groups, dims, pytorch_compatible=True)
20
- self.query_proj = nn.Linear(dims, dims)
21
- self.key_proj = nn.Linear(dims, dims)
22
- self.value_proj = nn.Linear(dims, dims)
23
- self.out_proj = nn.Linear(dims, dims)
24
-
25
- def __call__(self, x):
26
- B, H, W, C = x.shape
27
-
28
- y = self.group_norm(x)
29
-
30
- queries = self.query_proj(y).reshape(B, H * W, C)
31
- keys = self.key_proj(y).reshape(B, H * W, C)
32
- values = self.value_proj(y).reshape(B, H * W, C)
33
-
34
- scale = 1 / math.sqrt(queries.shape[-1])
35
- scores = (queries * scale) @ keys.transpose(0, 2, 1)
36
- attn = mx.softmax(scores, axis=-1)
37
- y = (attn @ values).reshape(B, H, W, C)
38
-
39
- y = self.out_proj(y)
40
- x = x + y
41
-
42
- return x
43
-
44
-
45
- class EncoderDecoderBlock2D(nn.Module):
46
- def __init__(
47
- self,
48
- in_channels: int,
49
- out_channels: int,
50
- num_layers: int = 1,
51
- resnet_groups: int = 32,
52
- add_downsample=True,
53
- add_upsample=True,
54
- ):
55
- super().__init__()
56
-
57
- # Add the resnet blocks
58
- self.resnets = [
59
- ResnetBlock2D(
60
- in_channels=in_channels if i == 0 else out_channels,
61
- out_channels=out_channels,
62
- groups=resnet_groups,
63
- )
64
- for i in range(num_layers)
65
- ]
66
-
67
- # Add an optional downsampling layer
68
- if add_downsample:
69
- self.downsample = nn.Conv2d(
70
- out_channels, out_channels, kernel_size=3, stride=2, padding=0
71
- )
72
-
73
- # or upsampling layer
74
- if add_upsample:
75
- self.upsample = nn.Conv2d(
76
- out_channels, out_channels, kernel_size=3, stride=1, padding=1
77
- )
78
-
79
- def __call__(self, x):
80
- for resnet in self.resnets:
81
- x = resnet(x)
82
-
83
- if "downsample" in self:
84
- x = mx.pad(x, [(0, 0), (0, 1), (0, 1), (0, 0)])
85
- x = self.downsample(x)
86
-
87
- if "upsample" in self:
88
- x = self.upsample(upsample_nearest(x))
89
-
90
- return x
91
-
92
-
93
- class Encoder(nn.Module):
94
- """Implements the encoder side of the Autoencoder."""
95
-
96
- def __init__(
97
- self,
98
- in_channels: int,
99
- out_channels: int,
100
- block_out_channels: List[int] = [64],
101
- layers_per_block: int = 2,
102
- resnet_groups: int = 32,
103
- ):
104
- super().__init__()
105
-
106
- self.conv_in = nn.Conv2d(
107
- in_channels, block_out_channels[0], kernel_size=3, stride=1, padding=1
108
- )
109
-
110
- channels = [block_out_channels[0]] + list(block_out_channels)
111
- self.down_blocks = [
112
- EncoderDecoderBlock2D(
113
- in_channels,
114
- out_channels,
115
- num_layers=layers_per_block,
116
- resnet_groups=resnet_groups,
117
- add_downsample=i < len(block_out_channels) - 1,
118
- add_upsample=False,
119
- )
120
- for i, (in_channels, out_channels) in enumerate(zip(channels, channels[1:]))
121
- ]
122
-
123
- self.mid_blocks = [
124
- ResnetBlock2D(
125
- in_channels=block_out_channels[-1],
126
- out_channels=block_out_channels[-1],
127
- groups=resnet_groups,
128
- ),
129
- Attention(block_out_channels[-1], resnet_groups),
130
- ResnetBlock2D(
131
- in_channels=block_out_channels[-1],
132
- out_channels=block_out_channels[-1],
133
- groups=resnet_groups,
134
- ),
135
- ]
136
-
137
- self.conv_norm_out = nn.GroupNorm(
138
- resnet_groups, block_out_channels[-1], pytorch_compatible=True
139
- )
140
- self.conv_out = nn.Conv2d(block_out_channels[-1], out_channels, 3, padding=1)
141
-
142
- def __call__(self, x):
143
- x = self.conv_in(x)
144
-
145
- for l in self.down_blocks:
146
- x = l(x)
147
-
148
- x = self.mid_blocks[0](x)
149
- x = self.mid_blocks[1](x)
150
- x = self.mid_blocks[2](x)
151
-
152
- x = self.conv_norm_out(x)
153
- x = nn.silu(x)
154
- x = self.conv_out(x)
155
-
156
- return x
157
-
158
-
159
- class Decoder(nn.Module):
160
- """Implements the decoder side of the Autoencoder."""
161
-
162
- def __init__(
163
- self,
164
- in_channels: int,
165
- out_channels: int,
166
- block_out_channels: List[int] = [64],
167
- layers_per_block: int = 2,
168
- resnet_groups: int = 32,
169
- ):
170
- super().__init__()
171
-
172
- self.conv_in = nn.Conv2d(
173
- in_channels, block_out_channels[-1], kernel_size=3, stride=1, padding=1
174
- )
175
-
176
- self.mid_blocks = [
177
- ResnetBlock2D(
178
- in_channels=block_out_channels[-1],
179
- out_channels=block_out_channels[-1],
180
- groups=resnet_groups,
181
- ),
182
- Attention(block_out_channels[-1], resnet_groups),
183
- ResnetBlock2D(
184
- in_channels=block_out_channels[-1],
185
- out_channels=block_out_channels[-1],
186
- groups=resnet_groups,
187
- ),
188
- ]
189
-
190
- channels = list(reversed(block_out_channels))
191
- channels = [channels[0]] + channels
192
- self.up_blocks = [
193
- EncoderDecoderBlock2D(
194
- in_channels,
195
- out_channels,
196
- num_layers=layers_per_block,
197
- resnet_groups=resnet_groups,
198
- add_downsample=False,
199
- add_upsample=i < len(block_out_channels) - 1,
200
- )
201
- for i, (in_channels, out_channels) in enumerate(zip(channels, channels[1:]))
202
- ]
203
-
204
- self.conv_norm_out = nn.GroupNorm(
205
- resnet_groups, block_out_channels[0], pytorch_compatible=True
206
- )
207
- self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1)
208
-
209
- def __call__(self, x):
210
- x = self.conv_in(x)
211
-
212
- x = self.mid_blocks[0](x)
213
- x = self.mid_blocks[1](x)
214
- x = self.mid_blocks[2](x)
215
-
216
- for l in self.up_blocks:
217
- x = l(x)
218
-
219
- x = self.conv_norm_out(x)
220
- x = nn.silu(x)
221
- x = self.conv_out(x)
222
-
223
- return x
224
-
225
-
226
- class Autoencoder(nn.Module):
227
- """The autoencoder that allows us to perform diffusion in the latent space."""
228
-
229
- def __init__(self, config: AutoencoderConfig):
230
- super().__init__()
231
-
232
- self.latent_channels = config.latent_channels_in
233
- self.scaling_factor = config.scaling_factor
234
- self.encoder = Encoder(
235
- config.in_channels,
236
- config.latent_channels_out,
237
- config.block_out_channels,
238
- config.layers_per_block,
239
- resnet_groups=config.norm_num_groups,
240
- )
241
- self.decoder = Decoder(
242
- config.latent_channels_in,
243
- config.out_channels,
244
- config.block_out_channels,
245
- config.layers_per_block + 1,
246
- resnet_groups=config.norm_num_groups,
247
- )
248
-
249
- self.quant_proj = nn.Linear(
250
- config.latent_channels_out, config.latent_channels_out
251
- )
252
- self.post_quant_proj = nn.Linear(
253
- config.latent_channels_in, config.latent_channels_in
254
- )
255
-
256
- def decode(self, z):
257
- z = z / self.scaling_factor
258
- return self.decoder(self.post_quant_proj(z))
259
-
260
- def encode(self, x):
261
- x = self.encoder(x)
262
- x = self.quant_proj(x)
263
- mean, logvar = x.split(2, axis=-1)
264
- mean = mean * self.scaling_factor
265
- logvar = logvar + 2 * math.log(self.scaling_factor)
266
-
267
- return mean, logvar
268
-
269
- def __call__(self, x, key=None):
270
- mean, logvar = self.encode(x)
271
- z = mx.random.normal(mean.shape, key=key) * mx.exp(0.5 * logvar) + mean
272
- x_hat = self.decode(z)
273
-
274
- return dict(x_hat=x_hat, z=z, mean=mean, logvar=logvar)
File without changes
@@ -1,149 +0,0 @@
1
- import argparse
2
- from mlx_lm.models.cache import make_prompt_cache
3
- import mlx.core as mx
4
- import mlx.nn as nn
5
- from mlx.utils import tree_reduce
6
- from transformers import PreTrainedTokenizer
7
- from mlx_lm.models import cache
8
- from mlx_lm.models.cache import (
9
- QuantizedKVCache,
10
- load_prompt_cache,
11
- )
12
- from mlx_lm.sample_utils import make_sampler
13
- from mlx_lm.tokenizer_utils import TokenizerWrapper
14
- from mlx_lm.utils import does_model_support_input_embeddings, load
15
- from mlx_lm.generate import stream_generate
16
-
17
- DEFAULT_TEMP = 0.0
18
- DEFAULT_TOP_P = 1.0
19
- DEFAULT_XTC_PROBABILITY = 0.0
20
- DEFAULT_XTC_THRESHOLD = 0.0
21
- DEFAULT_SEED = None
22
- DEFAULT_MAX_TOKENS = 256
23
- DEFAULT_MODEL = "mlx-community/Qwen3-1.7B-4bit-DWQ"
24
-
25
-
26
- def str2bool(string):
27
- return string.lower() not in ["false", "f"]
28
-
29
-
30
- def setup_arg_parser():
31
- """Set up and return the argument parser."""
32
- parser = argparse.ArgumentParser(description="Chat with an LLM")
33
- parser.add_argument(
34
- "--model",
35
- type=str,
36
- help="The path to the local model directory or Hugging Face repo.",
37
- default=DEFAULT_MODEL,
38
- )
39
- parser.add_argument(
40
- "--adapter-path",
41
- type=str,
42
- help="Optional path for the trained adapter weights and config.",
43
- )
44
- parser.add_argument(
45
- "--temp", type=float, default=DEFAULT_TEMP, help="Sampling temperature"
46
- )
47
- parser.add_argument(
48
- "--top-p", type=float, default=DEFAULT_TOP_P, help="Sampling top-p"
49
- )
50
- parser.add_argument(
51
- "--xtc-probability",
52
- type=float,
53
- default=DEFAULT_XTC_PROBABILITY,
54
- help="Probability of XTC sampling to happen each next token",
55
- )
56
- parser.add_argument(
57
- "--xtc-threshold",
58
- type=float,
59
- default=0.0,
60
- help="Thresold the probs of each next token candidate to be sampled by XTC",
61
- )
62
- parser.add_argument(
63
- "--seed",
64
- type=int,
65
- default=DEFAULT_SEED,
66
- help="PRNG seed",
67
- )
68
- parser.add_argument(
69
- "--max-kv-size",
70
- type=int,
71
- help="Set the maximum key-value cache size",
72
- default=None,
73
- )
74
- parser.add_argument(
75
- "--max-tokens",
76
- "-m",
77
- type=int,
78
- default=DEFAULT_MAX_TOKENS,
79
- help="Maximum number of tokens to generate",
80
- )
81
- return parser
82
-
83
-
84
- def main():
85
- parser = setup_arg_parser()
86
- args = parser.parse_args()
87
-
88
- model, tokenizer = load(
89
- args.model,
90
- adapter_path=args.adapter_path,
91
- tokenizer_config={"trust_remote_code": True},
92
- )
93
-
94
- # Initialize chat history
95
- chat = []
96
-
97
- while True:
98
- try:
99
- user_input = input("User: ").strip()
100
-
101
- # Exit conditions
102
- if user_input.lower() in ['exit', 'quit', '']:
103
- break
104
-
105
- chat.append({"role": "user", "content": user_input})
106
-
107
- formatted_prompt = tokenizer.apply_chat_template(chat, add_generation_prompt=True)
108
-
109
- # Generate response
110
- response = ""
111
- print("Assistant: ", end="", flush=True)
112
-
113
- for chunk in stream_generate(
114
- model,
115
- tokenizer,
116
- formatted_prompt,
117
- max_tokens=args.max_tokens,
118
- sampler=make_sampler(
119
- args.temp,
120
- args.top_p,
121
- xtc_threshold=args.xtc_threshold,
122
- xtc_probability=args.xtc_probability,
123
- xtc_special_tokens=(
124
- tokenizer.encode("\n") + list(tokenizer.eos_token_ids)
125
- ),
126
- ),
127
- ):
128
- response += chunk.text
129
- print(chunk.text, end="", flush=True)
130
-
131
- print() # New line after response
132
-
133
- # Add assistant response to chat history
134
- chat.append({"role": "assistant", "content": response})
135
-
136
- except KeyboardInterrupt:
137
- print("\nConversation interrupted by user.")
138
- break
139
- except Exception as e:
140
- print(f"Error: {e}")
141
- continue
142
-
143
-
144
- if __name__ == "__main__":
145
- print(
146
- "Calling `python -m mlx_lm.chat...` directly is deprecated."
147
- " Use `mlx_lm.chat...` or `python -m mlx_lm chat ...` instead."
148
- )
149
- main()