nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc8__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (196) hide show
  1. nexaai/_stub.cpython-310-darwin.so +0 -0
  2. nexaai/_version.py +1 -1
  3. nexaai/binds/libnexa_bridge.dylib +0 -0
  4. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/METADATA +1 -1
  5. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/RECORD +7 -196
  6. nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
  7. nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
  8. nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
  9. nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
  10. nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
  11. nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
  12. nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
  13. nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
  14. nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
  15. nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
  16. nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
  17. nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
  18. nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
  19. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
  20. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
  21. nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
  22. nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
  23. nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
  24. nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
  25. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
  26. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
  27. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
  28. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
  29. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
  30. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
  31. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
  32. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
  33. nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
  34. nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
  35. nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
  36. nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
  37. nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
  38. nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
  39. nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
  40. nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
  41. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
  42. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
  43. nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
  44. nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
  45. nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
  46. nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
  47. nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
  48. nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
  49. nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
  50. nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
  51. nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
  52. nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
  53. nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
  54. nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
  55. nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
  56. nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
  57. nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
  58. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
  59. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
  60. nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
  61. nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
  62. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
  63. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
  64. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
  65. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
  66. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
  67. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
  68. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
  69. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
  70. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
  71. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
  72. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
  73. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
  74. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
  75. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
  76. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
  77. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
  78. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
  79. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
  80. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
  81. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
  82. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
  83. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
  84. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
  85. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
  86. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
  87. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
  88. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
  89. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
  90. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
  91. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
  92. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
  93. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
  94. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
  95. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
  96. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
  97. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
  98. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
  99. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
  100. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
  101. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
  102. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
  103. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
  104. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
  105. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
  106. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
  107. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
  108. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
  109. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
  110. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
  111. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
  112. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
  113. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
  114. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
  115. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
  116. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
  117. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
  118. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
  119. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
  120. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
  121. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
  122. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
  123. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
  124. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
  125. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
  126. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
  127. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
  128. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
  129. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
  130. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
  131. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
  132. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
  133. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
  134. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
  135. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
  136. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
  137. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
  138. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
  139. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
  140. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
  141. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
  142. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
  143. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
  144. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
  145. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
  146. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
  147. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
  148. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
  149. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
  150. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
  151. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
  152. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
  153. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
  154. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
  155. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
  156. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
  157. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
  158. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
  159. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
  160. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
  161. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
  162. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
  163. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
  164. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  165. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
  166. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
  167. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
  168. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
  169. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
  170. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
  171. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
  172. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
  173. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  174. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
  175. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
  176. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
  177. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
  178. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
  179. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
  180. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
  181. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
  182. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
  183. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
  184. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
  185. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
  186. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
  187. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
  188. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
  189. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
  190. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
  191. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
  192. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
  193. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
  194. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
  195. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/WHEEL +0 -0
  196. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/top_level.txt +0 -0
@@ -1,9 +0,0 @@
1
- from .idefics2 import (
2
- LanguageModel,
3
- Model,
4
- ModelConfig,
5
- PerceiverConfig,
6
- TextConfig,
7
- VisionConfig,
8
- VisionModel,
9
- )
@@ -1,294 +0,0 @@
1
- import glob
2
- import inspect
3
- import json
4
- import re
5
- from dataclasses import dataclass
6
- from pathlib import Path
7
- from typing import List, Optional, Tuple
8
-
9
- import mlx.core as mx
10
- import mlx.nn as nn
11
- import numpy as np
12
- from huggingface_hub import snapshot_download
13
- from transformers import AutoConfig
14
-
15
- from .language import LanguageModel, TextConfig
16
- from .vision import VisionConfig, VisionModel
17
-
18
-
19
- @dataclass
20
- class PerceiverConfig:
21
- model_type: str
22
- num_key_value_heads: int = 4
23
- resampler_depth: int = 3
24
- resampler_head_dim: int = 96
25
- resampler_n_heads: int = 16
26
- resampler_n_latents: int = 64
27
-
28
- @classmethod
29
- def from_dict(cls, params):
30
- return cls(
31
- **{
32
- k: v
33
- for k, v in params.items()
34
- if k in inspect.signature(cls).parameters
35
- }
36
- )
37
-
38
-
39
- @dataclass
40
- class ModelConfig:
41
- text_config: TextConfig
42
- vision_config: VisionConfig
43
- perceiver_config: PerceiverConfig
44
- model_type: str
45
- ignore_index: int = -100
46
- image_token_id: int = 32001
47
- vocab_size: int = 151936
48
- image_token_index: Optional[int] = None
49
- eos_token_id: Optional[List[int]] = None
50
-
51
- @classmethod
52
- def from_dict(cls, params):
53
- return cls(
54
- **{
55
- k: v
56
- for k, v in params.items()
57
- if k in inspect.signature(cls).parameters
58
- }
59
- )
60
-
61
- def __post_init__(self):
62
- if self.image_token_index is None:
63
- self.image_token_index = self.image_token_id
64
-
65
-
66
- class Idefics2PerceiverAttention(nn.Module):
67
- def __init__(self, config: ModelConfig):
68
- super().__init__()
69
-
70
- dim = config.text_config.hidden_size
71
- self.n_heads = n_heads = config.perceiver_config.resampler_n_heads
72
- self.n_kv_heads = n_kv_heads = config.perceiver_config.num_key_value_heads
73
-
74
- head_dim = config.perceiver_config.resampler_head_dim
75
- self.scale = head_dim**-0.5
76
-
77
- self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=False)
78
- self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
79
- self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
80
- self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False)
81
-
82
- def __call__(
83
- self,
84
- x: mx.array,
85
- kv: mx.array,
86
- mask: Optional[mx.array] = None,
87
- cache: Optional[Tuple[mx.array, mx.array]] = None,
88
- ) -> mx.array:
89
- B, L, D = x.shape
90
- kv_seq_len = L + kv.shape[1]
91
- hidden_states = mx.concatenate([kv, x], axis=-2)
92
-
93
- queries = self.q_proj(x)
94
- keys = self.k_proj(hidden_states)
95
- values = self.v_proj(hidden_states)
96
-
97
- # Prepare the queries, keys and values for the attention computation
98
- queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
99
- keys = keys.reshape(B, kv_seq_len, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
100
- values = values.reshape(B, kv_seq_len, self.n_kv_heads, -1).transpose(
101
- 0, 2, 1, 3
102
- )
103
-
104
- if cache is not None:
105
- key_cache, value_cache = cache
106
- keys = mx.concatenate([key_cache, keys], axis=2)
107
- values = mx.concatenate([value_cache, values], axis=2)
108
-
109
- output = mx.fast.scaled_dot_product_attention(
110
- queries, keys, values, scale=self.scale
111
- )
112
- output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
113
- return self.o_proj(output)
114
-
115
-
116
- class Idefics2PerceiverLayer(nn.Module):
117
- def __init__(self, config: ModelConfig):
118
- super().__init__()
119
- self.hidden_size = config.text_config.hidden_size
120
- self.n_latents = config.perceiver_config.resampler_n_latents
121
- self.depth = config.perceiver_config.resampler_depth
122
- self.rms_norm_eps = config.text_config.rms_norm_eps
123
-
124
- self.input_latents_norm = nn.RMSNorm(self.hidden_size, eps=self.rms_norm_eps)
125
- self.input_context_norm = nn.RMSNorm(self.hidden_size, eps=self.rms_norm_eps)
126
- self.self_attn = Idefics2PerceiverAttention(config)
127
- self.post_attention_layernorm = nn.RMSNorm(
128
- self.hidden_size, eps=self.rms_norm_eps
129
- )
130
- self.mlp = MLP(self.hidden_size, self.hidden_size * 4, self.hidden_size)
131
-
132
- def __call__(
133
- self,
134
- x: mx.array,
135
- hidden_states: mx.array,
136
- mask: Optional[mx.array] = None,
137
- ) -> mx.array:
138
- latents = self.input_latents_norm(x)
139
- context = self.input_context_norm(hidden_states)
140
-
141
- latents = self.self_attn(latents, context, mask=mask)
142
-
143
- latents = x + latents
144
- r = latents
145
-
146
- latents = self.post_attention_layernorm(latents)
147
- latents = self.mlp(latents)
148
- latents = r + latents
149
- return latents
150
-
151
-
152
- class Idefics2PerceiverResampler(nn.Module):
153
- def __init__(self, config: ModelConfig):
154
- super().__init__()
155
- self.hidden_size = config.text_config.hidden_size
156
- self.n_latents = config.perceiver_config.resampler_n_latents
157
-
158
- self.latents = mx.ones((self.n_latents, self.hidden_size))
159
- self.layers = [
160
- Idefics2PerceiverLayer(config)
161
- for _ in range(config.perceiver_config.resampler_depth)
162
- ]
163
- self.norm = nn.RMSNorm(self.hidden_size, eps=config.text_config.rms_norm_eps)
164
-
165
- def __call__(self, x: mx.array, mask: Optional[mx.array] = None):
166
-
167
- h = mx.expand_dims(self.latents, axis=0)
168
- h = mx.repeat(h, x.shape[0], axis=0)
169
-
170
- for layer in self.layers:
171
- h = layer(h, x, mask=mask)
172
-
173
- return self.norm(h)
174
-
175
-
176
- class MLP(nn.Module):
177
- def __init__(self, dim, hidden_dim, output_size):
178
- super().__init__()
179
- self.gate_proj = nn.Linear(dim, hidden_dim, bias=False)
180
- self.down_proj = nn.Linear(hidden_dim, output_size, bias=False)
181
- self.up_proj = nn.Linear(dim, hidden_dim, bias=False)
182
-
183
- def __call__(self, x) -> mx.array:
184
- return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
185
-
186
-
187
- class Idefics2Connector(nn.Module):
188
- def __init__(self, config: ModelConfig):
189
- super().__init__()
190
- self.modality_projection = MLP(
191
- config.vision_config.hidden_size,
192
- config.text_config.intermediate_size,
193
- config.text_config.hidden_size,
194
- )
195
-
196
- self.perceiver_resampler = Idefics2PerceiverResampler(config)
197
-
198
- def __call__(self, x: mx.array, mask=None) -> mx.array:
199
- x = self.modality_projection(x)
200
- x = self.perceiver_resampler(x, mask=mask)
201
- return x
202
-
203
-
204
- class Model(nn.Module):
205
- def __init__(self, config: ModelConfig):
206
- super().__init__()
207
- self.model_type = config.model_type
208
- self.config = config
209
-
210
- self.vision_model = VisionModel(config.vision_config)
211
- self.language_model = LanguageModel(config.text_config)
212
- self.connector = Idefics2Connector(config)
213
-
214
- def get_input_embeddings(
215
- self,
216
- input_ids: Optional[mx.array] = None,
217
- pixel_values: Optional[mx.array] = None,
218
- pixel_attention_mask: Optional[mx.array] = None,
219
- ):
220
- if pixel_values is None:
221
- return self.language_model.embed_tokens(input_ids)
222
-
223
- inputs_embeds = self.language_model.embed_tokens(input_ids)
224
-
225
- pooler_output, embeddings, hidden_state = self.vision_model(
226
- pixel_values[0].transpose(0, 2, 3, 1), output_hidden_states=True
227
- )
228
- image_features = pooler_output.astype(pixel_values.dtype)
229
- image_features = self.connector(image_features, mask=None)
230
-
231
- final_inputs_embeds = self._prepare_inputs_for_multimodal(
232
- image_features, inputs_embeds, input_ids
233
- )
234
- return final_inputs_embeds
235
-
236
- def _prepare_inputs_for_multimodal(self, image_features, inputs_embeds, input_ids):
237
- image_token_index = self.config.image_token_index
238
-
239
- # Positions of <image> tokens in input_ids, assuming batch size is 1
240
- image_positions = np.where(input_ids == image_token_index)[1].tolist()
241
- num_images, _, vision_hidden_size = image_features.shape
242
-
243
- reshaped_image_hidden_states = image_features.reshape(-1, vision_hidden_size)
244
-
245
- # cast to the dtype of the input_embeds to support quantized models
246
- reshaped_image_hidden_states = reshaped_image_hidden_states.astype(
247
- inputs_embeds.dtype
248
- )
249
-
250
- inputs_embeds[:, image_positions, :] = reshaped_image_hidden_states
251
-
252
- return inputs_embeds
253
-
254
- @property
255
- def layers(self):
256
- return self.language_model.model.layers
257
-
258
- def __call__(
259
- self,
260
- input_ids: mx.array,
261
- pixel_values: mx.array,
262
- mask: mx.array,
263
- cache=None,
264
- **kwargs,
265
- ):
266
- input_embeddings = self.get_input_embeddings(input_ids, pixel_values)
267
- logits = self.language_model(
268
- inputs=input_ids, cache=cache, inputs_embeds=input_embeddings
269
- )
270
- return logits
271
-
272
- def sanitize(self, weights):
273
- weights = {
274
- (
275
- f"{k.split('.', 1)[1]}"
276
- if re.match(r"^model\.", k)
277
- else (f"language_model.{k}" if re.match(r"^lm_head\.", k) else k)
278
- ): v
279
- for k, v in weights.items()
280
- }
281
-
282
- weights = {
283
- (
284
- f"language_model.{k.split('.', 1)[1]}"
285
- if re.match(
286
- r"^text_model\.",
287
- k,
288
- )
289
- else k
290
- ): v
291
- for k, v in weights.items()
292
- }
293
-
294
- return weights
@@ -1,191 +0,0 @@
1
- import inspect
2
- from dataclasses import dataclass
3
- from typing import Optional
4
-
5
- import mlx.core as mx
6
- import mlx.nn as nn
7
-
8
- from ..base import (
9
- LanguageModelOutput,
10
- create_attention_mask,
11
- scaled_dot_product_attention,
12
- )
13
- from ..cache import KVCache
14
-
15
-
16
- @dataclass
17
- class TextConfig:
18
- model_type: str
19
- hidden_size: int
20
- num_hidden_layers: int
21
- intermediate_size: int
22
- num_attention_heads: int
23
- rms_norm_eps: float
24
- vocab_size: int
25
- num_key_value_heads: int
26
- rope_theta: float = 1000000.0
27
- rope_traditional: bool = False
28
- max_position_embeddings: int = 4096
29
- tie_word_embeddings: bool = False
30
-
31
- @classmethod
32
- def from_dict(cls, params):
33
- return cls(
34
- **{
35
- k: v
36
- for k, v in params.items()
37
- if k in inspect.signature(cls).parameters
38
- }
39
- )
40
-
41
- def __post_init__(self):
42
- if self.num_key_value_heads is None:
43
- self.num_key_value_heads = self.num_attention_heads
44
-
45
-
46
- class Attention(nn.Module):
47
- def __init__(self, config: TextConfig):
48
- super().__init__()
49
-
50
- dim = config.hidden_size
51
- self.n_heads = n_heads = config.num_attention_heads
52
- self.n_kv_heads = n_kv_heads = config.num_key_value_heads
53
-
54
- head_dim = config.hidden_size // n_heads
55
- self.scale = head_dim**-0.5
56
-
57
- self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=False)
58
- self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
59
- self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
60
- self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False)
61
-
62
- self.rope = nn.RoPE(
63
- head_dim,
64
- traditional=config.rope_traditional,
65
- base=config.rope_theta,
66
- )
67
-
68
- def __call__(
69
- self,
70
- x: mx.array,
71
- mask: Optional[mx.array] = None,
72
- cache: Optional[KVCache] = None,
73
- ) -> mx.array:
74
- B, L, D = x.shape
75
-
76
- queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
77
-
78
- # Prepare the queries, keys and values for the attention computation
79
- queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
80
- keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
81
- values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
82
-
83
- if cache is not None:
84
- queries = self.rope(queries, offset=cache.offset)
85
- keys = self.rope(keys, offset=cache.offset)
86
- keys, values = cache.update_and_fetch(keys, values)
87
- else:
88
- queries = self.rope(queries)
89
- keys = self.rope(keys)
90
-
91
- output = scaled_dot_product_attention(
92
- queries, keys, values, cache, scale=self.scale, mask=mask
93
- )
94
- output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
95
- return self.o_proj(output)
96
-
97
-
98
- class MLP(nn.Module):
99
- def __init__(self, dim, hidden_dim):
100
- super().__init__()
101
- self.gate_proj = nn.Linear(dim, hidden_dim, bias=False)
102
- self.down_proj = nn.Linear(hidden_dim, dim, bias=False)
103
- self.up_proj = nn.Linear(dim, hidden_dim, bias=False)
104
-
105
- def __call__(self, x) -> mx.array:
106
- return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
107
-
108
-
109
- class TransformerBlock(nn.Module):
110
- def __init__(self, config: TextConfig):
111
- super().__init__()
112
- self.num_attention_heads = config.num_attention_heads
113
- self.hidden_size = config.hidden_size
114
- self.self_attn = Attention(config)
115
- self.mlp = MLP(config.hidden_size, config.intermediate_size)
116
- self.input_layernorm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
117
- self.post_attention_layernorm = nn.RMSNorm(
118
- config.hidden_size, eps=config.rms_norm_eps
119
- )
120
- self.config = config
121
-
122
- def __call__(
123
- self,
124
- x: mx.array,
125
- mask: Optional[mx.array] = None,
126
- cache: Optional[KVCache] = None,
127
- ) -> mx.array:
128
- r = self.self_attn(self.input_layernorm(x), mask, cache)
129
- h = x + r
130
- r = self.mlp(self.post_attention_layernorm(h))
131
- out = h + r
132
- return out
133
-
134
-
135
- class LanguageModel(nn.Module):
136
- def __init__(self, config: TextConfig):
137
- super().__init__()
138
- self.config = config
139
- self.model_type = config.model_type
140
- self.vocab_size = config.vocab_size
141
- self.num_hidden_layers = config.num_hidden_layers
142
- assert self.vocab_size > 0
143
- self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
144
- self.layers = [
145
- TransformerBlock(config=config) for _ in range(config.num_hidden_layers)
146
- ]
147
- self.norm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
148
- self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
149
-
150
- def __call__(
151
- self,
152
- inputs: mx.array,
153
- inputs_embeds: Optional[mx.array] = None,
154
- mask: Optional[mx.array] = None,
155
- cache=None,
156
- ):
157
- # for passing merged input embeddings
158
- if inputs_embeds is None:
159
- h = self.embed_tokens(inputs)
160
- else:
161
- h = inputs_embeds
162
-
163
- if cache is None:
164
- cache = [None] * len(self.layers)
165
-
166
- if mask is None:
167
- mask = create_attention_mask(h, cache)
168
-
169
- for layer, c in zip(self.layers, cache):
170
- h = layer(h, mask, c)
171
-
172
- logits = self.lm_head(self.norm(h))
173
- return LanguageModelOutput(logits=logits)
174
-
175
- def sanitize(self, weights):
176
- # Remove unused precomputed rotary freqs
177
- return {
178
- k: v for k, v in weights.items() if "self_attn.rotary_emb.inv_freq" not in k
179
- }
180
-
181
- @property
182
- def layers(self):
183
- return self.model.layers
184
-
185
- @property
186
- def head_dim(self):
187
- return self.config.hidden_size // self.config.num_attention_heads
188
-
189
- @property
190
- def n_kv_heads(self):
191
- return self.config.num_key_value_heads