nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc8__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (196) hide show
  1. nexaai/_stub.cpython-310-darwin.so +0 -0
  2. nexaai/_version.py +1 -1
  3. nexaai/binds/libnexa_bridge.dylib +0 -0
  4. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/METADATA +1 -1
  5. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/RECORD +7 -196
  6. nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
  7. nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
  8. nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
  9. nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
  10. nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
  11. nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
  12. nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
  13. nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
  14. nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
  15. nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
  16. nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
  17. nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
  18. nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
  19. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
  20. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
  21. nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
  22. nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
  23. nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
  24. nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
  25. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
  26. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
  27. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
  28. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
  29. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
  30. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
  31. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
  32. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
  33. nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
  34. nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
  35. nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
  36. nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
  37. nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
  38. nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
  39. nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
  40. nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
  41. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
  42. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
  43. nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
  44. nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
  45. nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
  46. nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
  47. nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
  48. nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
  49. nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
  50. nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
  51. nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
  52. nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
  53. nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
  54. nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
  55. nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
  56. nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
  57. nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
  58. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
  59. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
  60. nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
  61. nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
  62. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
  63. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
  64. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
  65. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
  66. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
  67. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
  68. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
  69. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
  70. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
  71. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
  72. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
  73. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
  74. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
  75. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
  76. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
  77. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
  78. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
  79. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
  80. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
  81. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
  82. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
  83. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
  84. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
  85. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
  86. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
  87. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
  88. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
  89. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
  90. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
  91. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
  92. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
  93. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
  94. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
  95. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
  96. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
  97. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
  98. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
  99. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
  100. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
  101. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
  102. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
  103. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
  104. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
  105. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
  106. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
  107. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
  108. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
  109. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
  110. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
  111. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
  112. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
  113. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
  114. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
  115. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
  116. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
  117. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
  118. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
  119. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
  120. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
  121. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
  122. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
  123. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
  124. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
  125. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
  126. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
  127. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
  128. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
  129. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
  130. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
  131. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
  132. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
  133. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
  134. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
  135. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
  136. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
  137. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
  138. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
  139. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
  140. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
  141. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
  142. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
  143. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
  144. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
  145. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
  146. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
  147. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
  148. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
  149. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
  150. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
  151. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
  152. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
  153. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
  154. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
  155. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
  156. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
  157. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
  158. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
  159. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
  160. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
  161. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
  162. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
  163. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
  164. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  165. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
  166. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
  167. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
  168. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
  169. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
  170. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
  171. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
  172. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
  173. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  174. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
  175. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
  176. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
  177. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
  178. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
  179. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
  180. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
  181. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
  182. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
  183. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
  184. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
  185. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
  186. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
  187. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
  188. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
  189. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
  190. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
  191. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
  192. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
  193. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
  194. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
  195. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/WHEEL +0 -0
  196. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/top_level.txt +0 -0
@@ -1,282 +0,0 @@
1
- import inspect
2
- from dataclasses import dataclass
3
- from typing import Optional, Tuple
4
-
5
- import mlx.core as mx
6
- import mlx.nn as nn
7
-
8
- from ..base import (
9
- LanguageModelOutput,
10
- create_attention_mask,
11
- scaled_dot_product_attention,
12
- )
13
- from ..cache import KVCache
14
-
15
-
16
- @dataclass
17
- class TextConfig:
18
- model_type: str
19
- hidden_size: int
20
- num_hidden_layers: int
21
- intermediate_size: int
22
- num_attention_heads: int
23
- num_key_value_heads: int
24
- vocab_size: int
25
- head_dim: int = 256
26
- rms_norm_eps: float = 1e-6
27
- rope_theta: float = 10000
28
- rope_traditional: bool = False
29
- attn_logit_softcapping: Optional[float] = None
30
- final_logit_softcapping: Optional[float] = None
31
- query_pre_attn_scalar: Optional[float] = None
32
- max_position_embeddings: int = 4096
33
-
34
- @classmethod
35
- def from_dict(cls, params):
36
- return cls(
37
- **{
38
- k: v
39
- for k, v in params.items()
40
- if k in inspect.signature(cls).parameters
41
- }
42
- )
43
-
44
-
45
- class RMSNorm(nn.Module):
46
- def __init__(self, dims: int, eps: float = 1e-6):
47
- super().__init__()
48
- self.weight = mx.ones((dims,))
49
- self.eps = eps
50
-
51
- def __call__(self, x):
52
- return mx.fast.rms_norm(x, 1.0 + self.weight, self.eps)
53
-
54
-
55
- class Attention(nn.Module):
56
- def __init__(self, config: TextConfig):
57
- super().__init__()
58
-
59
- dim = config.hidden_size
60
- self.n_heads = n_heads = config.num_attention_heads
61
- self.n_kv_heads = n_kv_heads = config.num_key_value_heads
62
- self.model_type = config.model_type
63
- self.attn_logit_softcapping = config.attn_logit_softcapping
64
- self.repeats = n_heads // n_kv_heads
65
- self.head_dim = head_dim = (
66
- config.hidden_size // n_heads
67
- if self.model_type == "gemma"
68
- else config.head_dim
69
- )
70
- self.scale = (
71
- head_dim**-0.5
72
- if self.model_type == "gemma"
73
- else 1.0 / (config.query_pre_attn_scalar**0.5)
74
- )
75
-
76
- self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=False)
77
- self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
78
- self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=False)
79
- self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=False)
80
-
81
- self.rope = nn.RoPE(
82
- head_dim,
83
- traditional=config.rope_traditional,
84
- base=config.rope_theta,
85
- )
86
-
87
- def __call__(
88
- self,
89
- x: mx.array,
90
- mask: Optional[mx.array] = None,
91
- cache: Optional[KVCache] = None,
92
- ) -> mx.array:
93
- B, L, D = x.shape
94
-
95
- queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
96
-
97
- # Prepare the queries, keys and values for the attention computation
98
- queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
99
- keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
100
- values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
101
-
102
- if cache is not None:
103
- queries = self.rope(queries, offset=cache.offset)
104
- keys = self.rope(keys, offset=cache.offset)
105
- keys, values = cache.update_and_fetch(keys, values)
106
- else:
107
- queries = self.rope(queries)
108
- keys = self.rope(keys)
109
-
110
- if self.model_type == "gemma":
111
- output = scaled_dot_product_attention(
112
- queries, keys, values, cache, scale=self.scale, mask=mask
113
- )
114
- else:
115
- queries = queries * self.scale
116
-
117
- if self.repeats > 1:
118
- queries = queries.reshape(
119
- B, self.n_kv_heads, self.repeats, L, self.head_dim
120
- )
121
- keys = mx.expand_dims(keys, 2)
122
- values = mx.expand_dims(values, 2)
123
-
124
- scores = queries @ keys.swapaxes(-1, -2)
125
- scores = mx.tanh(scores / self.attn_logit_softcapping)
126
- scores *= self.attn_logit_softcapping
127
-
128
- if mask is not None and isinstance(mask, mx.array):
129
- scores = scores + mask
130
- scores = mx.softmax(scores, precise=True, axis=-1)
131
- output = scores @ values
132
- if self.repeats > 1:
133
- output = output.reshape(B, self.n_heads, L, self.head_dim)
134
-
135
- output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
136
- return self.o_proj(output)
137
-
138
-
139
- class MLP(nn.Module):
140
- def __init__(self, dim, hidden_dim, model_type):
141
- super().__init__()
142
- self.gate_proj = nn.Linear(dim, hidden_dim, bias=False)
143
- self.down_proj = nn.Linear(hidden_dim, dim, bias=False)
144
- self.up_proj = nn.Linear(dim, hidden_dim, bias=False)
145
- self.gelu = nn.GELU() if model_type == "gemma" else nn.GELU(approx="precise")
146
-
147
- def __call__(self, x) -> mx.array:
148
- return self.down_proj(self.gelu(self.gate_proj(x)) * self.up_proj(x))
149
-
150
-
151
- class TransformerBlock(nn.Module):
152
- def __init__(self, config: TextConfig):
153
- super().__init__()
154
- self.model_type = config.model_type
155
- self.num_attention_heads = config.num_attention_heads
156
- self.hidden_size = config.hidden_size
157
- self.self_attn = Attention(config)
158
- self.mlp = MLP(config.hidden_size, config.intermediate_size, config.model_type)
159
- self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
160
- self.post_attention_layernorm = RMSNorm(
161
- config.hidden_size, eps=config.rms_norm_eps
162
- )
163
- self.config = config
164
-
165
- if config.model_type == "gemma2":
166
- self.pre_feedforward_layernorm = RMSNorm(
167
- config.hidden_size, eps=config.rms_norm_eps
168
- )
169
- self.post_feedforward_layernorm = RMSNorm(
170
- config.hidden_size, eps=config.rms_norm_eps
171
- )
172
-
173
- def __call__(
174
- self,
175
- x: mx.array,
176
- mask: Optional[mx.array] = None,
177
- cache: Optional[KVCache] = None,
178
- ) -> mx.array:
179
- # Self attention block
180
- r = self.self_attn(self.input_layernorm(x), mask, cache)
181
-
182
- if self.model_type == "gemma":
183
- # Gemma: Post-attention residual connection then MLP
184
- h = x + r
185
- r = self.mlp(self.post_attention_layernorm(h))
186
- out = h + r
187
- else:
188
- # Gemma2: Normalized residual connections with pre/post norms
189
- h = x + self.post_attention_layernorm(r)
190
- r = self.mlp(self.pre_feedforward_layernorm(h))
191
- out = h + self.post_feedforward_layernorm(r)
192
- return out
193
-
194
-
195
- class GemmaModel(nn.Module):
196
- def __init__(self, config: TextConfig):
197
- super().__init__()
198
- self.config = config
199
- self.vocab_size = config.vocab_size
200
- self.num_hidden_layers = config.num_hidden_layers
201
- assert self.vocab_size > 0
202
- self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
203
- self.layers = [
204
- TransformerBlock(config=config) for _ in range(config.num_hidden_layers)
205
- ]
206
- self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
207
-
208
- def __call__(
209
- self,
210
- inputs: mx.array,
211
- inputs_embeds: Optional[mx.array] = None,
212
- mask: Optional[mx.array] = None,
213
- cache=None,
214
- ):
215
- # for passing merged input embeddings
216
- if inputs_embeds is None:
217
- h = self.embed_tokens(inputs)
218
- else:
219
- h = inputs_embeds
220
-
221
- h *= self.config.hidden_size**0.5
222
-
223
- if cache is None:
224
- cache = [None] * len(self.layers)
225
-
226
- if mask is None or cache[0].offset > 0:
227
- mask = create_attention_mask(h, cache, return_array=True)
228
-
229
- for layer, c in zip(self.layers, cache):
230
- h = layer(h, mask, c)
231
-
232
- return self.norm(h)
233
-
234
-
235
- class LanguageModel(nn.Module):
236
- def __init__(self, config: TextConfig):
237
- super().__init__()
238
- self.config = config
239
- self.final_logit_softcapping = config.final_logit_softcapping
240
- self.model_type = config.model_type
241
- self.model = GemmaModel(config)
242
-
243
- if self.model_type not in ["gemma", "gemma2"]:
244
- raise ValueError(
245
- f"Model type {self.model_type} not supported. Currently only 'gemma' is supported"
246
- )
247
-
248
- def __call__(
249
- self,
250
- inputs: mx.array,
251
- inputs_embeds: Optional[mx.array] = None,
252
- mask: Optional[mx.array] = None,
253
- cache=None,
254
- ):
255
- out = self.model(inputs, mask=mask, cache=cache, inputs_embeds=inputs_embeds)
256
- out = self.model.embed_tokens.as_linear(out)
257
-
258
- if self.model_type == "gemma2":
259
- out = mx.tanh(out / self.final_logit_softcapping)
260
- out = out * self.final_logit_softcapping
261
- return LanguageModelOutput(logits=out)
262
-
263
- def sanitize(self, weights):
264
- return {
265
- k: v for k, v in weights.items() if "self_attn.rotary_emb.inv_freq" not in k
266
- }
267
-
268
- @property
269
- def layers(self):
270
- return self.model.layers
271
-
272
- @property
273
- def head_dim(self):
274
- return (
275
- self.config.hidden_size // self.config.num_attention_heads
276
- if self.model_type == "gemma"
277
- else self.config.head_dim
278
- )
279
-
280
- @property
281
- def n_kv_heads(self):
282
- return self.config.num_key_value_heads
@@ -1,160 +0,0 @@
1
- import glob
2
- import inspect
3
- import json
4
- from dataclasses import dataclass
5
- from pathlib import Path
6
- from typing import List, Optional
7
-
8
- import mlx.core as mx
9
- import mlx.nn as nn
10
- from huggingface_hub import snapshot_download
11
-
12
- from .language import LanguageModel, TextConfig
13
- from .vision import VisionConfig, VisionModel
14
-
15
-
16
- @dataclass
17
- class ModelConfig:
18
- text_config: TextConfig
19
- vision_config: VisionConfig
20
- model_type: str
21
- vocab_size: int = 257152
22
- ignore_index: int = -100
23
- image_token_index: int = 257152
24
- hidden_size: int = 2048
25
- pad_token_id: int = 0
26
- eos_token_id: Optional[List[int]] = None
27
-
28
- @classmethod
29
- def from_dict(cls, params):
30
- return cls(
31
- **{
32
- k: v
33
- for k, v in params.items()
34
- if k in inspect.signature(cls).parameters
35
- }
36
- )
37
-
38
-
39
- class PaliGemmaMultiModalProjector(nn.Module):
40
- def __init__(self, config: ModelConfig):
41
- super().__init__()
42
- self.linear = nn.Linear(
43
- config.vision_config.hidden_size,
44
- config.vision_config.projection_dim,
45
- bias=True,
46
- )
47
-
48
- def __call__(self, x: mx.array) -> mx.array:
49
- output = self.linear(x)
50
- return output
51
-
52
-
53
- class Model(nn.Module):
54
- def __init__(self, config: ModelConfig):
55
- super().__init__()
56
- self.model_type = config.model_type
57
- self.config = config
58
-
59
- self.vision_tower = VisionModel(config.vision_config)
60
- self.language_model = LanguageModel(config.text_config)
61
- self.multi_modal_projector = PaliGemmaMultiModalProjector(config)
62
-
63
- def get_input_embeddings(
64
- self,
65
- input_ids: Optional[mx.array] = None,
66
- pixel_values: Optional[mx.array] = None,
67
- mask: Optional[mx.array] = None,
68
- ):
69
- if pixel_values is None:
70
- return self.language_model.model.embed_tokens(input_ids), None
71
-
72
- inputs_embeds = self.language_model.model.embed_tokens(input_ids)
73
-
74
- hidden_state, _, _ = self.vision_tower(
75
- pixel_values.transpose(0, 2, 3, 1).astype(inputs_embeds.dtype),
76
- output_hidden_states=True,
77
- )
78
-
79
- image_features = hidden_state[None, :].astype(pixel_values.dtype)
80
- image_features = self.multi_modal_projector(image_features)
81
-
82
- final_inputs_embeds, final_attention_mask_4d = (
83
- self._prepare_inputs_for_multimodal(
84
- image_features, inputs_embeds, input_ids, mask
85
- )
86
- )
87
- return final_inputs_embeds, final_attention_mask_4d
88
-
89
- def _prepare_inputs_for_multimodal(
90
- self, image_features, inputs_embeds, input_ids, attention_mask
91
- ):
92
- _, _, embed_dim = image_features.shape
93
-
94
- batch_size, sequence_length = input_ids.shape
95
- scaled_image_features = image_features / (self.config.hidden_size**0.5)
96
- final_embedding = mx.zeros((batch_size, sequence_length, embed_dim))
97
-
98
- text_mask = (input_ids != self.config.image_token_index) & (
99
- input_ids != self.config.pad_token_id
100
- )
101
- image_mask = input_ids == self.config.image_token_index
102
- pad_mask = input_ids == self.config.pad_token_id
103
-
104
- # expand masks to match embedding dimension
105
- text_mask_expanded = mx.expand_dims(text_mask, -1)
106
- text_mask_expanded = mx.repeat(text_mask_expanded, embed_dim, axis=-1)
107
- pad_mask_expanded = mx.expand_dims(pad_mask, -1)
108
- pad_mask_expanded = mx.repeat(pad_mask_expanded, embed_dim, axis=-1)
109
-
110
- # insert padding and text token embeddings
111
- final_embedding = mx.where(text_mask_expanded, inputs_embeds, final_embedding)
112
- final_embedding = mx.where(
113
- pad_mask_expanded, mx.zeros_like(final_embedding), final_embedding
114
- )
115
- pad_size = final_embedding.shape[1] - scaled_image_features.shape[1]
116
- scaled_image_features = mx.pad(
117
- scaled_image_features, ((0, 0), (0, pad_size), (0, 0))
118
- )
119
- # insert image embeddings - the image mask is always less or equal to the sentence in length
120
- image_mask_expanded = mx.expand_dims(image_mask, -1)
121
- image_mask_expanded = mx.repeat(image_mask_expanded, embed_dim, axis=-1)
122
- final_embedding = mx.where(
123
- image_mask_expanded, scaled_image_features, final_embedding
124
- )
125
-
126
- final_embedding = mx.where(
127
- pad_mask_expanded, mx.zeros_like(final_embedding), final_embedding
128
- )
129
-
130
- attention_mask_expanded_1 = mx.expand_dims(attention_mask, 1)
131
- attention_mask_expanded_2 = mx.expand_dims(attention_mask, 2)
132
- final_attention_mask_4d = attention_mask_expanded_1 * attention_mask_expanded_2
133
- final_attention_mask_4d = final_attention_mask_4d
134
- final_attention_mask_4d = mx.expand_dims(final_attention_mask_4d, 1)
135
- final_embedding = mx.array(final_embedding)
136
- return final_embedding, final_attention_mask_4d
137
-
138
- @property
139
- def layers(self):
140
- return self.language_model.model.layers
141
-
142
- def __call__(
143
- self,
144
- input_ids: mx.array,
145
- pixel_values: mx.array,
146
- mask: Optional[mx.array] = None,
147
- cache: Optional[mx.array] = None,
148
- **kwargs,
149
- ):
150
- input_embeddings, final_attention_mask_4d = self.get_input_embeddings(
151
- input_ids, pixel_values, mask
152
- )
153
-
154
- logits = self.language_model(
155
- inputs=input_ids,
156
- cache=cache,
157
- inputs_embeds=input_embeddings,
158
- mask=final_attention_mask_4d,
159
- )
160
- return logits
@@ -1,242 +0,0 @@
1
- import inspect
2
- from dataclasses import dataclass
3
- from typing import Optional
4
-
5
- import mlx.core as mx
6
- import mlx.nn as nn
7
- import numpy as np
8
-
9
-
10
- @dataclass
11
- class VisionConfig:
12
- model_type: str
13
- num_hidden_layers: int
14
- hidden_size: int
15
- intermediate_size: int
16
- num_attention_heads: int
17
- patch_size: int
18
- projection_dim: int
19
- image_size: int = 224
20
- num_channels: int = 3
21
- layer_norm_eps: float = 1e-6
22
-
23
- @classmethod
24
- def from_dict(cls, params):
25
- return cls(
26
- **{
27
- k: v
28
- for k, v in params.items()
29
- if k in inspect.signature(cls).parameters
30
- }
31
- )
32
-
33
-
34
- def check_array_shape(arr):
35
- shape = arr.shape
36
-
37
- # Check if the shape has 4 dimensions
38
- if len(shape) != 4:
39
- return False
40
-
41
- out_channels, kH, KW, _ = shape
42
-
43
- # Check if out_channels is the largest, and kH and KW are the same
44
- if (out_channels >= kH) and (out_channels >= KW) and (kH == KW):
45
- return True
46
- else:
47
- return False
48
-
49
-
50
- class Attention(nn.Module):
51
- def __init__(
52
- self,
53
- dims: int,
54
- num_heads: int,
55
- query_input_dims: Optional[int] = None,
56
- key_input_dims: Optional[int] = None,
57
- value_input_dims: Optional[int] = None,
58
- value_dims: Optional[int] = None,
59
- value_output_dims: Optional[int] = None,
60
- bias: bool = True,
61
- ):
62
- super().__init__()
63
-
64
- if (dims % num_heads) != 0:
65
- raise ValueError(
66
- "The input feature dimensions should be divisible by the "
67
- f"number of heads ({dims} % {num_heads}) != 0"
68
- )
69
-
70
- query_input_dims = query_input_dims or dims
71
- key_input_dims = key_input_dims or dims
72
- value_input_dims = value_input_dims or key_input_dims
73
- value_dims = value_dims or dims
74
- value_output_dims = value_output_dims or dims
75
-
76
- self.num_heads = num_heads
77
- head_dim = dims // num_heads
78
- self.scale = head_dim**-0.5
79
-
80
- self.q_proj = nn.Linear(query_input_dims, dims, bias=bias)
81
- self.k_proj = nn.Linear(key_input_dims, dims, bias=bias)
82
- self.v_proj = nn.Linear(value_input_dims, value_dims, bias=bias)
83
- self.out_proj = nn.Linear(value_dims, value_output_dims, bias=bias)
84
-
85
- def __call__(self, x, mask=None):
86
- queries = self.q_proj(x)
87
- keys = self.k_proj(x)
88
- values = self.v_proj(x)
89
-
90
- num_heads = self.num_heads
91
- B, L, D = queries.shape
92
- _, S, _ = keys.shape
93
- queries = queries.reshape(B, L, num_heads, -1).transpose(0, 2, 1, 3)
94
- keys = keys.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3)
95
- values = values.reshape(B, S, num_heads, -1).transpose(0, 2, 1, 3)
96
-
97
- output = mx.fast.scaled_dot_product_attention(
98
- queries, keys, values, scale=self.scale, mask=mask
99
- )
100
- output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
101
- return self.out_proj(output)
102
-
103
-
104
- class MLP(nn.Module):
105
- def __init__(self, config: VisionConfig):
106
- super().__init__()
107
- self.activation_fn = nn.GELU(approx="precise")
108
- self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size, bias=True)
109
- self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size, bias=True)
110
-
111
- def __call__(self, x: mx.array) -> mx.array:
112
- x = self.fc1(x)
113
- x = self.activation_fn(x)
114
- x = self.fc2(x)
115
- return x
116
-
117
-
118
- class EncoderLayer(nn.Module):
119
- def __init__(self, config: VisionConfig):
120
- super().__init__()
121
- self.embed_dim = config.hidden_size
122
- self.self_attn = Attention(
123
- config.hidden_size, config.num_attention_heads, bias=True
124
- )
125
- self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
126
- self.mlp = MLP(config)
127
- self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
128
-
129
- def __call__(self, x: mx.array, mask: Optional[mx.array] = None) -> mx.array:
130
- r = self.self_attn(self.layer_norm1(x), mask)
131
- h = x + r
132
- r = self.mlp(self.layer_norm2(h))
133
- return h + r
134
-
135
-
136
- class Encoder(nn.Module):
137
- def __init__(self, config: VisionConfig):
138
- super().__init__()
139
- self.layers = [EncoderLayer(config) for _ in range(config.num_hidden_layers)]
140
-
141
- def __call__(
142
- self,
143
- x: mx.array,
144
- output_hidden_states: Optional[bool] = None,
145
- mask: Optional[mx.array] = None,
146
- ) -> mx.array:
147
- encoder_states = (x,) if output_hidden_states else None
148
- h = x
149
- for l in self.layers:
150
- x = l(x, mask=mask)
151
- if output_hidden_states:
152
- encoder_states = encoder_states + (x,)
153
-
154
- h = x[0]
155
-
156
- return (h, encoder_states)
157
-
158
-
159
- class VisionEmbeddings(nn.Module):
160
- def __init__(self, config: VisionConfig):
161
- super().__init__()
162
- self.config = config
163
- self.embed_dim = config.hidden_size
164
- self.image_size = config.image_size
165
- self.patch_size = config.patch_size
166
-
167
- self.patch_embedding = nn.Conv2d(
168
- in_channels=config.num_channels,
169
- out_channels=self.embed_dim,
170
- kernel_size=self.patch_size,
171
- stride=self.patch_size,
172
- )
173
-
174
- self.num_patches = (self.image_size // self.patch_size) ** 2
175
- self.num_positions = self.num_patches
176
- self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
177
-
178
- def __call__(self, x: mx.array) -> mx.array:
179
- patch_embeddings = self.patch_embedding(x)
180
- patch_embeddings = mx.flatten(patch_embeddings, start_axis=1, end_axis=2)
181
- position_ids = mx.array(np.arange(self.num_positions)[None, :])
182
- embeddings = patch_embeddings
183
- embeddings += self.position_embedding(position_ids)
184
- return embeddings
185
-
186
-
187
- class SigLipVisionModel(nn.Module):
188
- def __init__(self, config: VisionConfig):
189
- super().__init__()
190
- self.embeddings = VisionEmbeddings(config)
191
- self.encoder = Encoder(config)
192
- self.post_layernorm = nn.LayerNorm(config.hidden_size)
193
-
194
- def __call__(
195
- self,
196
- x: mx.array,
197
- output_hidden_states: Optional[bool] = None,
198
- ) -> mx.array:
199
- x = self.embeddings(x)
200
-
201
- encoder_outputs = self.encoder(
202
- x=x, output_hidden_states=output_hidden_states, mask=None
203
- )
204
-
205
- pooler_output = self.post_layernorm(encoder_outputs[0])
206
-
207
- return pooler_output, x, encoder_outputs[-1]
208
-
209
-
210
- class VisionModel(nn.Module):
211
- def __init__(self, config: VisionConfig):
212
- super().__init__()
213
- self.model_type = config.model_type
214
- if self.model_type != "siglip_vision_model":
215
- raise ValueError(f"Unsupported model type: {self.model_type}")
216
-
217
- self.vision_model = SigLipVisionModel(config)
218
-
219
- def __call__(
220
- self, x: mx.array, output_hidden_states: Optional[bool] = None
221
- ) -> mx.array:
222
- return self.vision_model(x, output_hidden_states)
223
-
224
- def sanitize(self, weights):
225
- sanitized_weights = {}
226
- for k, v in weights.items():
227
- if "position_ids" in k:
228
- # Remove unused position_ids
229
- continue
230
- elif "patch_embedding.weight" in k:
231
- # PyTorch conv2d weight tensors have shape:
232
- # [out_channels, in_channels, kH, KW]
233
- # MLX conv2d expects the weight be of shape:
234
- # [out_channels, kH, KW, in_channels]
235
- if check_array_shape(v):
236
- sanitized_weights[k] = v
237
- else:
238
- sanitized_weights[k] = v.transpose(0, 2, 3, 1)
239
- else:
240
- sanitized_weights[k] = v
241
-
242
- return sanitized_weights
@@ -1,8 +0,0 @@
1
- from .phi3_v import (
2
- LanguageModel,
3
- Model,
4
- ModelConfig,
5
- TextConfig,
6
- VisionConfig,
7
- VisionModel,
8
- )