nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc8__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (196) hide show
  1. nexaai/_stub.cpython-310-darwin.so +0 -0
  2. nexaai/_version.py +1 -1
  3. nexaai/binds/libnexa_bridge.dylib +0 -0
  4. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/METADATA +1 -1
  5. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/RECORD +7 -196
  6. nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
  7. nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
  8. nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
  9. nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
  10. nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
  11. nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
  12. nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
  13. nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
  14. nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
  15. nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
  16. nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
  17. nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
  18. nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
  19. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
  20. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
  21. nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
  22. nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
  23. nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
  24. nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
  25. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
  26. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
  27. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
  28. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
  29. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
  30. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
  31. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
  32. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
  33. nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
  34. nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
  35. nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
  36. nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
  37. nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
  38. nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
  39. nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
  40. nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
  41. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
  42. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
  43. nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
  44. nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
  45. nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
  46. nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
  47. nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
  48. nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
  49. nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
  50. nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
  51. nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
  52. nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
  53. nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
  54. nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
  55. nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
  56. nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
  57. nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
  58. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
  59. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
  60. nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
  61. nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
  62. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
  63. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
  64. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
  65. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
  66. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
  67. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
  68. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
  69. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
  70. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
  71. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
  72. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
  73. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
  74. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
  75. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
  76. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
  77. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
  78. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
  79. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
  80. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
  81. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
  82. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
  83. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
  84. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
  85. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
  86. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
  87. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
  88. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
  89. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
  90. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
  91. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
  92. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
  93. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
  94. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
  95. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
  96. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
  97. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
  98. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
  99. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
  100. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
  101. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
  102. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
  103. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
  104. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
  105. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
  106. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
  107. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
  108. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
  109. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
  110. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
  111. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
  112. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
  113. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
  114. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
  115. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
  116. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
  117. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
  118. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
  119. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
  120. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
  121. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
  122. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
  123. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
  124. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
  125. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
  126. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
  127. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
  128. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
  129. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
  130. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
  131. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
  132. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
  133. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
  134. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
  135. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
  136. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
  137. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
  138. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
  139. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
  140. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
  141. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
  142. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
  143. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
  144. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
  145. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
  146. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
  147. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
  148. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
  149. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
  150. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
  151. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
  152. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
  153. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
  154. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
  155. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
  156. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
  157. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
  158. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
  159. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
  160. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
  161. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
  162. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
  163. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
  164. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  165. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
  166. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
  167. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
  168. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
  169. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
  170. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
  171. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
  172. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
  173. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  174. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
  175. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
  176. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
  177. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
  178. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
  179. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
  180. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
  181. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
  182. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
  183. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
  184. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
  185. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
  186. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
  187. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
  188. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
  189. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
  190. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
  191. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
  192. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
  193. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
  194. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
  195. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/WHEEL +0 -0
  196. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/top_level.txt +0 -0
@@ -1,21 +0,0 @@
1
- import inspect
2
- from dataclasses import dataclass
3
-
4
-
5
- @dataclass
6
- class TextConfig:
7
- max_position_embeddings: int = 4096
8
-
9
- @classmethod
10
- def from_dict(cls, params):
11
- return cls(
12
- **{
13
- k: v
14
- for k, v in params.items()
15
- if k in inspect.signature(cls).parameters
16
- }
17
- )
18
-
19
-
20
- class LanguageModel:
21
- pass
@@ -1,243 +0,0 @@
1
- import inspect
2
- import math
3
- from dataclasses import dataclass
4
- from types import SimpleNamespace
5
- from typing import Dict, List, Optional, Tuple, Union
6
-
7
- import mlx.core as mx
8
- import mlx.nn as nn
9
- import numpy as np
10
-
11
- from ..base import LanguageModelOutput, create_attention_mask
12
- from ..cache import KVCache
13
- from .language import LanguageModel, TextConfig
14
- from .su_rope import Phi3SuScaledRotaryEmbedding
15
- from .vision import VisionConfig, VisionModel
16
-
17
-
18
- @dataclass
19
- class ModelConfig:
20
- text_config: TextConfig
21
- vision_config: VisionConfig
22
- model_type: str
23
- vocab_size: int
24
-
25
- num_hidden_layers: int
26
- intermediate_size: int
27
- num_attention_heads: int
28
- rms_norm_eps: float
29
-
30
- ignore_index: int = -100
31
- image_token_index: int = 257152
32
- hidden_size: int = 2048
33
- pad_token_id: int = 0
34
-
35
- num_key_value_heads: int = None
36
- rope_theta: float = 10000
37
- rope_traditional: bool = False
38
- rope_scaling: Optional[Dict[str, Union[float, str]]] = None
39
- max_position_embeddings: int = 131072
40
- original_max_position_embeddings: int = 4096
41
- eos_token_id: Optional[List[int]] = None
42
-
43
- @classmethod
44
- def from_dict(cls, params):
45
- return cls(
46
- **{
47
- k: v
48
- for k, v in params.items()
49
- if k in inspect.signature(cls).parameters
50
- }
51
- )
52
-
53
-
54
- class Attention(nn.Module):
55
- def __init__(self, config: TextConfig):
56
- super().__init__()
57
-
58
- dim = config.hidden_size
59
- self.n_heads = n_heads = config.num_attention_heads
60
- self.n_kv_heads = n_kv_heads = config.num_key_value_heads
61
- self.num_hidden_layers = config.num_hidden_layers
62
-
63
- self.head_dim = head_dim = config.hidden_size // n_heads
64
- self.scale = head_dim**-0.5
65
-
66
- op_size = n_heads * head_dim + 2 * (n_kv_heads * head_dim)
67
- self.qkv_proj = nn.Linear(dim, op_size, bias=False)
68
- self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False)
69
-
70
- rope_scale = 1.0
71
- if config.rope_scaling and config.rope_scaling["type"] == "su":
72
- self.rope = Phi3SuScaledRotaryEmbedding(
73
- head_dim,
74
- traditional=False,
75
- base=config.rope_theta,
76
- scale=rope_scale,
77
- max_position_embeddings=config.max_position_embeddings,
78
- original_max_position_embeddings=config.original_max_position_embeddings,
79
- short_factor=config.rope_scaling["short_factor"],
80
- long_factor=config.rope_scaling["long_factor"],
81
- )
82
- else:
83
- if config.rope_scaling and config.rope_scaling["type"] == "linear":
84
- rope_scale = 1 / config.rope_scaling["factor"]
85
- self.rope = nn.RoPE(
86
- head_dim,
87
- traditional=config.rope_traditional,
88
- base=config.rope_theta,
89
- scale=rope_scale,
90
- )
91
-
92
- def __call__(
93
- self,
94
- x: mx.array,
95
- mask: Optional[mx.array] = None,
96
- cache: Optional[KVCache] = None,
97
- ) -> mx.array:
98
- B, L, D = x.shape
99
-
100
- qkv = self.qkv_proj(x)
101
- query_pos = self.n_heads * self.head_dim
102
- queries, keys, values = mx.split(
103
- qkv, [query_pos, query_pos + self.n_kv_heads * self.head_dim], axis=-1
104
- )
105
-
106
- queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
107
- keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
108
- values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
109
-
110
- if cache is not None:
111
- queries = self.rope(queries, offset=cache.offset)
112
- keys = self.rope(keys, offset=cache.offset)
113
- keys, values = cache.update_and_fetch(keys, values)
114
- else:
115
- queries = self.rope(queries)
116
- keys = self.rope(keys)
117
-
118
- output = mx.fast.scaled_dot_product_attention(
119
- queries, keys, values, scale=self.scale, mask=mask
120
- )
121
- output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
122
- return self.o_proj(output)
123
-
124
-
125
- class MLP(nn.Module):
126
- def __init__(self, dim, hidden_dim):
127
- super().__init__()
128
- self.gate_up_proj = nn.Linear(dim, 2 * hidden_dim, bias=False)
129
- self.down_proj = nn.Linear(hidden_dim, dim, bias=False)
130
-
131
- def __call__(self, x) -> mx.array:
132
- x = self.gate_up_proj(x)
133
- gate, x = mx.split(x, 2, axis=-1)
134
- return self.down_proj(nn.silu(gate) * x)
135
-
136
-
137
- class TransformerBlock(nn.Module):
138
- def __init__(self, config: TextConfig):
139
- super().__init__()
140
- self.num_attention_heads = config.num_attention_heads
141
- self.hidden_size = config.hidden_size
142
- self.self_attn = Attention(config)
143
- self.mlp = MLP(config.hidden_size, config.intermediate_size)
144
- self.input_layernorm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
145
- self.post_attention_layernorm = nn.RMSNorm(
146
- config.hidden_size, eps=config.rms_norm_eps
147
- )
148
- self.config = config
149
-
150
- def __call__(
151
- self,
152
- x: mx.array,
153
- mask: Optional[mx.array] = None,
154
- cache: Optional[KVCache] = None,
155
- ) -> mx.array:
156
- r = self.self_attn(self.input_layernorm(x), mask, cache)
157
- h = x + r
158
- r = self.mlp(self.post_attention_layernorm(h))
159
- out = h + r
160
- return out
161
-
162
-
163
- class Phi3V(nn.Module):
164
- def __init__(self, config: TextConfig):
165
- super().__init__()
166
- self.config = config
167
- self.vocab_size = config.vocab_size
168
- self.num_hidden_layers = config.num_hidden_layers
169
- self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
170
- self.vision_embed_tokens = VisionModel(config)
171
- self.layers = [
172
- TransformerBlock(config=config) for _ in range(config.num_hidden_layers)
173
- ]
174
- self.norm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
175
-
176
- def __call__(
177
- self,
178
- inputs: mx.array,
179
- pixel_values=None,
180
- image_sizes=None,
181
- mask: Optional[mx.array] = None,
182
- cache=None,
183
- ):
184
- h = self.embed_tokens(inputs)
185
- p = np.argwhere(inputs < 0).tolist()
186
-
187
- if pixel_values is not None:
188
- h = self.vision_embed_tokens(pixel_values, h, image_sizes, p)
189
-
190
- if cache is None:
191
- cache = [None] * len(self.layers)
192
-
193
- if mask is None:
194
- mask = create_attention_mask(h, cache)
195
-
196
- for layer, c in zip(self.layers, cache):
197
- h = layer(h, mask, c)
198
-
199
- return self.norm(h)
200
-
201
-
202
- class Model(nn.Module):
203
- def __init__(self, config: TextConfig):
204
- super().__init__()
205
- self.model_type = config.model_type
206
- self.model = Phi3V(config)
207
- self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
208
- self.config = config
209
-
210
- def __call__(
211
- self,
212
- inputs: mx.array,
213
- pixel_values=None,
214
- mask=None,
215
- cache=None,
216
- image_sizes=None,
217
- **kwargs,
218
- ):
219
- out = self.model(inputs, pixel_values, image_sizes, mask=mask, cache=cache)
220
- logits = self.lm_head(out)
221
- if self.lm_head.weight.dtype in [mx.float16, mx.bfloat16, mx.float32]:
222
- logits = logits.astype(self.lm_head.weight.dtype)
223
- return LanguageModelOutput(logits=logits)
224
-
225
- @property
226
- def layers(self):
227
- return self.model.layers
228
-
229
- @property
230
- def head_dim(self):
231
- return self.config.hidden_size // self.config.num_attention_heads
232
-
233
- @property
234
- def n_kv_heads(self):
235
- return self.config.num_key_value_heads
236
-
237
- @property
238
- def language_model(self):
239
- return self
240
-
241
- @property
242
- def vision_model(self):
243
- return self.model.vision_embed_tokens
@@ -1,71 +0,0 @@
1
- import math
2
-
3
- import mlx.core as mx
4
-
5
-
6
- class Phi3SuScaledRotaryEmbedding:
7
- def __init__(
8
- self,
9
- dims: int,
10
- traditional: bool = False,
11
- base: float = 10000.0,
12
- scale: float = 1.0,
13
- max_position_embeddings: int = 131072,
14
- original_max_position_embeddings: int = 4096,
15
- short_factor: list[float] | float = 1.0,
16
- long_factor: list[float] | float = 1.0,
17
- ):
18
- """
19
- Phi3Su Scaled Rotary Embedding layer for Phi-3 models.
20
-
21
- Args:
22
- dims (int): The feature dimensions to be rotated.
23
- traditional (bool, optional): Unused. Default: ``False``.
24
- base (int, optional): Base for the exponential scaling.
25
- scale (float, optional): The scale used to scale the positions. Default: 1.0.
26
- max_position_embeddings (int, optional): The maximum sequence length that this model was trained with. This is used to determine the size of the original RoPE embeddings when using long scaling. Default: 131072.
27
- original_max_position_embeddings (int, optional): The maximum sequence length that this model was trained with. This is used to determine the size of the original RoPE embeddings when using long scaling. Default: 4096.
28
- short_factor (float or list of floats, optional): List of scaling factors for sequences of length lesser than original_max_position_embeddings. Default: 1.0.
29
- long_factor (float or list of floats, optional): List of scaling factors for sequences of length greater than original_max_position_embeddings. Default: 1.0.
30
- """
31
- self.inv_freq_short = 1.0 / (
32
- mx.array(short_factor, dtype=mx.float32)
33
- * base ** (mx.arange(0, dims, 2, dtype=mx.float32) / dims)
34
- )
35
- self.inv_freq_long = 1.0 / (
36
- scale
37
- * mx.array(long_factor, dtype=mx.float32)
38
- * base ** (mx.arange(0, dims, 2, dtype=mx.float32) / dims)
39
- )
40
- self.original_max_position_embeddings = original_max_position_embeddings
41
- self.scaling_factor = math.sqrt(
42
- 1
43
- + math.log(max_position_embeddings / original_max_position_embeddings)
44
- / math.log(original_max_position_embeddings)
45
- )
46
-
47
- def _get_cos_sin(self, offset, L):
48
- position_ids = mx.arange(offset, offset + L, dtype=mx.float32)[None]
49
- inv_freq = (
50
- self.inv_freq_long
51
- if position_ids.max() + 1 > self.original_max_position_embeddings
52
- else self.inv_freq_short
53
- )
54
- inv_freq_expanded = mx.repeat(
55
- inv_freq[None, :, None], position_ids.shape[0], axis=0
56
- )
57
- position_ids_expanded = position_ids[:, None, :]
58
- freqs = (inv_freq_expanded @ position_ids_expanded).transpose(0, 2, 1)
59
- emb = mx.concatenate([freqs, freqs], axis=-1)
60
- cos = mx.cos(emb) * self.scaling_factor
61
- sin = mx.sin(emb) * self.scaling_factor
62
- return mx.expand_dims(cos, axis=1), mx.expand_dims(sin, axis=1)
63
-
64
- def __call__(self, x, offset: int = 0):
65
- def _rotate_half(_x):
66
- midpoint = _x.shape[-1] // 2
67
- x1, x2 = _x[..., :midpoint], _x[..., midpoint:]
68
- return mx.concatenate([-x2, x1], axis=-1)
69
-
70
- cos, sin = self._get_cos_sin(offset, x.shape[2])
71
- return (x * cos) + (_rotate_half(x) * sin)
@@ -1,324 +0,0 @@
1
- import inspect
2
- import math
3
- from dataclasses import dataclass
4
- from types import SimpleNamespace
5
- from typing import Optional
6
-
7
- import mlx.core as mx
8
- import mlx.nn as nn
9
- import numpy as np
10
-
11
-
12
- @dataclass
13
- class VisionConfig:
14
- model_type: str = "phi3_v"
15
- num_hidden_layers: int = 24
16
- hidden_size: int = 1024
17
- intermediate_size: int = 4096
18
- num_attention_heads: int = 16
19
- image_size: int = 336
20
- patch_size: int = 14
21
- projection_dim: int = 768
22
- vocab_size: int = 32000
23
- num_channels: int = 3
24
- layer_norm_eps: float = 1e-5
25
- image_dim_out: int = (1024,)
26
- model_name: str = "openai/clip-vit-large-patch14-336"
27
- name: str = "clip_vision_model"
28
- num_img_tokens: int = 144
29
-
30
- @classmethod
31
- def from_dict(cls, params):
32
- return cls(
33
- **{
34
- k: v
35
- for k, v in params.items()
36
- if k in inspect.signature(cls).parameters
37
- }
38
- )
39
-
40
-
41
- def check_array_shape(arr):
42
- shape = arr.shape
43
-
44
- # Check if the shape has 4 dimensions
45
- if len(shape) != 4:
46
- return False
47
-
48
- out_channels, kH, KW, _ = shape
49
-
50
- # Check if out_channels is the largest, and kH and KW are the same
51
- if (out_channels >= kH) and (out_channels >= KW) and (kH == KW):
52
- return True
53
- else:
54
- return False
55
-
56
-
57
- class Attention(nn.Module):
58
- def __init__(
59
- self,
60
- dims: int,
61
- num_heads: int,
62
- query_input_dims: Optional[int] = None,
63
- key_input_dims: Optional[int] = None,
64
- value_input_dims: Optional[int] = None,
65
- value_dims: Optional[int] = None,
66
- value_output_dims: Optional[int] = None,
67
- bias: bool = False,
68
- ):
69
- super().__init__()
70
-
71
- if (dims % num_heads) != 0:
72
- raise ValueError(
73
- "The input feature dimensions should be divisible by the "
74
- f"number of heads ({dims} % {num_heads}) != 0"
75
- )
76
-
77
- query_input_dims = query_input_dims or dims
78
- key_input_dims = key_input_dims or dims
79
- value_input_dims = value_input_dims or key_input_dims
80
- value_dims = value_dims or dims
81
- value_output_dims = value_output_dims or dims
82
-
83
- self.num_heads = num_heads = num_heads
84
- head_dim = dims // num_heads
85
- self.scale = head_dim**-0.5
86
-
87
- self.q_proj = nn.Linear(query_input_dims, dims, bias=bias)
88
- self.k_proj = nn.Linear(key_input_dims, dims, bias=bias)
89
- self.v_proj = nn.Linear(value_input_dims, value_dims, bias=bias)
90
- self.out_proj = nn.Linear(value_dims, value_output_dims, bias=bias)
91
-
92
- def __call__(self, queries, keys, values, mask=None):
93
- queries = self.q_proj(queries)
94
- keys = self.k_proj(keys)
95
- values = self.v_proj(values)
96
-
97
- num_heads = self.num_heads
98
- B, L, D = queries.shape
99
- _, S, _ = keys.shape
100
- queries = queries.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
101
- keys = keys.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3)
102
- values = values.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3)
103
-
104
- output = mx.fast.scaled_dot_product_attention(
105
- queries, keys, values, scale=self.scale, mask=mask
106
- )
107
- output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
108
-
109
- return self.out_proj(output)
110
-
111
-
112
- class MLP(nn.Module):
113
- def __init__(self, config: VisionConfig):
114
- super().__init__()
115
- self.activation_fn = nn.GELU(approx="fast")
116
- self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
117
- self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
118
-
119
- def __call__(self, x: mx.array) -> mx.array:
120
- x = self.activation_fn(self.fc1(x))
121
- x = self.fc2(x)
122
- return x
123
-
124
-
125
- class EncoderLayer(nn.Module):
126
- def __init__(self, config: VisionConfig):
127
- super().__init__()
128
- self.embed_dim = config.hidden_size
129
- self.self_attn = Attention(
130
- config.hidden_size, config.num_attention_heads, bias=True
131
- )
132
- self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
133
- self.mlp = MLP(config)
134
- self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
135
-
136
- def __call__(self, x: mx.array, mask: Optional[mx.array] = None) -> mx.array:
137
- y = self.layer_norm1(x)
138
- y = self.self_attn(y, y, y, mask)
139
- x = x + y
140
- y = self.layer_norm2(x)
141
- y = self.mlp(y)
142
- return x + y
143
-
144
-
145
- class Encoder(nn.Module):
146
- def __init__(self, config: VisionConfig):
147
- super().__init__()
148
- self.layers = [EncoderLayer(config) for _ in range(config.num_hidden_layers)]
149
-
150
-
151
- class VisionEmbeddings(nn.Module):
152
- def __init__(self, config: VisionConfig):
153
- super().__init__()
154
- self.config = config
155
- self.embed_dim = config.hidden_size
156
- self.image_size = config.image_size
157
- self.patch_size = config.patch_size
158
-
159
- self.class_embedding = mx.zeros((config.hidden_size,))
160
-
161
- self.patch_embedding = nn.Conv2d(
162
- in_channels=config.num_channels,
163
- out_channels=self.embed_dim,
164
- kernel_size=self.patch_size,
165
- stride=self.patch_size,
166
- bias=False,
167
- )
168
-
169
- self.num_patches = (self.image_size // self.patch_size) ** 2
170
- self.num_positions = self.num_patches + 1
171
- self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
172
-
173
- def __call__(self, x: mx.array) -> mx.array:
174
- batch_size = x.shape[0]
175
- patch_embeddings = self.patch_embedding(x)
176
- patch_embeddings = mx.flatten(patch_embeddings, start_axis=1, end_axis=2)
177
- embed_dim = patch_embeddings.shape[-1]
178
- cls_embeddings = mx.broadcast_to(
179
- self.class_embedding, (batch_size, 1, embed_dim)
180
- )
181
- position_ids = mx.array(np.arange(self.num_positions)[None, :])
182
-
183
- embeddings = mx.concatenate((cls_embeddings, patch_embeddings), axis=1)
184
- embeddings += self.position_embedding(position_ids)
185
- return embeddings
186
-
187
-
188
- class ClipModel(nn.Module):
189
- def __init__(self, config: VisionConfig):
190
- super().__init__()
191
- self.model_type = config.model_type
192
- self.embeddings = VisionEmbeddings(config)
193
- self.pre_layrnorm = nn.LayerNorm(config.hidden_size)
194
- self.encoder = Encoder(config)
195
- self.post_layernorm = nn.LayerNorm(config.hidden_size)
196
-
197
- def __call__(
198
- self,
199
- x: mx.array,
200
- output_hidden_states: Optional[bool] = None,
201
- ) -> mx.array:
202
- x = self.embeddings(x)
203
- x = self.pre_layrnorm(x)
204
-
205
- encoder_states = (x,) if output_hidden_states else None
206
-
207
- for l in self.encoder.layers:
208
- x = l(x, mask=None)
209
- if output_hidden_states:
210
- encoder_states = encoder_states + (x,)
211
-
212
- pooler_output = self.post_layernorm(x[:, 0, :])
213
- return pooler_output, x, encoder_states
214
-
215
-
216
- class ClipVModel(nn.Module):
217
- def __init__(self, config):
218
- super().__init__()
219
- self.model_type = config.model_type
220
- self.vision_model = ClipModel(config)
221
-
222
-
223
- class VisionModel(nn.Module):
224
- CLIP_VIT_LARGE_PATCH14_336_CONFIG = SimpleNamespace(
225
- model_type="phi3_v",
226
- hidden_size=1024,
227
- image_size=336,
228
- intermediate_size=4096,
229
- layer_norm_eps=1e-05,
230
- num_attention_heads=16,
231
- num_channels=3,
232
- num_hidden_layers=24,
233
- patch_size=14,
234
- )
235
-
236
- def __init__(self, config):
237
- super().__init__()
238
- self.model_type = config.model_type
239
- self.img_processor = ClipVModel(self.CLIP_VIT_LARGE_PATCH14_336_CONFIG)
240
- self.image_dim_out = image_dim_out = 1024
241
- self.glb_GN = mx.zeros([1, 1, image_dim_out * 4])
242
- self.sub_GN = mx.zeros([1, 1, 1, image_dim_out * 4])
243
- self.img_projection = [
244
- nn.Linear(image_dim_out * 4, config.hidden_size),
245
- nn.GELU(),
246
- nn.Linear(config.hidden_size, config.hidden_size),
247
- ]
248
-
249
- def __call__(
250
- self,
251
- img_embeds,
252
- txt_embeds=None,
253
- img_sizes=None,
254
- positions=None,
255
- output_hidden_states=None,
256
- ):
257
- if output_hidden_states:
258
- return self.img_processor.vision_model(
259
- img_embeds, output_hidden_states=output_hidden_states
260
- )
261
- img_embeds = mx.array(img_embeds)
262
- img_sizes = mx.array(img_sizes)
263
- B = img_embeds.shape[0]
264
- img_sizes = (img_sizes // 336).tolist()
265
- img_features = self.img_processor.vision_model(
266
- img_embeds.reshape(-1, *img_embeds.shape[2:]).transpose(0, 2, 3, 1), True
267
- )[-1][-2][:, 1:]
268
- img_features = img_features.reshape(B, -1, *img_features.shape[1:])
269
- C, H = self.image_dim_out, int(img_features.shape[2] ** 0.5)
270
- output_imgs, output_len = [], []
271
- for _bs in range(B):
272
- h, w = img_sizes[_bs]
273
- B_ = h * w
274
-
275
- def _reshape_and_concatenate(img, shape, tile_shape):
276
- return mx.concatenate(
277
- [
278
- img.reshape(shape)
279
- .transpose(0, 1, 3, 2, 4, 5)
280
- .reshape(tile_shape),
281
- mx.tile(self.sub_GN, (1, tile_shape[1], 1, 1)),
282
- ],
283
- axis=2,
284
- ).reshape(1, -1, 4 * C)
285
-
286
- glb_img = _reshape_and_concatenate(
287
- img_features[_bs, :1],
288
- (1, H // 2, 2, H // 2, 2, C),
289
- (1, H // 2, H // 2, 4 * C),
290
- )
291
- sub_img = _reshape_and_concatenate(
292
- img_features[_bs, 1 : B_ + 1],
293
- (B_, H // 2, 2, H // 2, 2, C),
294
- (1, h * 12, w * 12, 4 * C),
295
- )
296
- x = mx.concatenate([sub_img, self.glb_GN, glb_img], axis=1)
297
- for l in self.img_projection:
298
- x = l(x)
299
- output_imgs.append(np.array(x.astype(mx.float32)))
300
- output_len.append(int((h * w + 1) * 144 + 1 + (h + 1) * 12))
301
- idx = 0
302
- txt_embeds = np.array(txt_embeds.astype(mx.float32))
303
- for i, cnt in enumerate(output_len):
304
- txt_embeds[
305
- positions[idx][0], positions[idx][1] : positions[idx][1] + cnt
306
- ] = output_imgs[i]
307
- idx += cnt
308
- txt_embeds = mx.array(txt_embeds)
309
- return txt_embeds
310
-
311
- def sanitize(self, weights):
312
- sanitized_weights = {}
313
- for k, v in weights.items():
314
- if "position_ids" in k:
315
- continue
316
- elif "patch_embedding.weight" in k:
317
- if check_array_shape(v):
318
- sanitized_weights[k] = v
319
- else:
320
- sanitized_weights[k] = v.transpose(0, 2, 3, 1)
321
- else:
322
- sanitized_weights[k] = v
323
-
324
- return sanitized_weights
@@ -1,8 +0,0 @@
1
- from .pixtral import (
2
- LanguageModel,
3
- Model,
4
- ModelConfig,
5
- TextConfig,
6
- VisionConfig,
7
- VisionModel,
8
- )