nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc8__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (196) hide show
  1. nexaai/_stub.cpython-310-darwin.so +0 -0
  2. nexaai/_version.py +1 -1
  3. nexaai/binds/libnexa_bridge.dylib +0 -0
  4. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/METADATA +1 -1
  5. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/RECORD +7 -196
  6. nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
  7. nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
  8. nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
  9. nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
  10. nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
  11. nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
  12. nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
  13. nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
  14. nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
  15. nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
  16. nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
  17. nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
  18. nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
  19. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
  20. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
  21. nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
  22. nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
  23. nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
  24. nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
  25. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
  26. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
  27. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
  28. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
  29. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
  30. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
  31. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
  32. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
  33. nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
  34. nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
  35. nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
  36. nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
  37. nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
  38. nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
  39. nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
  40. nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
  41. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
  42. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
  43. nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
  44. nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
  45. nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
  46. nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
  47. nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
  48. nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
  49. nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
  50. nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
  51. nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
  52. nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
  53. nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
  54. nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
  55. nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
  56. nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
  57. nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
  58. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
  59. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
  60. nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
  61. nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
  62. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
  63. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
  64. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
  65. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
  66. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
  67. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
  68. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
  69. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
  70. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
  71. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
  72. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
  73. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
  74. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
  75. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
  76. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
  77. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
  78. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
  79. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
  80. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
  81. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
  82. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
  83. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
  84. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
  85. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
  86. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
  87. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
  88. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
  89. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
  90. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
  91. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
  92. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
  93. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
  94. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
  95. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
  96. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
  97. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
  98. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
  99. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
  100. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
  101. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
  102. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
  103. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
  104. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
  105. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
  106. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
  107. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
  108. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
  109. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
  110. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
  111. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
  112. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
  113. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
  114. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
  115. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
  116. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
  117. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
  118. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
  119. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
  120. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
  121. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
  122. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
  123. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
  124. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
  125. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
  126. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
  127. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
  128. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
  129. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
  130. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
  131. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
  132. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
  133. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
  134. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
  135. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
  136. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
  137. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
  138. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
  139. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
  140. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
  141. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
  142. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
  143. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
  144. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
  145. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
  146. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
  147. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
  148. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
  149. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
  150. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
  151. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
  152. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
  153. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
  154. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
  155. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
  156. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
  157. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
  158. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
  159. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
  160. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
  161. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
  162. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
  163. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
  164. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  165. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
  166. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
  167. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
  168. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
  169. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
  170. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
  171. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
  172. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
  173. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  174. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
  175. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
  176. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
  177. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
  178. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
  179. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
  180. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
  181. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
  182. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
  183. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
  184. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
  185. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
  186. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
  187. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
  188. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
  189. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
  190. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
  191. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
  192. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
  193. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
  194. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
  195. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/WHEEL +0 -0
  196. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/top_level.txt +0 -0
@@ -1,393 +0,0 @@
1
- import json
2
- from pathlib import Path
3
- from typing import List, Optional, Tuple, Union
4
-
5
- import mlx.core as mx
6
- import numpy as np
7
- from PIL import Image
8
- from transformers import (
9
- AutoImageProcessor,
10
- AutoProcessor,
11
- AutoTokenizer,
12
- BatchFeature,
13
- PreTrainedTokenizerBase,
14
- ProcessorMixin,
15
- )
16
- from transformers.image_utils import ImageFeatureExtractionMixin
17
- from transformers.utils import logging
18
-
19
- logger = logging.get_logger(__name__)
20
-
21
- # Constants for image processing (from internvl_chat.py)
22
-
23
- IMAGENET_MEAN = np.array([0.485, 0.456, 0.406])
24
- IMAGENET_STD = np.array([0.229, 0.224, 0.225])
25
- # chat_template = get_conv_template("internvl2_5")
26
- chat_template = "{% for message in messages %}{{message['role'].capitalize() + ': '}}{# Render all images first #}{% for content in message['content'] | selectattr('type', 'equalto', 'image') %}{{ '<image>\n' }}{% endfor %}{# Render all text next #}{% for content in message['content'] | selectattr('type', 'equalto', 'text') %}{{ content['content'] }}{% endfor %}{{'\n'}}{% endfor %}{% if add_generation_prompt %}{{ 'Assistant:\n' }}{% endif %}"
27
-
28
- IMG_START_TOKEN = "<img>"
29
- IMG_END_TOKEN = "</img>"
30
- IMG_CONTEXT_TOKEN = "<IMG_CONTEXT>"
31
-
32
-
33
- def build_transform(input_size):
34
- """
35
- Builds a transformation pipeline for images.
36
-
37
- Args:
38
- input_size (int): The target size for the image (height and width).
39
-
40
- Returns:
41
- function: A function that takes a PIL image and returns a normalized mx.array.
42
- """
43
- mean = mx.array(IMAGENET_MEAN)
44
- std = mx.array(IMAGENET_STD)
45
-
46
- def transform(img: Image.Image) -> mx.array:
47
- # Ensure image is RGB
48
- if img.mode != "RGB":
49
- img = img.convert("RGB")
50
-
51
- # Resize using PIL - BICUBIC interpolation is default in Pillow >= 9.1.0 for resize
52
- # For older versions, you might need Pillow-SIMD or explicitly set
53
- # resampling=Image.BICUBIC if available.
54
- img = img.resize((input_size, input_size), resample=Image.Resampling.BICUBIC)
55
-
56
- # Convert PIL image to NumPy array (H, W, C) and scale to [0, 1]
57
- img_np = np.array(img).astype(np.float32) / 255.0
58
-
59
- # Convert to MLX array and transpose to (C, H, W)
60
- img_mx = mx.array(img_np).transpose(2, 0, 1)
61
-
62
- # Normalize
63
- img_mx = (img_mx - mean[:, None, None]) / std[:, None, None]
64
-
65
- return img_mx
66
-
67
- return transform
68
-
69
-
70
- def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
71
- """Finds the closest aspect ratio from a list of targets."""
72
- best_ratio_diff = float("inf")
73
- best_ratio = (1, 1)
74
- area = width * height
75
- for ratio in target_ratios:
76
- target_aspect_ratio = ratio[0] / ratio[1]
77
- ratio_diff = abs(aspect_ratio - target_aspect_ratio)
78
- if ratio_diff < best_ratio_diff:
79
- best_ratio_diff = ratio_diff
80
- best_ratio = ratio
81
- elif ratio_diff == best_ratio_diff:
82
- # Prioritize ratios closer to the original image area if diffs are equal
83
- target_area = image_size * image_size * ratio[0] * ratio[1]
84
- if abs(area - target_area) < abs(
85
- area - image_size * image_size * best_ratio[0] * best_ratio[1]
86
- ):
87
- best_ratio = ratio
88
- return best_ratio
89
-
90
-
91
- def dynamic_preprocess(
92
- image: Image.Image, min_num=1, max_num=12, image_size=448, use_thumbnail=False
93
- ):
94
- """
95
- Preprocesses the image by splitting it into blocks based on the closest aspect ratio.
96
-
97
- Args:
98
- image (PIL.Image.Image): Input image.
99
- min_num (int): Minimum number of blocks.
100
- max_num (int): Maximum number of blocks.
101
- image_size (int): Target size for each block.
102
- use_thumbnail (bool): Whether to include a thumbnail of the original image.
103
-
104
- Returns:
105
- list[PIL.Image.Image]: A list of processed image blocks (as PIL images).
106
- """
107
- orig_width, orig_height = image.size
108
- if orig_width == 0 or orig_height == 0:
109
- # Handle potential zero dimensions
110
- return []
111
- aspect_ratio = orig_width / orig_height
112
-
113
- # Calculate the possible target aspect ratios
114
- target_ratios = set(
115
- (i, j)
116
- for n in range(min_num, max_num + 1)
117
- for i in range(1, n + 1)
118
- for j in range(1, n + 1)
119
- if min_num <= i * j <= max_num
120
- )
121
- target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
122
-
123
- # Find the closest target aspect ratio
124
- target_aspect_ratio = find_closest_aspect_ratio(
125
- aspect_ratio, target_ratios, orig_width, orig_height, image_size
126
- )
127
-
128
- # Calculate the target dimensions for resizing
129
- target_width = image_size * target_aspect_ratio[0]
130
- target_height = image_size * target_aspect_ratio[1]
131
- blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
132
-
133
- # Resize the image to fit the target block structure
134
- # Using BICUBIC resampling
135
- resized_img = image.resize(
136
- (target_width, target_height), resample=Image.Resampling.BICUBIC
137
- )
138
-
139
- processed_images = []
140
- # Crop the resized image into blocks
141
- for i in range(blocks):
142
- # Calculate crop box for the i-th block
143
- row_idx = i // target_aspect_ratio[0]
144
- col_idx = i % target_aspect_ratio[0]
145
- left = col_idx * image_size
146
- top = row_idx * image_size
147
- right = (col_idx + 1) * image_size
148
- bottom = (row_idx + 1) * image_size
149
- box = (left, top, right, bottom)
150
-
151
- # Crop and add the block
152
- split_img = resized_img.crop(box)
153
- processed_images.append(split_img)
154
-
155
- assert (
156
- len(processed_images) == blocks
157
- ), f"Expected {blocks} blocks, but got {len(processed_images)}"
158
-
159
- # Add a thumbnail if requested and if the image was split
160
- if use_thumbnail and blocks > 1:
161
- thumbnail_img = image.resize(
162
- (image_size, image_size), resample=Image.Resampling.BICUBIC
163
- )
164
- processed_images.append(thumbnail_img)
165
-
166
- return processed_images
167
-
168
-
169
- class InternVLImageProcessor(ImageFeatureExtractionMixin):
170
- model_input_names = ["pixel_values"]
171
-
172
- def __init__(
173
- self,
174
- do_resize: bool = True,
175
- size: int = 448, # Default image size from dynamic_preprocess
176
- resample=Image.Resampling.BICUBIC,
177
- do_center_crop: bool = False, # Not used in original, but standard HF param
178
- crop_size=None,
179
- do_rescale: bool = True, # Original code scales by 1/255.0
180
- rescale_factor: float = 1 / 255.0,
181
- do_normalize: bool = True,
182
- image_mean=IMAGENET_MEAN.tolist(),
183
- image_std=IMAGENET_STD.tolist(),
184
- do_dynamic_preprocess: bool = True,
185
- dynamic_min_num: int = 1,
186
- dynamic_max_num: int = 12,
187
- dynamic_use_thumbnail: bool = True,
188
- **kwargs,
189
- ):
190
- super().__init__()
191
- self.do_resize = (
192
- do_resize # Although dynamic_preprocess handles resizing internally
193
- )
194
- self.size = size
195
- self.resample = resample
196
- self.do_center_crop = do_center_crop
197
- self.crop_size = crop_size
198
- self.do_rescale = do_rescale
199
- self.rescale_factor = rescale_factor
200
- self.do_normalize = do_normalize
201
- self.image_mean = image_mean
202
- self.image_std = image_std
203
- # Custom dynamic processing params
204
- self.do_dynamic_preprocess = do_dynamic_preprocess
205
- self.dynamic_min_num = dynamic_min_num
206
- self.dynamic_max_num = dynamic_max_num
207
- self.dynamic_use_thumbnail = dynamic_use_thumbnail
208
-
209
- def preprocess(
210
- self,
211
- images: List[Image.Image],
212
- do_dynamic_preprocess: Optional[bool] = None,
213
- size: Optional[int] = None,
214
- # ... other params matching __init__ ...
215
- return_tensors: Optional[str] = None,
216
- **kwargs,
217
- ) -> List[mx.array]:
218
-
219
- do_dynamic_preprocess = (
220
- do_dynamic_preprocess
221
- if do_dynamic_preprocess is not None
222
- else self.do_dynamic_preprocess
223
- )
224
- size = size if size is not None else self.size
225
- # ... handle other overrides ...
226
-
227
- if not isinstance(images, list):
228
- images = [images]
229
-
230
- if not all(isinstance(image, Image.Image) for image in images):
231
- raise ValueError("Input must be a list of PIL Images.")
232
-
233
- processed_images_batch = []
234
- for image in images:
235
- # Apply dynamic preprocessing
236
- if do_dynamic_preprocess:
237
- processed_images = dynamic_preprocess(
238
- image,
239
- min_num=self.dynamic_min_num,
240
- max_num=self.dynamic_max_num,
241
- image_size=size,
242
- use_thumbnail=self.dynamic_use_thumbnail,
243
- )
244
- else:
245
- # Fallback or alternative simpler preprocessing if needed
246
- # e.g., simple resize + normalize
247
- processed_images = [image.resize((size, size), resample=self.resample)]
248
-
249
- # Create transform function
250
- transform = build_transform(input_size=size)
251
-
252
- # Apply transform to each image block and collect arrays
253
- pixel_values_list = [transform(img) for img in processed_images]
254
-
255
- # Stack the arrays along a new dimension (batch dimension)
256
- pixel_values = mx.stack(pixel_values_list, axis=0)
257
-
258
- processed_images_batch.append(pixel_values)
259
-
260
- # At this point, processed_images_batch contains a list of mx arrays,
261
- # each array corresponding to an input image with stacked blocks.
262
-
263
- data = {"pixel_values": mx.array(processed_images_batch)}
264
- return BatchFeature(data=data, tensor_type=None)
265
-
266
-
267
- class InternVLChatProcessor(ProcessorMixin):
268
- attributes = ["image_processor", "tokenizer"]
269
- image_processor_class = "InternVLImageProcessor"
270
- tokenizer_class = (
271
- "AutoTokenizer",
272
- "Qwen2TokenizerFast",
273
- ) # Specify possible classes
274
-
275
- def __init__(
276
- self,
277
- image_processor=None,
278
- tokenizer=None,
279
- chat_template=chat_template,
280
- **kwargs,
281
- ):
282
- if image_processor is None:
283
- image_processor = InternVLImageProcessor(**kwargs)
284
- if isinstance(tokenizer, str):
285
- # Defaulting to the likely repo ID found earlier
286
- tokenizer = AutoTokenizer.from_pretrained(
287
- tokenizer, trust_remote_code=True, **kwargs
288
- )
289
-
290
- super().__init__(image_processor, tokenizer, chat_template=chat_template)
291
-
292
- self.num_image_token = int((448 // 14) ** 2 * (0.5**2))
293
-
294
- def __call__(
295
- self,
296
- text: Union[str, List[str]] = None,
297
- images: List[Image.Image] = None,
298
- padding: Union[bool, str] = True,
299
- truncation: bool = True,
300
- max_length: Optional[int] = None,
301
- return_tensors: Optional[str] = "pt", # Default to PyTorch tensors
302
- **kwargs,
303
- ):
304
- processed_inputs = {}
305
- if images is not None:
306
- image_features = self.image_processor.preprocess(
307
- images, return_tensors=return_tensors, **kwargs
308
- )
309
- processed_inputs.update(image_features) # Should contain 'pixel_values'
310
-
311
- if text is not None:
312
- queries = []
313
-
314
- if isinstance(text, str):
315
- text = [text]
316
-
317
- for idx in range(len(images)):
318
- question = text[idx]
319
-
320
- if images is not None and "<image>" not in question:
321
- question = "<image>\n" + question
322
-
323
- num_patches = image_features["pixel_values"][idx].shape[0]
324
- image_tokens = (
325
- IMG_START_TOKEN
326
- + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches
327
- + IMG_END_TOKEN
328
- )
329
- question = question.replace("<image>", image_tokens, 1)
330
- queries.append(question)
331
-
332
- self.tokenizer.padding_side = "left"
333
- text_inputs = self.tokenizer(
334
- queries,
335
- padding=padding,
336
- truncation=truncation,
337
- max_length=max_length,
338
- return_tensors=return_tensors,
339
- **kwargs,
340
- )
341
- processed_inputs.update(text_inputs) # 'input_ids', 'attention_mask'
342
-
343
- return processed_inputs
344
-
345
- def batch_decode(self, *args, **kwargs):
346
- """
347
- This method forwards all its arguments to the tokenizer's batch_decode method.
348
- """
349
- return self.tokenizer.batch_decode(*args, **kwargs)
350
-
351
- def decode(self, *args, **kwargs):
352
- """
353
- This method forwards all its arguments to the tokenizer's decode method.
354
- """
355
- return self.tokenizer.decode(*args, **kwargs)
356
-
357
- def save_pretrained(self, save_directory, **kwargs):
358
- pass
359
-
360
- @staticmethod
361
- def from_pretrained(pretrained_model_name_or_path, **kwargs):
362
- tokenizer = AutoTokenizer.from_pretrained(
363
- pretrained_model_name_or_path, **kwargs
364
- )
365
- image_processor = InternVLImageProcessor(**kwargs)
366
- return InternVLChatProcessor(
367
- image_processor=image_processor, tokenizer=tokenizer
368
- )
369
-
370
- # Need save_pretrained and from_pretrained
371
- # save_pretrained should save both tokenizer and image_processor configs/files
372
- # from_pretrained should load both
373
-
374
- # Example:
375
- # def save_pretrained(self, save_directory, **kwargs):
376
- # self.tokenizer.save_pretrained(save_directory, **kwargs)
377
- # self.image_processor.save_pretrained(save_directory, **kwargs)
378
-
379
- # def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
380
- # tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path, **kwargs)
381
- # image_processor = InternVLImageProcessor.from_pretrained(pretrained_model_name_or_path, **kwargs)
382
- # return cls(image_processor=image_processor, tokenizer=tokenizer)
383
-
384
-
385
- # Registration
386
- MODEL_TYPE = "internvl_chat" # Verify this from the model's config.json
387
-
388
- AutoImageProcessor.register(
389
- MODEL_TYPE, slow_image_processor_class=InternVLImageProcessor
390
- )
391
- AutoProcessor.register(MODEL_TYPE, InternVLChatProcessor)
392
-
393
- logger.info(f"Registered custom processor classes for model type '{MODEL_TYPE}'.")
@@ -1,293 +0,0 @@
1
- import inspect
2
- from dataclasses import dataclass
3
- from typing import Optional
4
-
5
- import mlx.core as mx
6
- import mlx.nn as nn
7
- import numpy as np
8
-
9
- from ..base import interpolate
10
-
11
-
12
- @dataclass
13
- class VisionConfig:
14
- model_type: str
15
- hidden_size: int = 1024
16
- num_attention_heads: int = 16
17
- patch_size: int = 14
18
- num_hidden_layers: int = 24
19
- intermediate_size: int = 4096
20
- image_size: int = 448
21
- num_channels: int = 3
22
- layer_norm_eps: float = 1e-6
23
- drop_path_rate: float = 0.1
24
- qkv_bias: bool = True
25
- qk_normalization: bool = False
26
- norm_type: str = "layer_norm"
27
-
28
- @classmethod
29
- def from_dict(cls, params):
30
- return cls(
31
- **{
32
- k: v
33
- for k, v in params.items()
34
- if k in inspect.signature(cls).parameters
35
- }
36
- )
37
-
38
-
39
- def check_array_shape(arr):
40
- shape = arr.shape
41
-
42
- # Check if the shape has 4 dimensions
43
- if len(shape) != 4:
44
- return False
45
-
46
- out_channels, kH, KW, _ = shape
47
-
48
- # Check if out_channels is the largest, and kH and KW are the same
49
- if (out_channels >= kH) and (out_channels >= KW) and (kH == KW):
50
- return True
51
- else:
52
- return False
53
-
54
-
55
- class Attention(nn.Module):
56
- def __init__(self, config: VisionConfig):
57
- super().__init__()
58
-
59
- if (config.hidden_size % config.num_attention_heads) != 0:
60
- raise ValueError(
61
- "The input feature dimensions should be divisible by the "
62
- f"number of heads ({config.hidden_size} % {config.num_attention_heads}) != 0"
63
- )
64
-
65
- self.dims = dims = config.hidden_size
66
-
67
- self.num_heads = config.num_attention_heads
68
- head_dim = config.hidden_size // config.num_attention_heads
69
- self.scale = head_dim**-0.5
70
- self.qkv_bias = config.qkv_bias
71
-
72
- self.qkv = nn.Linear(dims, 3 * dims, bias=config.qkv_bias)
73
- self.proj = nn.Linear(dims, dims)
74
-
75
- self.qk_normalization = config.qk_normalization
76
-
77
- if self.qk_normalization:
78
- self.q_norm = nn.RMSNorm(dims, eps=config.layer_norm_eps)
79
- self.k_norm = nn.RMSNorm(dims, eps=config.layer_norm_eps)
80
-
81
- def __call__(self, x, mask=None):
82
- B, L, C = x.shape
83
- qkv = self.qkv(x).reshape(B, L, 3, self.num_heads, C // self.num_heads)
84
- qkv = qkv.transpose(2, 0, 3, 1, 4)
85
- queries, keys, values = (
86
- qkv[0],
87
- qkv[1],
88
- qkv[2],
89
- ) # Each has shape (B, groups, N, C//groups)
90
-
91
- if self.qk_normalization:
92
- B_, H_, N_, D_ = queries.shape
93
- queries = (
94
- self.q_norm(queries.transpose(0, 2, 1, 3).flatten(-2, -1))
95
- .reshape(B_, N_, H_, D_)
96
- .transpose(0, 2, 1, 3)
97
- )
98
- keys = (
99
- self.k_norm(keys.transpose(0, 2, 1, 3).flatten(-2, -1))
100
- .reshape(B_, N_, H_, D_)
101
- .transpose(0, 2, 1, 3)
102
- )
103
-
104
- output = mx.fast.scaled_dot_product_attention(
105
- queries, keys, values, scale=self.scale, mask=mask
106
- )
107
- output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
108
- return self.proj(output)
109
-
110
-
111
- class MLP(nn.Module):
112
- def __init__(self, config: VisionConfig):
113
- super().__init__()
114
- self.activation_fn = nn.GELU(approx="precise")
115
- self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
116
- self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
117
-
118
- def __call__(self, x: mx.array) -> mx.array:
119
- x = self.fc1(x)
120
- x = self.activation_fn(x)
121
- x = self.fc2(x)
122
- return x
123
-
124
-
125
- class EncoderLayer(nn.Module):
126
- def __init__(self, config: VisionConfig, drop_path_rate: float = 0.0):
127
- super().__init__()
128
- self.embed_dim = config.hidden_size
129
- self.intermediate_size = config.intermediate_size
130
- self.norm_type = getattr(config, "norm_type", "layer_norm")
131
-
132
- self.attn = Attention(config)
133
- self.mlp = MLP(config)
134
-
135
- if self.norm_type == "layer_norm":
136
- self.norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
137
- self.norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
138
- elif self.norm_type == "rms_norm":
139
- self.norm1 = nn.RMSNorm(self.embed_dim, eps=config.layer_norm_eps)
140
- self.norm2 = nn.RMSNorm(self.embed_dim, eps=config.layer_norm_eps)
141
- else:
142
- raise ValueError(f"Unsupported normalization type: {self.norm_type}")
143
-
144
- self.ls1 = mx.ones((self.embed_dim,))
145
- self.ls2 = mx.ones((self.embed_dim,))
146
-
147
- self.drop_path1 = (
148
- nn.Dropout(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
149
- )
150
- self.drop_path2 = (
151
- nn.Dropout(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
152
- )
153
-
154
- def __call__(self, x: mx.array, mask: Optional[mx.array] = None) -> mx.array:
155
- dtype = x.dtype
156
- x = x + self.drop_path1(self.attn(self.norm1(x).astype(dtype)) * self.ls1)
157
-
158
- x = x + self.drop_path2(self.mlp(self.norm2(x).astype(dtype)) * self.ls2)
159
-
160
- return x.astype(dtype)
161
-
162
-
163
- class Encoder(nn.Module):
164
- def __init__(self, config: VisionConfig):
165
- super().__init__()
166
- dpr = [
167
- mx.array(x)
168
- for x in np.linspace(0, config.drop_path_rate, config.num_hidden_layers)
169
- ]
170
- self.layers = [
171
- EncoderLayer(config, dpr[i]) for i in range(config.num_hidden_layers)
172
- ]
173
-
174
- def __call__(
175
- self,
176
- x: mx.array,
177
- output_hidden_states: Optional[bool] = None,
178
- mask: Optional[mx.array] = None,
179
- ) -> mx.array:
180
- encoder_states = (x,) if output_hidden_states else None
181
- h = x
182
- for l in self.layers:
183
- x = l(x, mask=mask)
184
- if output_hidden_states:
185
- encoder_states = encoder_states + (x,)
186
-
187
- h = x
188
-
189
- return (h, encoder_states)
190
-
191
-
192
- class VisionEmbeddings(nn.Module):
193
- def __init__(self, config: VisionConfig):
194
- super().__init__()
195
- self.config = config
196
- self.embed_dim = config.hidden_size
197
- self.image_size = config.image_size
198
- self.patch_size = config.patch_size
199
-
200
- self.class_embedding = mx.random.normal((1, 1, self.embed_dim))
201
-
202
- self.patch_embedding = nn.Conv2d(
203
- in_channels=3,
204
- out_channels=self.embed_dim,
205
- kernel_size=self.patch_size,
206
- stride=self.patch_size,
207
- )
208
-
209
- self.num_patches = (self.image_size // self.patch_size) ** 2
210
- self.num_positions = self.num_patches + 1
211
-
212
- self.position_embedding = mx.random.normal(
213
- (1, self.num_positions, self.embed_dim)
214
- )
215
-
216
- def _get_pos_embed(self, pos_embed, H, W):
217
- target_dtype = pos_embed.dtype
218
- pos_embed = pos_embed.reshape(
219
- 1,
220
- self.image_size // self.patch_size,
221
- self.image_size // self.patch_size,
222
- -1,
223
- ).transpose(0, 3, 1, 2)
224
- pos_embed = interpolate(pos_embed, (H, W))
225
- pos_embed = (
226
- pos_embed.reshape(1, -1, H * W).transpose(0, 2, 1).astype(target_dtype)
227
- )
228
- return pos_embed
229
-
230
- def __call__(self, x: mx.array) -> mx.array:
231
- target_dtype = self.patch_embedding.weight.dtype
232
- patch_embeds = self.patch_embedding(x).transpose(
233
- 0, 3, 1, 2
234
- ) # shape = [*, channel, width, height]
235
- batch_size, _, height, width = patch_embeds.shape
236
- patch_embeds = mx.flatten(patch_embeds, start_axis=2).transpose(0, 2, 1)
237
- class_embeds = mx.broadcast_to(
238
- self.class_embedding, (batch_size, 1, self.embed_dim)
239
- ).astype(target_dtype)
240
- embeddings = mx.concatenate([class_embeds, patch_embeds], axis=1)
241
- position_embedding = mx.concatenate(
242
- [
243
- self.position_embedding[:, :1, :],
244
- self._get_pos_embed(self.position_embedding[:, 1:, :], height, width),
245
- ],
246
- axis=1,
247
- )
248
- embeddings = embeddings + position_embedding.astype(target_dtype)
249
-
250
- return embeddings
251
-
252
-
253
- class VisionModel(nn.Module):
254
- def __init__(self, config: VisionConfig):
255
- super().__init__()
256
- self.model_type = config.model_type
257
- if self.model_type not in ["siglip_vision_model", "intern_vit_6b"]:
258
- raise ValueError(f"Unsupported model type: {self.model_type}")
259
-
260
- self.embeddings = VisionEmbeddings(config)
261
- self.encoder = Encoder(config)
262
-
263
- def __call__(
264
- self,
265
- x: mx.array,
266
- output_hidden_states: Optional[bool] = None,
267
- ) -> mx.array:
268
- x = self.embeddings(x)
269
- last_hidden_state, encoder_outputs = self.encoder(
270
- x=x, output_hidden_states=output_hidden_states, mask=None
271
- )
272
- pooler_output = last_hidden_state[:, 0, :]
273
- return last_hidden_state, pooler_output, encoder_outputs[1:]
274
-
275
- def sanitize(self, weights):
276
- sanitized_weights = {}
277
- for k, v in weights.items():
278
- if "position_ids" in k:
279
- # Remove unused position_ids
280
- continue
281
- elif "patch_embedding.weight" in k:
282
- # PyTorch conv2d weight tensors have shape:
283
- # [out_channels, in_channels, kH, KW]
284
- # MLX conv2d expects the weight be of shape:
285
- # [out_channels, kH, KW, in_channels]
286
- if check_array_shape(v):
287
- sanitized_weights[k] = v
288
- else:
289
- sanitized_weights[k] = v.transpose(0, 2, 3, 1)
290
- else:
291
- sanitized_weights[k] = v
292
-
293
- return sanitized_weights