nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc8__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (196) hide show
  1. nexaai/_stub.cpython-310-darwin.so +0 -0
  2. nexaai/_version.py +1 -1
  3. nexaai/binds/libnexa_bridge.dylib +0 -0
  4. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/METADATA +1 -1
  5. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/RECORD +7 -196
  6. nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
  7. nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
  8. nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
  9. nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
  10. nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
  11. nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
  12. nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
  13. nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
  14. nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
  15. nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
  16. nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
  17. nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
  18. nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
  19. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
  20. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
  21. nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
  22. nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
  23. nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
  24. nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
  25. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
  26. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
  27. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
  28. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
  29. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
  30. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
  31. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
  32. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
  33. nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
  34. nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
  35. nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
  36. nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
  37. nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
  38. nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
  39. nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
  40. nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
  41. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
  42. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
  43. nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
  44. nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
  45. nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
  46. nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
  47. nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
  48. nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
  49. nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
  50. nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
  51. nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
  52. nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
  53. nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
  54. nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
  55. nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
  56. nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
  57. nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
  58. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
  59. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
  60. nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
  61. nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
  62. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
  63. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
  64. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
  65. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
  66. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
  67. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
  68. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
  69. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
  70. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
  71. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
  72. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
  73. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
  74. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
  75. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
  76. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
  77. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
  78. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
  79. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
  80. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
  81. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
  82. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
  83. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
  84. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
  85. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
  86. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
  87. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
  88. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
  89. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
  90. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
  91. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
  92. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
  93. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
  94. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
  95. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
  96. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
  97. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
  98. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
  99. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
  100. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
  101. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
  102. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
  103. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
  104. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
  105. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
  106. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
  107. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
  108. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
  109. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
  110. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
  111. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
  112. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
  113. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
  114. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
  115. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
  116. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
  117. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
  118. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
  119. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
  120. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
  121. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
  122. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
  123. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
  124. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
  125. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
  126. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
  127. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
  128. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
  129. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
  130. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
  131. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
  132. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
  133. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
  134. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
  135. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
  136. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
  137. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
  138. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
  139. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
  140. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
  141. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
  142. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
  143. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
  144. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
  145. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
  146. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
  147. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
  148. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
  149. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
  150. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
  151. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
  152. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
  153. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
  154. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
  155. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
  156. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
  157. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
  158. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
  159. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
  160. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
  161. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
  162. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
  163. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
  164. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  165. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
  166. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
  167. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
  168. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
  169. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
  170. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
  171. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
  172. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
  173. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  174. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
  175. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
  176. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
  177. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
  178. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
  179. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
  180. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
  181. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
  182. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
  183. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
  184. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
  185. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
  186. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
  187. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
  188. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
  189. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
  190. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
  191. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
  192. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
  193. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
  194. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
  195. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/WHEEL +0 -0
  196. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/top_level.txt +0 -0
@@ -1,274 +0,0 @@
1
- # Copyright © 2023 Apple Inc.
2
-
3
- import math
4
- from typing import List
5
-
6
- import mlx.core as mx
7
- import mlx.nn as nn
8
-
9
- from .config import AutoencoderConfig
10
- from .unet import ResnetBlock2D, upsample_nearest
11
-
12
-
13
- class Attention(nn.Module):
14
- """A single head unmasked attention for use with the VAE."""
15
-
16
- def __init__(self, dims: int, norm_groups: int = 32):
17
- super().__init__()
18
-
19
- self.group_norm = nn.GroupNorm(norm_groups, dims, pytorch_compatible=True)
20
- self.query_proj = nn.Linear(dims, dims)
21
- self.key_proj = nn.Linear(dims, dims)
22
- self.value_proj = nn.Linear(dims, dims)
23
- self.out_proj = nn.Linear(dims, dims)
24
-
25
- def __call__(self, x):
26
- B, H, W, C = x.shape
27
-
28
- y = self.group_norm(x)
29
-
30
- queries = self.query_proj(y).reshape(B, H * W, C)
31
- keys = self.key_proj(y).reshape(B, H * W, C)
32
- values = self.value_proj(y).reshape(B, H * W, C)
33
-
34
- scale = 1 / math.sqrt(queries.shape[-1])
35
- scores = (queries * scale) @ keys.transpose(0, 2, 1)
36
- attn = mx.softmax(scores, axis=-1)
37
- y = (attn @ values).reshape(B, H, W, C)
38
-
39
- y = self.out_proj(y)
40
- x = x + y
41
-
42
- return x
43
-
44
-
45
- class EncoderDecoderBlock2D(nn.Module):
46
- def __init__(
47
- self,
48
- in_channels: int,
49
- out_channels: int,
50
- num_layers: int = 1,
51
- resnet_groups: int = 32,
52
- add_downsample=True,
53
- add_upsample=True,
54
- ):
55
- super().__init__()
56
-
57
- # Add the resnet blocks
58
- self.resnets = [
59
- ResnetBlock2D(
60
- in_channels=in_channels if i == 0 else out_channels,
61
- out_channels=out_channels,
62
- groups=resnet_groups,
63
- )
64
- for i in range(num_layers)
65
- ]
66
-
67
- # Add an optional downsampling layer
68
- if add_downsample:
69
- self.downsample = nn.Conv2d(
70
- out_channels, out_channels, kernel_size=3, stride=2, padding=0
71
- )
72
-
73
- # or upsampling layer
74
- if add_upsample:
75
- self.upsample = nn.Conv2d(
76
- out_channels, out_channels, kernel_size=3, stride=1, padding=1
77
- )
78
-
79
- def __call__(self, x):
80
- for resnet in self.resnets:
81
- x = resnet(x)
82
-
83
- if "downsample" in self:
84
- x = mx.pad(x, [(0, 0), (0, 1), (0, 1), (0, 0)])
85
- x = self.downsample(x)
86
-
87
- if "upsample" in self:
88
- x = self.upsample(upsample_nearest(x))
89
-
90
- return x
91
-
92
-
93
- class Encoder(nn.Module):
94
- """Implements the encoder side of the Autoencoder."""
95
-
96
- def __init__(
97
- self,
98
- in_channels: int,
99
- out_channels: int,
100
- block_out_channels: List[int] = [64],
101
- layers_per_block: int = 2,
102
- resnet_groups: int = 32,
103
- ):
104
- super().__init__()
105
-
106
- self.conv_in = nn.Conv2d(
107
- in_channels, block_out_channels[0], kernel_size=3, stride=1, padding=1
108
- )
109
-
110
- channels = [block_out_channels[0]] + list(block_out_channels)
111
- self.down_blocks = [
112
- EncoderDecoderBlock2D(
113
- in_channels,
114
- out_channels,
115
- num_layers=layers_per_block,
116
- resnet_groups=resnet_groups,
117
- add_downsample=i < len(block_out_channels) - 1,
118
- add_upsample=False,
119
- )
120
- for i, (in_channels, out_channels) in enumerate(zip(channels, channels[1:]))
121
- ]
122
-
123
- self.mid_blocks = [
124
- ResnetBlock2D(
125
- in_channels=block_out_channels[-1],
126
- out_channels=block_out_channels[-1],
127
- groups=resnet_groups,
128
- ),
129
- Attention(block_out_channels[-1], resnet_groups),
130
- ResnetBlock2D(
131
- in_channels=block_out_channels[-1],
132
- out_channels=block_out_channels[-1],
133
- groups=resnet_groups,
134
- ),
135
- ]
136
-
137
- self.conv_norm_out = nn.GroupNorm(
138
- resnet_groups, block_out_channels[-1], pytorch_compatible=True
139
- )
140
- self.conv_out = nn.Conv2d(block_out_channels[-1], out_channels, 3, padding=1)
141
-
142
- def __call__(self, x):
143
- x = self.conv_in(x)
144
-
145
- for l in self.down_blocks:
146
- x = l(x)
147
-
148
- x = self.mid_blocks[0](x)
149
- x = self.mid_blocks[1](x)
150
- x = self.mid_blocks[2](x)
151
-
152
- x = self.conv_norm_out(x)
153
- x = nn.silu(x)
154
- x = self.conv_out(x)
155
-
156
- return x
157
-
158
-
159
- class Decoder(nn.Module):
160
- """Implements the decoder side of the Autoencoder."""
161
-
162
- def __init__(
163
- self,
164
- in_channels: int,
165
- out_channels: int,
166
- block_out_channels: List[int] = [64],
167
- layers_per_block: int = 2,
168
- resnet_groups: int = 32,
169
- ):
170
- super().__init__()
171
-
172
- self.conv_in = nn.Conv2d(
173
- in_channels, block_out_channels[-1], kernel_size=3, stride=1, padding=1
174
- )
175
-
176
- self.mid_blocks = [
177
- ResnetBlock2D(
178
- in_channels=block_out_channels[-1],
179
- out_channels=block_out_channels[-1],
180
- groups=resnet_groups,
181
- ),
182
- Attention(block_out_channels[-1], resnet_groups),
183
- ResnetBlock2D(
184
- in_channels=block_out_channels[-1],
185
- out_channels=block_out_channels[-1],
186
- groups=resnet_groups,
187
- ),
188
- ]
189
-
190
- channels = list(reversed(block_out_channels))
191
- channels = [channels[0]] + channels
192
- self.up_blocks = [
193
- EncoderDecoderBlock2D(
194
- in_channels,
195
- out_channels,
196
- num_layers=layers_per_block,
197
- resnet_groups=resnet_groups,
198
- add_downsample=False,
199
- add_upsample=i < len(block_out_channels) - 1,
200
- )
201
- for i, (in_channels, out_channels) in enumerate(zip(channels, channels[1:]))
202
- ]
203
-
204
- self.conv_norm_out = nn.GroupNorm(
205
- resnet_groups, block_out_channels[0], pytorch_compatible=True
206
- )
207
- self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1)
208
-
209
- def __call__(self, x):
210
- x = self.conv_in(x)
211
-
212
- x = self.mid_blocks[0](x)
213
- x = self.mid_blocks[1](x)
214
- x = self.mid_blocks[2](x)
215
-
216
- for l in self.up_blocks:
217
- x = l(x)
218
-
219
- x = self.conv_norm_out(x)
220
- x = nn.silu(x)
221
- x = self.conv_out(x)
222
-
223
- return x
224
-
225
-
226
- class Autoencoder(nn.Module):
227
- """The autoencoder that allows us to perform diffusion in the latent space."""
228
-
229
- def __init__(self, config: AutoencoderConfig):
230
- super().__init__()
231
-
232
- self.latent_channels = config.latent_channels_in
233
- self.scaling_factor = config.scaling_factor
234
- self.encoder = Encoder(
235
- config.in_channels,
236
- config.latent_channels_out,
237
- config.block_out_channels,
238
- config.layers_per_block,
239
- resnet_groups=config.norm_num_groups,
240
- )
241
- self.decoder = Decoder(
242
- config.latent_channels_in,
243
- config.out_channels,
244
- config.block_out_channels,
245
- config.layers_per_block + 1,
246
- resnet_groups=config.norm_num_groups,
247
- )
248
-
249
- self.quant_proj = nn.Linear(
250
- config.latent_channels_out, config.latent_channels_out
251
- )
252
- self.post_quant_proj = nn.Linear(
253
- config.latent_channels_in, config.latent_channels_in
254
- )
255
-
256
- def decode(self, z):
257
- z = z / self.scaling_factor
258
- return self.decoder(self.post_quant_proj(z))
259
-
260
- def encode(self, x):
261
- x = self.encoder(x)
262
- x = self.quant_proj(x)
263
- mean, logvar = x.split(2, axis=-1)
264
- mean = mean * self.scaling_factor
265
- logvar = logvar + 2 * math.log(self.scaling_factor)
266
-
267
- return mean, logvar
268
-
269
- def __call__(self, x, key=None):
270
- mean, logvar = self.encode(x)
271
- z = mx.random.normal(mean.shape, key=key) * mx.exp(0.5 * logvar) + mean
272
- x_hat = self.decode(z)
273
-
274
- return dict(x_hat=x_hat, z=z, mean=mean, logvar=logvar)
@@ -1,12 +0,0 @@
1
- # patching the _resume method in phonemizer because logger.setLevel(logging.ERROR) doesn't work - the logger instance is created and stored in the package.
2
- try:
3
- from phonemizer.backend.espeak.words_mismatch import BaseWordsMismatch
4
-
5
- def silent_resume(self, nmismatch, nlines):
6
- """Silent version of _resume that suppresses warnings"""
7
- pass
8
-
9
- BaseWordsMismatch._resume = silent_resume
10
-
11
- except ImportError:
12
- pass
@@ -1,276 +0,0 @@
1
- from typing import Any, List, Optional, Sequence
2
- import argparse
3
- import sys
4
- import os
5
- import glob
6
- import tempfile
7
- import time
8
- import soundfile as sf
9
- import mlx.core as mx
10
- import numpy as np
11
-
12
- from ml import TTS, TTSConfig, TTSResult, TTSSamplerConfig, Path as MLPath
13
- from mlx_audio.tts.utils import load_model
14
-
15
- from profiling import ProfilingMixin, StopReason
16
-
17
- class MlxTts(TTS, ProfilingMixin):
18
- """MLX Audio implementation of TTS interface."""
19
-
20
- def __init__(
21
- self,
22
- model_path: MLPath,
23
- vocoder_path: MLPath,
24
- device: Optional[str] = None,
25
- ) -> None:
26
- ProfilingMixin.__init__(self)
27
-
28
- if os.path.isfile(model_path):
29
- model_path = os.path.dirname(model_path)
30
-
31
- # vocoder_path is not used in MLX TTS since the vocoder is integrated
32
- super().__init__(model_path, vocoder_path, device)
33
- self._sampler_config = TTSSamplerConfig()
34
- self.model = None
35
- self._model_loaded = False
36
-
37
- # Load model during initialization (matching C API behavior)
38
- self._load_model()
39
-
40
- def _load_model(self) -> bool:
41
- """Load the TTS model."""
42
- try:
43
- self.model = load_model(self.model_path)
44
- self._model_loaded = True
45
- return True
46
- except Exception as e:
47
- print(f"Failed to load TTS model: {e}")
48
- return False
49
-
50
- def destroy(self) -> None:
51
- """Destroy the model and free resources."""
52
- if self.model is not None:
53
- del self.model
54
- self.model = None
55
- mx.clear_cache()
56
- self._model_loaded = False
57
-
58
- def synthesize(
59
- self,
60
- text: str,
61
- config: Optional[TTSConfig] = None,
62
- output_path: Optional[MLPath] = None,
63
- clear_cache: bool = True,
64
- ) -> TTSResult:
65
- """Synthesize speech from text and save to filesystem."""
66
- # Ensure model is loaded
67
- if not self._model_loaded or self.model is None:
68
- raise RuntimeError("TTS model not loaded")
69
-
70
- # Start profiling
71
- self._start_profiling()
72
- self._prompt_start()
73
-
74
- try:
75
- # Use default config if not provided
76
- if config is None:
77
- config = TTSConfig()
78
-
79
- # Generate output path if not provided
80
- if output_path is None:
81
- timestamp = int(time.time() * 1000)
82
- output_path = os.path.join(tempfile.gettempdir(), f"tts_output_{timestamp}.wav")
83
-
84
- # Resolve voice path for Kokoro models
85
- voice = config.voice
86
- if voice and not voice.endswith(".pt") and not os.path.isabs(voice):
87
- # For relative voice names like "af_heart", construct full path
88
- voice_path = os.path.join(self.model_path, "voices", f"{voice}.pt")
89
- if os.path.exists(voice_path):
90
- voice = voice_path
91
-
92
- # End prompt processing, start decode
93
- self._prompt_end()
94
- self._decode_start()
95
-
96
- results = self.model.generate(
97
- text=text,
98
- voice=voice,
99
- speed=config.speed,
100
- temperature=self._sampler_config.temperature,
101
- seed=config.seed if config.seed != -1 else None,
102
- verbose=False,
103
- stream=False,
104
- join_audio=True,
105
- )
106
-
107
- # Get the results (should be a generator)
108
- audio_list = []
109
- sample_rate = None
110
- for result in results:
111
- audio_list.append(result.audio)
112
- sample_rate = result.sample_rate
113
-
114
- if not audio_list:
115
- raise RuntimeError("No audio generated")
116
-
117
- # Concatenate audio if multiple chunks
118
- if len(audio_list) > 1:
119
- audio = mx.concatenate(audio_list, axis=0)
120
- else:
121
- audio = audio_list[0]
122
-
123
- # Convert MLX array to numpy for saving
124
- if isinstance(audio, mx.array):
125
- audio_np = np.array(audio)
126
-
127
- else:
128
- audio_np = audio
129
-
130
- # Save audio to file
131
- sf.write(output_path, audio_np, sample_rate)
132
-
133
- if clear_cache:
134
- mx.clear_cache()
135
-
136
- # Calculate metadata
137
- channels = 1 if len(audio_np.shape) == 1 else audio_np.shape[1]
138
- num_samples = len(audio_np)
139
- duration_seconds = num_samples / sample_rate
140
-
141
- # End decode and profiling
142
- self._decode_end()
143
- self._set_stop_reason(StopReason.ML_STOP_REASON_COMPLETED)
144
- self._end_profiling()
145
-
146
- return TTSResult(
147
- audio_path=output_path,
148
- duration_seconds=duration_seconds,
149
- sample_rate=sample_rate,
150
- channels=channels,
151
- num_samples=num_samples
152
- )
153
- except Exception as e:
154
- # End profiling on error
155
- self._end_profiling()
156
- raise e
157
-
158
-
159
-
160
- def list_available_voices(self) -> List[str]:
161
- """List available voices."""
162
- # Common MLX TTS voice names - this could be enhanced to discover voices dynamically
163
- default_voices = [
164
- "af_heart", "af_bella", "af_nicole", "af_sarah", "af_sky", "af_sunshine",
165
- "am_adam", "am_michael", "am_mead", "an_nova", "an_michael",
166
- "bf_emma", "bf_isabella", "bm_george", "bm_lewis"
167
- ]
168
-
169
- # Try to discover voices from model directory if available
170
- if self.model_path and os.path.exists(self.model_path):
171
- discovered_voices = []
172
- voice_patterns = [
173
- "*.pt", # Voice files in model root
174
- "voices/*.pt", # Voice files in voices subdirectory
175
- ]
176
-
177
- for pattern in voice_patterns:
178
- voice_files = glob.glob(os.path.join(self.model_path, pattern))
179
- for voice_file in voice_files:
180
- voice_name = os.path.splitext(os.path.basename(voice_file))[0]
181
- discovered_voices.append(voice_name)
182
-
183
- if discovered_voices:
184
- return discovered_voices
185
-
186
- return default_voices
187
-
188
-
189
-
190
-
191
-
192
- def main():
193
- """Main function for command line text-to-speech synthesis."""
194
- parser = argparse.ArgumentParser(description="Synthesize speech using MLX TTS")
195
- parser.add_argument("model_path", help="Path to the TTS model")
196
- parser.add_argument("text", help="Text to synthesize")
197
- parser.add_argument("--voice", "-v", default="af_heart", help="Voice to use (default: af_heart)")
198
- parser.add_argument("--speed", "-s", type=float, default=1.0, help="Speech speed (default: 1.0)")
199
- parser.add_argument("--output", "-o", default="output.wav", help="Output audio file (default: output.wav)")
200
- parser.add_argument("--sample-rate", "-sr", type=int, default=24000, help="Sample rate (default: 24000)")
201
- parser.add_argument("--temperature", "-t", type=float, default=0.7, help="Temperature for sampling (default: 0.7)")
202
- parser.add_argument("--seed", type=int, default=-1, help="Random seed (-1 for random)")
203
- parser.add_argument("--list-voices", action="store_true", help="List available voices")
204
-
205
- args = parser.parse_args()
206
-
207
- # Check if model path exists
208
- if not os.path.exists(args.model_path):
209
- print(f"Error: Model path does not exist: {args.model_path}")
210
- sys.exit(1)
211
-
212
- # Initialize TTS adapter
213
- print(f"Initializing TTS with model: {args.model_path}")
214
- try:
215
- tts = MlxTts(
216
- model_path=args.model_path,
217
- vocoder_path="", # Not used in MLX TTS
218
- device=None
219
- )
220
-
221
- print("TTS model loaded successfully")
222
-
223
- # List voices if requested
224
- if args.list_voices:
225
- voices = tts.list_available_voices()
226
- print(f"Available voices: {', '.join(voices)}")
227
- return
228
-
229
- except Exception as e:
230
- print(f"Error initializing TTS: {e}")
231
- sys.exit(1)
232
-
233
- # Set up synthesis config
234
- sampler_config = TTSSamplerConfig(
235
- temperature=args.temperature,
236
- noise_scale=0.667,
237
- length_scale=1.0
238
- )
239
- tts._sampler_config = sampler_config
240
-
241
- config = TTSConfig(
242
- voice=args.voice,
243
- speed=args.speed,
244
- seed=args.seed,
245
- sample_rate=args.sample_rate
246
- )
247
-
248
- # Synthesize speech
249
- print(f"Synthesizing text: '{args.text}'")
250
- print(f"Using voice: {args.voice}")
251
- print(f"Speed: {args.speed}x")
252
- print("-" * 50)
253
-
254
- try:
255
- result = tts.synthesize(args.text, config, args.output)
256
-
257
- # Print results
258
- print("Synthesis Results:")
259
- print("=" * 50)
260
- print(f"Audio generated:")
261
- print(f" Duration: {result.duration_seconds:.2f} seconds")
262
- print(f" Sample rate: {result.sample_rate} Hz")
263
- print(f" Channels: {result.channels}")
264
- print(f" Samples: {result.num_samples}")
265
- print(f"✅ Audio saved to: {result.audio_path}")
266
-
267
- except Exception as e:
268
- print(f"Error during synthesis: {e}")
269
- sys.exit(1)
270
- finally:
271
- # Clean up
272
- tts.destroy()
273
-
274
-
275
- if __name__ == "__main__":
276
- main()
@@ -1,3 +0,0 @@
1
- import logging
2
-
3
- logging.getLogger("transformers").setLevel(logging.ERROR)