nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc8__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (196) hide show
  1. nexaai/_stub.cpython-310-darwin.so +0 -0
  2. nexaai/_version.py +1 -1
  3. nexaai/binds/libnexa_bridge.dylib +0 -0
  4. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/METADATA +1 -1
  5. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/RECORD +7 -196
  6. nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
  7. nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
  8. nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
  9. nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
  10. nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
  11. nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
  12. nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
  13. nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
  14. nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
  15. nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
  16. nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
  17. nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
  18. nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
  19. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
  20. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
  21. nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
  22. nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
  23. nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
  24. nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
  25. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
  26. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
  27. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
  28. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
  29. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
  30. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
  31. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
  32. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
  33. nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
  34. nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
  35. nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
  36. nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
  37. nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
  38. nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
  39. nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
  40. nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
  41. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
  42. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
  43. nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
  44. nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
  45. nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
  46. nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
  47. nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
  48. nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
  49. nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
  50. nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
  51. nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
  52. nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
  53. nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
  54. nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
  55. nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
  56. nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
  57. nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
  58. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
  59. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
  60. nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
  61. nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
  62. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
  63. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
  64. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
  65. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
  66. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
  67. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
  68. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
  69. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
  70. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
  71. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
  72. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
  73. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
  74. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
  75. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
  76. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
  77. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
  78. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
  79. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
  80. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
  81. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
  82. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
  83. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
  84. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
  85. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
  86. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
  87. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
  88. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
  89. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
  90. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
  91. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
  92. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
  93. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
  94. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
  95. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
  96. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
  97. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
  98. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
  99. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
  100. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
  101. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
  102. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
  103. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
  104. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
  105. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
  106. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
  107. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
  108. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
  109. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
  110. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
  111. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
  112. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
  113. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
  114. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
  115. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
  116. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
  117. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
  118. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
  119. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
  120. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
  121. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
  122. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
  123. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
  124. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
  125. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
  126. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
  127. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
  128. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
  129. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
  130. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
  131. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
  132. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
  133. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
  134. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
  135. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
  136. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
  137. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
  138. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
  139. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
  140. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
  141. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
  142. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
  143. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
  144. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
  145. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
  146. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
  147. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
  148. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
  149. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
  150. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
  151. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
  152. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
  153. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
  154. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
  155. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
  156. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
  157. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
  158. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
  159. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
  160. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
  161. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
  162. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
  163. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
  164. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  165. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
  166. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
  167. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
  168. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
  169. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
  170. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
  171. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
  172. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
  173. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  174. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
  175. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
  176. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
  177. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
  178. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
  179. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
  180. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
  181. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
  182. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
  183. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
  184. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
  185. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
  186. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
  187. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
  188. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
  189. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
  190. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
  191. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
  192. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
  193. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
  194. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
  195. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/WHEEL +0 -0
  196. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/top_level.txt +0 -0
@@ -1,416 +0,0 @@
1
- import inspect
2
- from dataclasses import dataclass, field
3
- from typing import Dict, List, Optional, Tuple, Union
4
-
5
- import mlx.core as mx
6
- import mlx.nn as nn
7
-
8
- from ..base import (
9
- LanguageModelOutput,
10
- create_attention_mask,
11
- scaled_dot_product_attention,
12
- )
13
- from ..cache import KVCache
14
-
15
-
16
- @dataclass
17
- class TextConfig:
18
- model_type: str = "mllama"
19
- vocab_size: int = 32000
20
- hidden_size: int = 4096
21
- intermediate_size: int = 14336
22
- num_hidden_layers: int = 40
23
- num_attention_heads: int = 32
24
- num_key_value_heads: int = 8
25
- hidden_act: str = "silu"
26
- max_position_embeddings: int = 131072
27
- initializer_range: float = 0.02
28
- rms_norm_eps: float = 1e-6
29
- tie_word_embeddings: bool = False
30
- rope_theta: float = 10000.0
31
- rope_traditional: bool = False
32
- rope_scaling: Optional[Dict[str, Union[float, str]]] = None
33
- cross_attention_layers: List[int] = field(
34
- default_factory=lambda: [3, 8, 13, 18, 23, 28, 33, 38]
35
- )
36
-
37
- def __post_init__(self):
38
- if self.num_key_value_heads is None:
39
- self.num_key_value_heads = self.num_attention_heads
40
-
41
- @classmethod
42
- def from_dict(cls, params):
43
- return cls(
44
- **{
45
- k: v
46
- for k, v in params.items()
47
- if k in inspect.signature(cls).parameters
48
- }
49
- )
50
-
51
-
52
- class MllamaTextCrossAttention(nn.Module):
53
- def __init__(self, config: TextConfig, layer_idx: Optional[int] = None):
54
- super().__init__()
55
- self.config = config
56
- self.hidden_size = config.hidden_size
57
- self.num_heads = config.num_attention_heads
58
- self.head_dim = self.hidden_size // self.num_heads
59
- self.num_key_value_heads = config.num_key_value_heads
60
- self.num_key_value_groups = self.num_heads // self.num_key_value_heads
61
- self.layer_idx = layer_idx
62
- self.scale = self.head_dim**-0.5
63
- self.q_proj = nn.Linear(
64
- self.hidden_size, self.num_heads * self.head_dim, bias=False
65
- )
66
- self.k_proj = nn.Linear(
67
- self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False
68
- )
69
- self.v_proj = nn.Linear(
70
- self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False
71
- )
72
- self.o_proj = nn.Linear(
73
- self.num_heads * self.head_dim, self.hidden_size, bias=False
74
- )
75
-
76
- self.q_norm = nn.RMSNorm(self.head_dim, eps=config.rms_norm_eps)
77
- self.k_norm = nn.RMSNorm(self.head_dim, eps=config.rms_norm_eps)
78
-
79
- def __call__(
80
- self,
81
- hidden_states: mx.array,
82
- cross_attention_states: Optional[mx.array] = None,
83
- attention_mask: Optional[mx.array] = None,
84
- cache: Optional[KVCache] = None,
85
- ) -> mx.array:
86
-
87
- bsz, q_len, _ = hidden_states.shape
88
- query = (
89
- self.q_proj(hidden_states)
90
- .reshape(bsz, q_len, self.num_heads, self.head_dim)
91
- .transpose(0, 2, 1, 3)
92
- )
93
- query_states = self.q_norm(query)
94
-
95
- if cross_attention_states is not None:
96
- key_states = (
97
- self.k_proj(cross_attention_states)
98
- .reshape(bsz, -1, self.num_key_value_heads, self.head_dim)
99
- .transpose(0, 2, 1, 3)
100
- )
101
- value_states = (
102
- self.v_proj(cross_attention_states)
103
- .reshape(bsz, -1, self.num_key_value_heads, self.head_dim)
104
- .transpose(0, 2, 1, 3)
105
- )
106
- key_states = self.k_norm(key_states)
107
- elif cache is not None and cache.offset > 0:
108
- key_states, value_states = cache.fetch()
109
- else:
110
- key_states, value_states = mx.split(query, 2, axis=1)
111
- key_states = self.k_norm(key_states)
112
-
113
- attn_output = scaled_dot_product_attention(
114
- query_states,
115
- key_states,
116
- value_states,
117
- cache,
118
- scale=self.scale,
119
- mask=attention_mask, # add a dim for batch processing
120
- )
121
- attn_output = attn_output.transpose(0, 2, 1, 3).reshape(
122
- bsz, q_len, self.hidden_size
123
- )
124
- return self.o_proj(attn_output)
125
-
126
-
127
- class MllamaTextSelfAttention(nn.Module):
128
- def __init__(self, config: TextConfig, layer_idx: int):
129
- super().__init__()
130
- self.config = config
131
- self.hidden_size = config.hidden_size
132
- self.num_heads = config.num_attention_heads
133
- self.head_dim = self.hidden_size // self.num_heads
134
- self.num_key_value_heads = config.num_key_value_heads
135
- self.num_key_value_groups = self.num_heads // self.num_key_value_heads
136
- self.scale = self.head_dim**-0.5
137
- self.layer_idx = layer_idx
138
-
139
- self.q_proj = nn.Linear(
140
- self.hidden_size, self.num_heads * self.head_dim, bias=False
141
- )
142
- self.k_proj = nn.Linear(
143
- self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False
144
- )
145
- self.v_proj = nn.Linear(
146
- self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False
147
- )
148
- self.o_proj = nn.Linear(
149
- self.num_heads * self.head_dim, self.hidden_size, bias=False
150
- )
151
-
152
- self.rope = nn.RoPE(
153
- self.head_dim,
154
- traditional=config.rope_traditional,
155
- base=config.rope_theta,
156
- scale=1,
157
- )
158
-
159
- def __call__(
160
- self,
161
- x: mx.array,
162
- mask: Optional[mx.array] = None,
163
- cache: Optional[KVCache] = None,
164
- ) -> mx.array:
165
- bsz, q_len, _ = x.shape
166
- query_states = (
167
- self.q_proj(x).reshape(bsz, q_len, self.num_heads, -1).transpose(0, 2, 1, 3)
168
- )
169
- key_states = (
170
- self.k_proj(x)
171
- .reshape(bsz, q_len, self.num_key_value_heads, -1)
172
- .transpose(0, 2, 1, 3)
173
- )
174
- value_states = (
175
- self.v_proj(x)
176
- .reshape(bsz, q_len, self.num_key_value_heads, -1)
177
- .transpose(0, 2, 1, 3)
178
- )
179
-
180
- if cache is not None:
181
- query_states = self.rope(query_states, offset=cache.offset)
182
- key_states = self.rope(key_states, offset=cache.offset)
183
- key_states, value_states = cache.update_and_fetch(key_states, value_states)
184
- else:
185
- query_states = self.rope(query_states)
186
- key_states = self.rope(key_states)
187
-
188
- attn_output = scaled_dot_product_attention(
189
- query_states, key_states, value_states, cache, scale=self.scale, mask=mask
190
- )
191
- attn_output = attn_output.transpose(0, 2, 1, 3).reshape(
192
- bsz, q_len, self.hidden_size
193
- )
194
- return self.o_proj(attn_output)
195
-
196
-
197
- class MllamaTextMLP(nn.Module):
198
- def __init__(self, config: TextConfig):
199
- super().__init__()
200
- self.gate_proj = nn.Linear(
201
- config.hidden_size, config.intermediate_size, bias=False
202
- )
203
- self.up_proj = nn.Linear(
204
- config.hidden_size, config.intermediate_size, bias=False
205
- )
206
- self.down_proj = nn.Linear(
207
- config.intermediate_size, config.hidden_size, bias=False
208
- )
209
- self.act_fn = lambda x: x * mx.sigmoid(x)
210
-
211
- def __call__(self, x):
212
- return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
213
-
214
-
215
- class MllamaSelfAttentionDecoderLayer(nn.Module):
216
- def __init__(self, config: TextConfig, layer_idx: int):
217
- super().__init__()
218
- self.hidden_size = config.hidden_size
219
- self.self_attn = MllamaTextSelfAttention(config, layer_idx=layer_idx)
220
- self.mlp = MllamaTextMLP(config)
221
- self.input_layernorm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
222
- self.post_attention_layernorm = nn.RMSNorm(
223
- config.hidden_size, eps=config.rms_norm_eps
224
- )
225
-
226
- def __call__(
227
- self,
228
- hidden_states: mx.array,
229
- mask: Optional[mx.array] = None,
230
- cache: Optional[KVCache] = None,
231
- ) -> mx.array:
232
- residual = hidden_states
233
- hidden_states = self.input_layernorm(hidden_states)
234
- hidden_states = self.self_attn(
235
- x=hidden_states,
236
- mask=mask,
237
- cache=cache,
238
- )
239
- hidden_states = residual + hidden_states
240
-
241
- residual = hidden_states
242
- hidden_states = self.post_attention_layernorm(hidden_states)
243
- hidden_states = self.mlp(hidden_states)
244
- hidden_states = residual + hidden_states
245
-
246
- return hidden_states
247
-
248
-
249
- class MllamaCrossAttentionDecoderLayer(nn.Module):
250
- def __init__(self, config: TextConfig, layer_idx: int):
251
- super().__init__()
252
- self.hidden_size = config.hidden_size
253
- self.cross_attn = MllamaTextCrossAttention(config, layer_idx=layer_idx)
254
- self.mlp = MllamaTextMLP(config)
255
- self.input_layernorm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
256
- self.post_attention_layernorm = nn.RMSNorm(
257
- config.hidden_size, eps=config.rms_norm_eps
258
- )
259
- self.cross_attn_attn_gate = mx.zeros(1)
260
- self.cross_attn_mlp_gate = mx.zeros(1)
261
-
262
- def __call__(
263
- self,
264
- hidden_states: mx.array,
265
- cross_attention_states: mx.array,
266
- attention_mask: Optional[mx.array] = None,
267
- full_text_row_masked_out_mask: Optional[mx.array] = None,
268
- cache: Optional[KVCache] = None,
269
- ) -> mx.array:
270
- residual = hidden_states
271
- hidden_states = self.input_layernorm(hidden_states)
272
- hidden_states = self.cross_attn(
273
- hidden_states=hidden_states,
274
- cross_attention_states=cross_attention_states,
275
- attention_mask=attention_mask,
276
- cache=cache,
277
- )
278
- hidden_states = residual + mx.tanh(self.cross_attn_attn_gate) * hidden_states
279
-
280
- residual = hidden_states
281
- hidden_states = self.post_attention_layernorm(hidden_states)
282
- hidden_states = self.mlp(hidden_states)
283
- if full_text_row_masked_out_mask is not None:
284
- hidden_states = full_text_row_masked_out_mask[:, 0] * hidden_states
285
- hidden_states = residual + mx.tanh(self.cross_attn_mlp_gate) * hidden_states
286
-
287
- return hidden_states
288
-
289
-
290
- class MllamaTextModel(nn.Module):
291
- def __init__(self, config: TextConfig):
292
- super().__init__()
293
- self.config = config
294
- self.vocab_size = config.vocab_size
295
- self.hidden_size = config.hidden_size
296
-
297
- self.embed_tokens = nn.Embedding(config.vocab_size + 8, config.hidden_size)
298
- self.layers = [
299
- (
300
- MllamaCrossAttentionDecoderLayer(config, layer_idx)
301
- if layer_idx in config.cross_attention_layers
302
- else MllamaSelfAttentionDecoderLayer(config, layer_idx)
303
- )
304
- for layer_idx in range(config.num_hidden_layers)
305
- ]
306
- self.norm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
307
-
308
- def __call__(
309
- self,
310
- input_ids: Optional[mx.array] = None,
311
- mask: Optional[mx.array] = None,
312
- position_ids: Optional[mx.array] = None,
313
- cross_attention_states: Optional[mx.array] = None,
314
- cross_attention_mask: Optional[mx.array] = None,
315
- full_text_row_masked_out_mask: Optional[mx.array] = None,
316
- inputs_embeds: Optional[mx.array] = None,
317
- cache: Optional[KVCache] = None,
318
- ) -> mx.array:
319
- if input_ids is not None and inputs_embeds is not None:
320
- raise ValueError(
321
- "You cannot specify both input_ids and inputs_embeds at the same time"
322
- )
323
- elif input_ids is not None:
324
- batch_size, seq_length = input_ids.shape
325
- inputs_embeds = self.embed_tokens(input_ids)
326
- elif inputs_embeds is not None:
327
- batch_size, seq_length, _ = inputs_embeds.shape
328
- else:
329
- raise ValueError("You have to specify either input_ids or inputs_embeds")
330
-
331
- if position_ids is None:
332
- position_ids = mx.expand_dims(mx.arange(seq_length), 0)
333
- position_ids = mx.repeat(position_ids, batch_size, axis=0)
334
-
335
- hidden_states = inputs_embeds
336
-
337
- if cache is None:
338
- cache = [None] * len(self.layers)
339
-
340
- if mask is None:
341
- mask = create_attention_mask(hidden_states, cache)
342
-
343
- for idx, (decoder_layer, c) in enumerate(zip(self.layers, cache)):
344
- if idx in self.config.cross_attention_layers:
345
- layer_outputs = decoder_layer(
346
- hidden_states,
347
- cross_attention_states=cross_attention_states,
348
- attention_mask=cross_attention_mask,
349
- full_text_row_masked_out_mask=full_text_row_masked_out_mask,
350
- cache=c,
351
- )
352
- else:
353
- layer_outputs = decoder_layer(
354
- hidden_states,
355
- mask=mask,
356
- cache=c,
357
- )
358
- hidden_states = layer_outputs
359
-
360
- hidden_states = self.norm(hidden_states)
361
-
362
- return hidden_states
363
-
364
-
365
- class LanguageModel(nn.Module):
366
- def __init__(self, config: TextConfig):
367
- super().__init__()
368
- self.config = config
369
- self.model = MllamaTextModel(config)
370
- self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
371
-
372
- def __call__(
373
- self,
374
- input_ids: Optional[mx.array] = None,
375
- mask: Optional[mx.array] = None,
376
- cross_attention_states: Optional[mx.array] = None,
377
- cross_attention_mask: Optional[mx.array] = None,
378
- full_text_row_masked_out_mask: Optional[mx.array] = None,
379
- inputs_embeds: Optional[mx.array] = None,
380
- cache: Optional[KVCache] = None,
381
- ) -> Tuple[mx.array, Optional[mx.array]]:
382
-
383
- hidden_states = self.model(
384
- input_ids=input_ids,
385
- mask=mask,
386
- cross_attention_states=cross_attention_states,
387
- cross_attention_mask=cross_attention_mask,
388
- full_text_row_masked_out_mask=full_text_row_masked_out_mask,
389
- inputs_embeds=inputs_embeds,
390
- cache=cache,
391
- )
392
-
393
- logits = self.lm_head(hidden_states)
394
-
395
- return LanguageModelOutput(
396
- logits=logits, cross_attention_states=cross_attention_states
397
- )
398
-
399
- @staticmethod
400
- def sanitize(weights):
401
- # Remove unused precomputed rotary freqs
402
- return {
403
- k: v for k, v in weights.items() if "self_attn.rotary_emb.inv_freq" not in k
404
- }
405
-
406
- @property
407
- def layers(self):
408
- return self.model.layers
409
-
410
- @property
411
- def head_dim(self):
412
- return self.config.hidden_size // self.config.num_attention_heads
413
-
414
- @property
415
- def n_kv_heads(self):
416
- return self.config.num_key_value_heads
@@ -1,172 +0,0 @@
1
- import glob
2
- import inspect
3
- import json
4
- from dataclasses import dataclass
5
- from pathlib import Path
6
- from typing import List, Optional, Tuple
7
-
8
- import mlx.core as mx
9
- import mlx.nn as nn
10
- from huggingface_hub import snapshot_download
11
-
12
- from ..cache import KVCache
13
- from .language import LanguageModel, TextConfig
14
- from .vision import VisionConfig, VisionModel
15
-
16
-
17
- @dataclass
18
- class ModelConfig:
19
- text_config: TextConfig
20
- vision_config: VisionConfig
21
- model_type: str
22
- ignore_index: int = -100
23
- image_token_index: int = 128256
24
- vision_feature_select_strategy: str = "default"
25
- vision_feature_layer: int = -2
26
- vocab_size: int = 32000
27
- eos_token_id: Optional[List[int]] = None
28
-
29
- @classmethod
30
- def from_dict(cls, params):
31
- return cls(
32
- **{
33
- k: v
34
- for k, v in params.items()
35
- if k in inspect.signature(cls).parameters
36
- }
37
- )
38
-
39
-
40
- class Model(nn.Module):
41
- def __init__(self, config: ModelConfig):
42
- super().__init__()
43
- self.config = config
44
- self.vision_tower = VisionModel(config.vision_config)
45
- self.language_model = LanguageModel(config.text_config)
46
- self.multi_modal_projector = nn.Linear(
47
- config.vision_config.vision_output_dim,
48
- config.text_config.hidden_size,
49
- bias=True,
50
- )
51
-
52
- @property
53
- def layers(self):
54
- return self.language_model.model.layers
55
-
56
- def __call__(
57
- self,
58
- input_ids: mx.array,
59
- pixel_values: mx.array,
60
- mask: mx.array,
61
- cache: Optional[KVCache] = None,
62
- **kwargs,
63
- ) -> Tuple[mx.array, Optional[mx.array]]:
64
-
65
- aspect_ratio_ids = kwargs.pop("aspect_ratio_ids", None)
66
- aspect_ratio_mask = kwargs.pop("aspect_ratio_mask", None)
67
- cross_attention_mask = kwargs.pop("cross_attention_mask", None)
68
-
69
- inputs_embeds = None
70
-
71
- # Process vision input if provided
72
- if pixel_values is not None:
73
- if aspect_ratio_ids is None:
74
- raise ValueError(
75
- "`aspect_ratio_ids` must be provided if `pixel_values` is provided"
76
- )
77
-
78
- vision_outputs = self.vision_tower(
79
- pixel_values=pixel_values,
80
- aspect_ratio_ids=aspect_ratio_ids,
81
- aspect_ratio_mask=aspect_ratio_mask,
82
- )
83
- cross_attention_states = vision_outputs[0]
84
-
85
- cross_attention_states = self.multi_modal_projector(
86
- cross_attention_states
87
- ).reshape(
88
- -1,
89
- cross_attention_states.shape[-2],
90
- self.config.text_config.hidden_size,
91
- )
92
-
93
- else:
94
- cross_attention_states = None
95
-
96
- # Prepare cross attention mask
97
- if cross_attention_mask is not None:
98
- cross_attention_mask, full_text_row_masked_out_mask = (
99
- self._prepare_cross_attention_mask(
100
- cross_attention_mask,
101
- num_vision_tokens=(
102
- self.config.vision_config.image_size
103
- // self.config.vision_config.patch_size
104
- )
105
- ** 2
106
- + 1,
107
- )
108
- )
109
- else:
110
- full_text_row_masked_out_mask = None
111
-
112
- if cross_attention_mask is not None:
113
- cache_position = mx.arange(input_ids.shape[1], dtype=mx.int32)
114
- cross_attention_mask = cross_attention_mask[:, :, cache_position]
115
- full_text_row_masked_out_mask = full_text_row_masked_out_mask[
116
- :, :, cache_position
117
- ]
118
-
119
- # Process language input
120
- outputs = self.language_model(
121
- input_ids=input_ids,
122
- mask=mask,
123
- cross_attention_states=cross_attention_states,
124
- cross_attention_mask=cross_attention_mask,
125
- full_text_row_masked_out_mask=full_text_row_masked_out_mask,
126
- inputs_embeds=inputs_embeds,
127
- cache=cache,
128
- )
129
-
130
- return outputs
131
-
132
- def _prepare_cross_attention_mask(
133
- self,
134
- cross_attention_mask: mx.array,
135
- num_vision_tokens: int,
136
- ) -> Tuple[mx.array, mx.array]:
137
- batch_size, text_total_length, *_ = cross_attention_mask.shape
138
- cross_attention_mask = mx.repeat(
139
- cross_attention_mask, num_vision_tokens, axis=3
140
- )
141
- cross_attention_mask = cross_attention_mask.reshape(
142
- batch_size, text_total_length, -1
143
- )
144
- cross_attention_mask = mx.expand_dims(cross_attention_mask, 1)
145
-
146
- # Invert the mask
147
- inverted_cross_attn_mask = 1.0 - cross_attention_mask
148
- fill_array = mx.array(-1e9)
149
- fill_array = mx.broadcast_to(fill_array, inverted_cross_attn_mask.shape)
150
- cross_attention_mask = mx.where(
151
- inverted_cross_attn_mask,
152
- fill_array,
153
- cross_attention_mask,
154
- )
155
-
156
- # Apply full-row bias
157
- full_text_row_masked_out_mask = mx.any(
158
- cross_attention_mask != -1e9,
159
- axis=-1,
160
- keepdims=True,
161
- )
162
- cross_attention_mask *= full_text_row_masked_out_mask
163
-
164
- return cross_attention_mask, full_text_row_masked_out_mask
165
-
166
- def sanitize(self, weights):
167
- def transform_key(key):
168
- if "vision_tower" not in key:
169
- key = key.replace("vision_model", "vision_tower")
170
- return key
171
-
172
- return {transform_key(k): v for k, v in weights.items()}