nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc8__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (196) hide show
  1. nexaai/_stub.cpython-310-darwin.so +0 -0
  2. nexaai/_version.py +1 -1
  3. nexaai/binds/libnexa_bridge.dylib +0 -0
  4. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/METADATA +1 -1
  5. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/RECORD +7 -196
  6. nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
  7. nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
  8. nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
  9. nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
  10. nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
  11. nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
  12. nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
  13. nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
  14. nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
  15. nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
  16. nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
  17. nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
  18. nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
  19. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
  20. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
  21. nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
  22. nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
  23. nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
  24. nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
  25. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
  26. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
  27. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
  28. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
  29. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
  30. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
  31. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
  32. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
  33. nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
  34. nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
  35. nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
  36. nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
  37. nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
  38. nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
  39. nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
  40. nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
  41. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
  42. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
  43. nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
  44. nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
  45. nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
  46. nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
  47. nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
  48. nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
  49. nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
  50. nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
  51. nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
  52. nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
  53. nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
  54. nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
  55. nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
  56. nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
  57. nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
  58. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
  59. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
  60. nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
  61. nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
  62. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
  63. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
  64. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
  65. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
  66. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
  67. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
  68. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
  69. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
  70. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
  71. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
  72. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
  73. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
  74. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
  75. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
  76. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
  77. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
  78. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
  79. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
  80. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
  81. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
  82. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
  83. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
  84. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
  85. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
  86. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
  87. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
  88. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
  89. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
  90. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
  91. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
  92. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
  93. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
  94. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
  95. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
  96. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
  97. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
  98. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
  99. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
  100. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
  101. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
  102. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
  103. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
  104. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
  105. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
  106. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
  107. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
  108. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
  109. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
  110. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
  111. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
  112. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
  113. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
  114. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
  115. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
  116. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
  117. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
  118. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
  119. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
  120. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
  121. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
  122. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
  123. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
  124. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
  125. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
  126. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
  127. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
  128. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
  129. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
  130. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
  131. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
  132. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
  133. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
  134. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
  135. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
  136. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
  137. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
  138. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
  139. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
  140. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
  141. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
  142. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
  143. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
  144. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
  145. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
  146. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
  147. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
  148. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
  149. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
  150. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
  151. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
  152. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
  153. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
  154. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
  155. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
  156. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
  157. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
  158. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
  159. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
  160. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
  161. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
  162. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
  163. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
  164. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  165. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
  166. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
  167. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
  168. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
  169. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
  170. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
  171. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
  172. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
  173. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  174. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
  175. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
  176. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
  177. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
  178. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
  179. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
  180. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
  181. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
  182. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
  183. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
  184. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
  185. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
  186. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
  187. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
  188. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
  189. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
  190. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
  191. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
  192. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
  193. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
  194. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
  195. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/WHEEL +0 -0
  196. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/top_level.txt +0 -0
@@ -1,509 +0,0 @@
1
- import inspect
2
- import math
3
- import re
4
- from dataclasses import dataclass
5
- from functools import partial
6
- from typing import Any, Dict, Optional, Tuple
7
-
8
- import mlx.core as mx
9
- import mlx.nn as nn
10
- from mlx_lm.models.switch_layers import SwitchGLU
11
-
12
- from ..base import (
13
- LanguageModelOutput,
14
- create_attention_mask,
15
- scaled_dot_product_attention,
16
- )
17
- from ..cache import KVCache
18
-
19
-
20
- @dataclass
21
- class TextConfig:
22
- model_type: str = "deepseek_v3"
23
- vocab_size: int = 102400
24
- hidden_size: int = 4096
25
- intermediate_size: int = 11008
26
- moe_intermediate_size: int = 1407
27
- num_hidden_layers: int = 30
28
- num_attention_heads: int = 32
29
- num_key_value_heads: int = 32
30
- n_shared_experts: Optional[int] = None
31
- n_routed_experts: Optional[int] = None
32
- routed_scaling_factor: float = 1.0
33
- kv_lora_rank: int = 512
34
- q_lora_rank: int = 1536
35
- qk_rope_head_dim: int = 64
36
- v_head_dim: int = 128
37
- qk_nope_head_dim: int = 128
38
- topk_method: str = "noaux_tc"
39
- scoring_func: str = "sigmoid"
40
- norm_topk_prob: bool = True
41
- n_group: Optional[int] = None
42
- topk_group: Optional[int] = None
43
- num_experts_per_tok: Optional[int] = None
44
- moe_layer_freq: int = 1
45
- first_k_dense_replace: int = 0
46
- max_position_embeddings: int = 2048
47
- rms_norm_eps: float = 1e-6
48
- rope_theta: float = 10000.0
49
- rope_scaling: Dict = None
50
- attention_bias: bool = False
51
-
52
- @classmethod
53
- def from_dict(cls, params):
54
- return cls(
55
- **{
56
- k: v
57
- for k, v in params.items()
58
- if k in inspect.signature(cls).parameters
59
- }
60
- )
61
-
62
- def __post_init__(self):
63
- if self.num_key_value_heads is None:
64
- self.num_key_value_heads = self.num_attention_heads
65
-
66
-
67
- def yarn_find_correction_dim(
68
- num_rotations, dim, base=10000, max_position_embeddings=2048
69
- ):
70
- return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (
71
- 2 * math.log(base)
72
- )
73
-
74
-
75
- def yarn_find_correction_range(
76
- low_rot, high_rot, dim, base=10000, max_position_embeddings=2048
77
- ):
78
- low = math.floor(
79
- yarn_find_correction_dim(low_rot, dim, base, max_position_embeddings)
80
- )
81
- high = math.ceil(
82
- yarn_find_correction_dim(high_rot, dim, base, max_position_embeddings)
83
- )
84
- return max(low, 0), min(high, dim - 1)
85
-
86
-
87
- def yarn_get_mscale(scale=1, mscale=1):
88
- if scale <= 1:
89
- return 1.0
90
- return 0.1 * mscale * math.log(scale) + 1.0
91
-
92
-
93
- def yarn_linear_ramp_mask(min_val, max_val, dim):
94
- if min_val == max_val:
95
- max_val += 0.001 # Prevent singularity
96
-
97
- linear_func = (mx.arange(dim, dtype=mx.float32) - min_val) / (max_val - min_val)
98
- return mx.clip(linear_func, 0, 1)
99
-
100
-
101
- class DeepseekV3YarnRotaryEmbedding(nn.Module):
102
- def __init__(
103
- self,
104
- dim,
105
- max_position_embeddings=2048,
106
- base=10000,
107
- scaling_factor=1.0,
108
- original_max_position_embeddings=4096,
109
- beta_fast=32,
110
- beta_slow=1,
111
- mscale=1,
112
- mscale_all_dim=0,
113
- ):
114
- super().__init__()
115
- self.mscale = yarn_get_mscale(scaling_factor, mscale) / yarn_get_mscale(
116
- scaling_factor, mscale_all_dim
117
- )
118
- freq_extra = base ** (mx.arange(0, dim, 2, dtype=mx.float32) / dim)
119
- freq_inter = scaling_factor * freq_extra
120
- low, high = yarn_find_correction_range(
121
- beta_fast,
122
- beta_slow,
123
- dim,
124
- base,
125
- original_max_position_embeddings,
126
- )
127
- freq_mask = 1.0 - yarn_linear_ramp_mask(low, high, dim // 2)
128
- self._freqs = (freq_inter * freq_extra) / (
129
- freq_inter * freq_mask + freq_extra * (1 - freq_mask)
130
- )
131
-
132
- def __call__(self, x, offset=0):
133
- if self.mscale != 1.0:
134
- x = self.mscale * x
135
- return mx.fast.rope(
136
- x,
137
- x.shape[-1],
138
- traditional=True,
139
- base=None,
140
- scale=1.0,
141
- offset=offset,
142
- freqs=self._freqs,
143
- )
144
-
145
-
146
- # A clipped silu to prevent fp16 from overflowing
147
- @partial(mx.compile, shapeless=True)
148
- def clipped_silu(x):
149
- return mx.clip(x * mx.sigmoid(x), a_min=-100, a_max=100)
150
-
151
-
152
- class DeepseekV3Attention(nn.Module):
153
- def __init__(self, config: TextConfig):
154
- super().__init__()
155
- self.config = config
156
- self.hidden_size = config.hidden_size
157
- self.num_heads = config.num_attention_heads
158
- self.max_position_embeddings = config.max_position_embeddings
159
- self.rope_theta = config.rope_theta
160
- self.q_lora_rank = config.q_lora_rank
161
- self.qk_rope_head_dim = config.qk_rope_head_dim
162
- self.kv_lora_rank = config.kv_lora_rank
163
- self.v_head_dim = config.v_head_dim
164
- self.qk_nope_head_dim = config.qk_nope_head_dim
165
- self.q_head_dim = config.qk_nope_head_dim + config.qk_rope_head_dim
166
-
167
- self.scale = self.q_head_dim**-0.5
168
-
169
- if self.q_lora_rank is None:
170
- self.q_proj = nn.Linear(
171
- self.hidden_size, self.num_heads * self.q_head_dim, bias=False
172
- )
173
- else:
174
- self.q_a_proj = nn.Linear(
175
- self.hidden_size, self.q_lora_rank, bias=config.attention_bias
176
- )
177
- self.q_a_layernorm = nn.RMSNorm(self.q_lora_rank, eps=1e-6)
178
- self.q_b_proj = nn.Linear(
179
- self.q_lora_rank, self.num_heads * self.q_head_dim, bias=False
180
- )
181
-
182
- self.kv_a_proj_with_mqa = nn.Linear(
183
- self.hidden_size,
184
- self.kv_lora_rank + self.qk_rope_head_dim,
185
- bias=config.attention_bias,
186
- )
187
- self.kv_a_layernorm = nn.RMSNorm(self.kv_lora_rank, eps=1e-6)
188
- self.kv_b_proj = nn.Linear(
189
- self.kv_lora_rank,
190
- self.num_heads
191
- * (self.q_head_dim - self.qk_rope_head_dim + self.v_head_dim),
192
- bias=False,
193
- )
194
-
195
- self.o_proj = nn.Linear(
196
- self.num_heads * self.v_head_dim,
197
- self.hidden_size,
198
- bias=config.attention_bias,
199
- )
200
-
201
- if self.config.rope_scaling is not None:
202
- mscale_all_dim = self.config.rope_scaling.get("mscale_all_dim", 0)
203
- scaling_factor = self.config.rope_scaling["factor"]
204
- if mscale_all_dim:
205
- mscale = yarn_get_mscale(scaling_factor, mscale_all_dim)
206
- self.scale = self.scale * mscale * mscale
207
-
208
- rope_kwargs = {
209
- key: self.config.rope_scaling[key]
210
- for key in [
211
- "original_max_position_embeddings",
212
- "beta_fast",
213
- "beta_slow",
214
- "mscale",
215
- "mscale_all_dim",
216
- ]
217
- if key in self.config.rope_scaling
218
- }
219
- self.rope = DeepseekV3YarnRotaryEmbedding(
220
- dim=self.qk_rope_head_dim,
221
- max_position_embeddings=self.max_position_embeddings,
222
- scaling_factor=scaling_factor,
223
- base=self.rope_theta,
224
- **rope_kwargs,
225
- )
226
- else:
227
- self.rope = nn.RoPE(
228
- dims=self.qk_rope_head_dim,
229
- base=self.rope_theta,
230
- traditional=True,
231
- )
232
-
233
- def __call__(
234
- self,
235
- x: mx.array,
236
- mask: Optional[mx.array] = None,
237
- cache: Optional[Any] = None,
238
- ) -> mx.array:
239
- B, L, D = x.shape
240
-
241
- if self.q_lora_rank is None:
242
- q = self.q_proj(x)
243
- else:
244
- q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(x)))
245
-
246
- q = q.reshape(B, L, self.num_heads, self.q_head_dim).transpose(0, 2, 1, 3)
247
- q_nope, q_pe = mx.split(q, [self.qk_nope_head_dim], axis=-1)
248
- compressed_kv = self.kv_a_proj_with_mqa(x)
249
- compressed_kv, k_pe = mx.split(compressed_kv, [self.kv_lora_rank], axis=-1)
250
- k_pe = k_pe.reshape(B, L, 1, self.qk_rope_head_dim).transpose(0, 2, 1, 3)
251
- kv = self.kv_b_proj(self.kv_a_layernorm(compressed_kv))
252
- kv = kv.reshape(B, L, self.num_heads, -1).transpose(0, 2, 1, 3)
253
-
254
- k_nope, values = mx.split(kv, [self.qk_nope_head_dim], axis=-1)
255
-
256
- if cache is not None:
257
- q_pe = self.rope(q_pe, cache.offset)
258
- k_pe = self.rope(k_pe, cache.offset)
259
- k_pe = mx.repeat(k_pe, self.num_heads, axis=1)
260
- keys, values = cache.update_and_fetch(
261
- mx.concatenate([k_nope, k_pe], axis=-1), values
262
- )
263
- else:
264
- q_pe = self.rope(q_pe)
265
- k_pe = self.rope(k_pe)
266
- k_pe = mx.repeat(k_pe, self.num_heads, axis=1)
267
- keys = mx.concatenate([k_nope, k_pe], axis=-1)
268
-
269
- queries = mx.concatenate([q_nope, q_pe], axis=-1)
270
-
271
- output = scaled_dot_product_attention(
272
- queries, keys, values, cache, scale=self.scale, mask=mask
273
- )
274
- output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
275
- return self.o_proj(output)
276
-
277
-
278
- class DeepseekV3MLP(nn.Module):
279
- def __init__(
280
- self, config: TextConfig, hidden_size: int = None, intermediate_size: int = None
281
- ):
282
- super().__init__()
283
- self.config = config
284
- self.hidden_size = config.hidden_size if hidden_size is None else hidden_size
285
- self.intermediate_size = (
286
- config.intermediate_size if intermediate_size is None else intermediate_size
287
- )
288
-
289
- self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
290
- self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
291
- self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
292
-
293
- def __call__(self, x):
294
- down_proj = self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
295
- return down_proj
296
-
297
-
298
- @mx.compile
299
- def group_expert_select(
300
- gates,
301
- e_score_correction_bias,
302
- top_k,
303
- n_group,
304
- topk_group,
305
- routed_scaling_factor,
306
- norm_topk_prob,
307
- ):
308
-
309
- k = top_k
310
- scores = mx.sigmoid(gates.astype(mx.float32))
311
- orig_scores = scores
312
- scores = scores + e_score_correction_bias
313
- scores = mx.unflatten(scores, axis=-1, shape=(n_group, -1))
314
- group_scores = mx.topk(scores, 2, axis=-1).sum(axis=-1, keepdims=True)
315
- k = n_group - topk_group
316
- group_idx = mx.argpartition(group_scores, kth=k - 1, axis=-2)[..., :k, :]
317
- scores = mx.put_along_axis(scores, group_idx, mx.array(0.0), axis=-2)
318
- scores = mx.flatten(scores, -2, -1)
319
-
320
- k = top_k
321
- inds = mx.argpartition(-scores, kth=k - 1, axis=-1)[..., :k]
322
- scores = mx.take_along_axis(orig_scores, inds, axis=-1)
323
- if top_k > 1 and norm_topk_prob:
324
- denominator = scores.sum(axis=-1, keepdims=True)
325
- scores = scores / denominator
326
- scores = scores * routed_scaling_factor
327
-
328
- return inds, scores
329
-
330
-
331
- class MoEGate(nn.Module):
332
- def __init__(self, config: TextConfig):
333
- super().__init__()
334
- self.config = config
335
- self.top_k = config.num_experts_per_tok
336
- self.norm_topk_prob = config.norm_topk_prob
337
- self.n_routed_experts = config.n_routed_experts
338
- self.routed_scaling_factor = config.routed_scaling_factor
339
- self.n_group = config.n_group
340
- self.topk_group = config.topk_group
341
- self.weight = mx.zeros((self.n_routed_experts, config.hidden_size))
342
- self.e_score_correction_bias = mx.zeros((self.n_routed_experts,))
343
- assert config.topk_method == "noaux_tc", "Unsupported topk method."
344
-
345
- def __call__(self, x):
346
- return group_expert_select(
347
- x @ self.weight.T,
348
- self.e_score_correction_bias,
349
- self.top_k,
350
- self.n_group,
351
- self.topk_group,
352
- self.routed_scaling_factor,
353
- self.norm_topk_prob,
354
- )
355
-
356
-
357
- class DeepseekV3MoE(nn.Module):
358
- def __init__(self, config: TextConfig):
359
- super().__init__()
360
- self.config = config
361
- self.num_experts_per_tok = config.num_experts_per_tok
362
- self.switch_mlp = SwitchGLU(
363
- config.hidden_size,
364
- config.moe_intermediate_size,
365
- config.n_routed_experts,
366
- activation=clipped_silu,
367
- )
368
-
369
- self.gate = MoEGate(config)
370
- if config.n_shared_experts is not None:
371
- intermediate_size = config.moe_intermediate_size * config.n_shared_experts
372
- self.shared_experts = DeepseekV3MLP(
373
- config=config, intermediate_size=intermediate_size
374
- )
375
-
376
- def __call__(self, x):
377
- inds, scores = self.gate(x)
378
- y = self.switch_mlp(x, inds)
379
- y = (y * scores[..., None]).sum(axis=-2).astype(y.dtype)
380
- if self.config.n_shared_experts is not None:
381
- y = y + self.shared_experts(x)
382
-
383
- return y
384
-
385
-
386
- class DeepseekV3DecoderLayer(nn.Module):
387
- def __init__(self, config: TextConfig, layer_idx: int):
388
- super().__init__()
389
- self.self_attn = DeepseekV3Attention(config)
390
- self.mlp = (
391
- DeepseekV3MoE(config)
392
- if (
393
- config.n_routed_experts is not None
394
- and layer_idx >= config.first_k_dense_replace
395
- and layer_idx % config.moe_layer_freq == 0
396
- )
397
- else DeepseekV3MLP(config)
398
- )
399
- self.input_layernorm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
400
- self.post_attention_layernorm = nn.RMSNorm(
401
- config.hidden_size, eps=config.rms_norm_eps
402
- )
403
-
404
- def __call__(
405
- self,
406
- x: mx.array,
407
- mask: Optional[mx.array] = None,
408
- cache: Optional[Any] = None,
409
- ) -> mx.array:
410
- r = self.self_attn(self.input_layernorm(x), mask, cache)
411
- h = x + r
412
- r = self.mlp(self.post_attention_layernorm(h))
413
- return h + r
414
-
415
-
416
- class DeepseekV3Model(nn.Module):
417
- def __init__(self, config: TextConfig):
418
- super().__init__()
419
- self.vocab_size = config.vocab_size
420
- self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
421
- self.layers = [
422
- DeepseekV3DecoderLayer(config, idx)
423
- for idx in range(config.num_hidden_layers)
424
- ]
425
- self.start_idx = 0
426
- self.end_idx = len(self.layers)
427
- self.num_layers = self.end_idx
428
-
429
- self.norm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
430
-
431
- def __call__(
432
- self,
433
- x: mx.array,
434
- inputs_embeds: Optional[mx.array] = None,
435
- cache: Optional[Any] = None,
436
- mask: Optional[mx.array] = None,
437
- ) -> mx.array:
438
-
439
- if inputs_embeds is None:
440
- h = self.embed_tokens(x)
441
- else:
442
- h = inputs_embeds
443
-
444
- if mask is None:
445
- mask = create_attention_mask(h, cache)
446
-
447
- if cache is None:
448
- cache = [None] * self.num_layers
449
-
450
- for layer, c in zip(self.layers, cache):
451
- h = layer(h, mask, c)
452
-
453
- return self.norm(h)
454
-
455
-
456
- class LanguageModel(nn.Module):
457
- def __init__(self, config: TextConfig):
458
- super().__init__()
459
- self.config = config
460
- self.model_type = config.model_type
461
- self.model = DeepseekV3Model(config)
462
- self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
463
-
464
- def __call__(
465
- self,
466
- inputs: mx.array,
467
- inputs_embeds: Optional[mx.array] = None,
468
- cache: Optional[Any] = None,
469
- mask: Optional[mx.array] = None,
470
- ):
471
- out = self.model(inputs, inputs_embeds=inputs_embeds, cache=cache, mask=mask)
472
- out = self.lm_head(out)
473
- return LanguageModelOutput(logits=out)
474
-
475
- def sanitize(self, weights):
476
- def keep(key):
477
- return "rotary_emb" not in key
478
-
479
- weights = {k: v for k, v in weights.items() if keep(k)}
480
- # Stack experts
481
- for l in range(self.config.num_hidden_layers):
482
- prefix = f"language_model.model.layers.{l}"
483
- for m in [("gate_proj"), ("down_proj"), ("up_proj")]:
484
- for k in ["weight", "scales", "biases"]:
485
- if f"{prefix}.mlp.experts.0.{m}.{k}" in weights:
486
- to_join = [
487
- weights.pop(f"{prefix}.mlp.experts.{e}.{m}.{k}")
488
- for e in range(self.config.n_routed_experts)
489
- ]
490
- weights[f"{prefix}.mlp.switch_mlp.{m}.{k}"] = mx.stack(to_join)
491
-
492
- return weights
493
-
494
- def embed_tokens(self, x):
495
- return self.model.embed_tokens(x)
496
-
497
- @property
498
- def layers(self):
499
- return self.model.layers[self.model.start_idx : self.model.end_idx]
500
-
501
- @property
502
- def n_kv_heads(self):
503
- return self.config.num_key_value_heads
504
-
505
- def cast_predicate(self):
506
- def predicate(k):
507
- return "e_score_correction_bias" not in k
508
-
509
- return predicate