nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc8__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (196) hide show
  1. nexaai/_stub.cpython-310-darwin.so +0 -0
  2. nexaai/_version.py +1 -1
  3. nexaai/binds/libnexa_bridge.dylib +0 -0
  4. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/METADATA +1 -1
  5. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/RECORD +7 -196
  6. nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
  7. nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
  8. nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
  9. nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
  10. nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
  11. nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
  12. nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
  13. nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
  14. nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
  15. nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
  16. nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
  17. nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
  18. nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
  19. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
  20. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
  21. nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
  22. nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
  23. nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
  24. nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
  25. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
  26. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
  27. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
  28. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
  29. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
  30. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
  31. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
  32. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
  33. nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
  34. nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
  35. nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
  36. nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
  37. nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
  38. nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
  39. nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
  40. nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
  41. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
  42. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
  43. nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
  44. nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
  45. nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
  46. nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
  47. nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
  48. nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
  49. nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
  50. nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
  51. nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
  52. nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
  53. nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
  54. nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
  55. nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
  56. nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
  57. nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
  58. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
  59. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
  60. nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
  61. nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
  62. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
  63. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
  64. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
  65. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
  66. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
  67. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
  68. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
  69. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
  70. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
  71. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
  72. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
  73. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
  74. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
  75. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
  76. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
  77. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
  78. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
  79. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
  80. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
  81. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
  82. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
  83. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
  84. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
  85. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
  86. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
  87. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
  88. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
  89. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
  90. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
  91. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
  92. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
  93. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
  94. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
  95. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
  96. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
  97. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
  98. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
  99. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
  100. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
  101. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
  102. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
  103. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
  104. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
  105. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
  106. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
  107. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
  108. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
  109. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
  110. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
  111. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
  112. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
  113. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
  114. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
  115. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
  116. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
  117. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
  118. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
  119. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
  120. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
  121. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
  122. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
  123. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
  124. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
  125. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
  126. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
  127. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
  128. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
  129. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
  130. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
  131. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
  132. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
  133. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
  134. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
  135. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
  136. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
  137. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
  138. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
  139. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
  140. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
  141. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
  142. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
  143. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
  144. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
  145. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
  146. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
  147. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
  148. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
  149. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
  150. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
  151. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
  152. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
  153. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
  154. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
  155. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
  156. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
  157. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
  158. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
  159. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
  160. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
  161. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
  162. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
  163. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
  164. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  165. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
  166. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
  167. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
  168. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
  169. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
  170. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
  171. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
  172. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
  173. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  174. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
  175. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
  176. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
  177. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
  178. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
  179. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
  180. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
  181. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
  182. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
  183. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
  184. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
  185. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
  186. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
  187. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
  188. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
  189. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
  190. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
  191. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
  192. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
  193. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
  194. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
  195. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/WHEEL +0 -0
  196. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/top_level.txt +0 -0
@@ -1,591 +0,0 @@
1
- import inspect
2
- import math
3
- from collections import OrderedDict
4
- from dataclasses import dataclass, field
5
- from typing import List, Optional, Tuple, Union
6
-
7
- import mlx.core as mx
8
- import mlx.nn as nn
9
-
10
-
11
- @dataclass
12
- class VisionConfig:
13
- """Configuration class for Florence2 Vision model (DaViT)."""
14
-
15
- model_type: str = "davit"
16
- in_chans: int = 3
17
- num_classes: int = 1000
18
- depths: List[int] = field(default_factory=lambda: [1, 1, 9, 1])
19
- dim_embed: List[int] = field(default_factory=lambda: [128, 256, 512, 1024])
20
- num_heads: List[int] = field(default_factory=lambda: [4, 8, 16, 32])
21
- num_groups: List[int] = field(default_factory=lambda: [4, 8, 16, 32])
22
- window_size: int = 12
23
- mlp_ratio: float = 4.0
24
- drop_path_rate: float = 0.1
25
- patch_size: List[int] = field(default_factory=lambda: [7, 3, 3, 3])
26
- patch_stride: List[int] = field(default_factory=lambda: [4, 2, 2, 2])
27
- patch_padding: List[int] = field(default_factory=lambda: [3, 1, 1, 1])
28
- patch_prenorm: List[bool] = field(
29
- default_factory=lambda: [False, False, False, False]
30
- )
31
- qkv_bias: bool = True
32
- conv_at_attn: bool = True
33
- conv_at_ffn: bool = True
34
- hidden_size: int = 768
35
- image_size: Tuple[int, int] = (768, 768)
36
-
37
- @classmethod
38
- def from_dict(cls, params):
39
- return cls(
40
- **{
41
- k: v
42
- for k, v in params.items()
43
- if k in inspect.signature(cls).parameters
44
- }
45
- )
46
-
47
-
48
- def check_array_shape(arr):
49
- shape = arr.shape
50
-
51
- # Check if the shape has 4 dimensions
52
- if len(shape) != 4:
53
- return False
54
-
55
- out_channels, kH, KW, _ = shape
56
-
57
- # Check if out_channels is the largest, and kH and KW are the same
58
- if (out_channels >= kH) and (out_channels >= KW) and (kH == KW):
59
- return True
60
- else:
61
- return False
62
-
63
-
64
- class MlpFC(nn.Module):
65
- """MLP FC module"""
66
-
67
- def __init__(
68
- self,
69
- in_features: int,
70
- hidden_features: Optional[int] = None,
71
- out_features: Optional[int] = None,
72
- ):
73
- super().__init__()
74
- self.fc1 = nn.Linear(in_features, hidden_features)
75
- self.fc2 = nn.Linear(hidden_features, out_features)
76
- self.gelu = nn.GELU()
77
-
78
- def __call__(self, x):
79
- return self.fc2(self.gelu(self.fc1(x)))
80
-
81
-
82
- class Mlp(nn.Module):
83
- """MLP module"""
84
-
85
- def __init__(
86
- self,
87
- in_features: int,
88
- hidden_features: Optional[int] = None,
89
- out_features: Optional[int] = None,
90
- ):
91
- super().__init__()
92
- out_features = out_features or in_features
93
- hidden_features = hidden_features or in_features
94
-
95
- self.net = MlpFC(in_features, hidden_features, out_features)
96
-
97
- def __call__(self, x, size):
98
- return self.net(x), size
99
-
100
-
101
- class DepthWiseConv2d(nn.Module):
102
- """Depthwise Convolution"""
103
-
104
- def __init__(
105
- self,
106
- dim_in: int,
107
- kernel_size: int,
108
- padding: int,
109
- stride: int,
110
- bias: bool = True,
111
- ):
112
- super().__init__()
113
-
114
- self.dw = nn.Conv2d(
115
- dim_in,
116
- dim_in,
117
- kernel_size=kernel_size,
118
- padding=padding,
119
- stride=stride,
120
- bias=bias,
121
- groups=dim_in,
122
- )
123
-
124
- def __call__(self, x, size):
125
- B, N, C = x.shape
126
- H, W = size
127
- assert N == H * W
128
-
129
- x = self.dw(x.reshape(B, H, W, C))
130
-
131
- x = x.transpose(0, 3, 1, 2)
132
-
133
- size = (x.shape[-2], x.shape[-1])
134
- x = x.flatten(2).transpose(0, 2, 1)
135
- return x, size
136
-
137
-
138
- class ConvEmbed(nn.Module):
139
- """Image to Patch Embedding"""
140
-
141
- def __init__(
142
- self,
143
- patch_size: int = 7,
144
- in_chans: int = 3,
145
- embed_dim: int = 64,
146
- stride: int = 4,
147
- padding: int = 2,
148
- norm_layer: Optional[nn.Module] = None,
149
- pre_norm: bool = True,
150
- ):
151
- super().__init__()
152
- self.proj = nn.Conv2d(
153
- in_chans, embed_dim, kernel_size=patch_size, stride=stride, padding=padding
154
- )
155
-
156
- if norm_layer and pre_norm:
157
- self.norm = norm_layer(in_chans)
158
- elif norm_layer:
159
- self.norm = norm_layer(embed_dim)
160
- else:
161
- self.norm = None
162
-
163
- self.pre_norm = pre_norm
164
-
165
- def __call__(self, x, size):
166
- H, W = size
167
- if len(x.shape) == 3:
168
-
169
- if self.norm and self.pre_norm:
170
- x = self.norm(x)
171
-
172
- x = x.reshape(-1, H, W, x.shape[-1])
173
- else:
174
- x = x.transpose(0, 2, 3, 1)
175
-
176
- x = self.proj(x)
177
-
178
- B, H, W, C = x.shape
179
-
180
- x = x.reshape(B, H * W, C)
181
-
182
- if self.norm and not self.pre_norm:
183
- x = self.norm(x)
184
-
185
- return x, (H, W)
186
-
187
-
188
- class ChannelAttention(nn.Module):
189
- """Channel Attention module"""
190
-
191
- def __init__(self, dim: int, groups: int = 8, qkv_bias: bool = True):
192
- super().__init__()
193
- self.groups = groups
194
- self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
195
- self.proj = nn.Linear(dim, dim)
196
-
197
- def __call__(self, x, size):
198
- B, N, C = x.shape
199
-
200
- qkv = self.qkv(x).reshape(B, N, 3, self.groups, C // self.groups)
201
- qkv = qkv.transpose(2, 0, 3, 1, 4)
202
- q, k, v = qkv[0], qkv[1], qkv[2] # Each has shape (B, groups, N, C//groups)
203
-
204
- q = q * (float(N) ** -0.5)
205
-
206
- # For multi-head attention, we need to keep the groups dimension
207
- attention = mx.matmul(q.transpose(0, 1, 3, 2), k) # (B, groups, N, N)
208
- attention = mx.softmax(attention, axis=-1)
209
-
210
- x = mx.matmul(attention, v.transpose(0, 1, 3, 2)).transpose(
211
- 0, 1, 3, 2
212
- ) # (B, groups, N, C//groups)
213
- x = x.transpose(0, 2, 1, 3).reshape(B, N, C)
214
- x = self.proj(x)
215
-
216
- return x, size
217
-
218
-
219
- def window_partition(x: mx.array, window_size: int):
220
- """Partition into non-overlapping windows"""
221
- B, H, W, C = x.shape
222
- x = mx.reshape(
223
- x, (B, H // window_size, window_size, W // window_size, window_size, C)
224
- )
225
- windows = mx.reshape(
226
- mx.transpose(x, (0, 1, 3, 2, 4, 5)), (-1, window_size, window_size, C)
227
- )
228
- return windows
229
-
230
-
231
- def window_reverse(
232
- windows: mx.array, batch_size: int, window_size: int, H: int, W: int
233
- ):
234
- """Merge windows back to feature map"""
235
- B = batch_size
236
- x = mx.reshape(
237
- windows, (B, H // window_size, W // window_size, window_size, window_size, -1)
238
- )
239
- x = mx.reshape(mx.transpose(x, (0, 1, 3, 2, 4, 5)), (B, H, W, -1))
240
- return x
241
-
242
-
243
- class WindowAttention(nn.Module):
244
- """Window based multi-head self attention module"""
245
-
246
- def __init__(
247
- self, dim: int, num_heads: int, window_size: int, qkv_bias: bool = True
248
- ):
249
- super().__init__()
250
- self.dim = dim
251
- self.window_size = window_size
252
- self.num_heads = num_heads
253
- head_dim = dim // num_heads
254
- self.scale = float(head_dim) ** -0.5
255
-
256
- self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
257
- self.proj = nn.Linear(dim, dim)
258
-
259
- def __call__(self, x, size):
260
- H, W = size
261
- B, L, C = x.shape
262
-
263
- assert L == H * W, f"input feature has wrong size {L} == {H * W}"
264
-
265
- x = mx.reshape(x, (B, H, W, C))
266
-
267
- # Calculate padding
268
- pad_l = pad_t = 0
269
- pad_r = (self.window_size - W % self.window_size) % self.window_size
270
- pad_b = (self.window_size - H % self.window_size) % self.window_size
271
-
272
- # MLX padding
273
- x = mx.pad(x, [(0, 0), (pad_t, pad_b), (pad_l, pad_r), (0, 0)])
274
-
275
- _, Hp, Wp, _ = x.shape
276
-
277
- # Window partition
278
- x = window_partition(x, self.window_size)
279
- x = mx.reshape(x, (-1, self.window_size * self.window_size, C))
280
-
281
- # Multi-head self attention
282
- B_, N, C = x.shape
283
- qkv = mx.reshape(self.qkv(x), (B_, N, 3, self.num_heads, C // self.num_heads))
284
- qkv = mx.transpose(qkv, (2, 0, 3, 1, 4))
285
- q, k, v = qkv[0], qkv[1], qkv[2]
286
-
287
- # Scaled dot-product attention
288
- q = q * self.scale
289
- attn = mx.matmul(q, mx.transpose(k, (0, 1, 3, 2)))
290
- attn = mx.softmax(attn, axis=-1)
291
-
292
- x = mx.reshape(mx.transpose(mx.matmul(attn, v), (0, 2, 1, 3)), (B_, N, C))
293
- x = self.proj(x)
294
-
295
- # Merge windows
296
- x = mx.reshape(x, (-1, self.window_size, self.window_size, C))
297
- x = window_reverse(x, B, self.window_size, Hp, Wp)
298
-
299
- if pad_r > 0 or pad_b > 0:
300
- x = x[:, :H, :W, :]
301
-
302
- x = mx.reshape(x, (B, H * W, C))
303
- return x, size
304
-
305
-
306
- class PreNorm(nn.Module):
307
- """Pre-normalization module"""
308
-
309
- def __init__(self, norm, fn, drop_path=None):
310
- super().__init__()
311
- self.norm = norm
312
- self.fn = fn
313
- self.drop_path = drop_path
314
-
315
- def __call__(self, x, size):
316
- shortcut = x
317
- if self.norm is not None:
318
- x = self.norm(x)
319
- x, size = self.fn(x, size)
320
-
321
- if self.drop_path is not None:
322
- x = self.drop_path(x)
323
-
324
- x = shortcut + x
325
- return x, size
326
-
327
-
328
- class DropPath(nn.Module):
329
- """Drop paths (Stochastic Depth) per sample."""
330
-
331
- def __init__(self, drop_prob: float = 0.0):
332
- super().__init__()
333
- self.drop_prob = drop_prob
334
-
335
- def __call__(self, x):
336
- if self.drop_prob == 0.0 or not self.training:
337
- return x
338
-
339
- keep_prob = 1 - self.drop_prob
340
- shape = (x.shape[0],) + (1,) * (x.ndim - 1)
341
- random_tensor = keep_prob + mx.random.uniform(shape)
342
- random_tensor = mx.floor(random_tensor)
343
- output = x * random_tensor / keep_prob
344
- return output
345
-
346
-
347
- class SpatialBlock(nn.Module):
348
- """Spatial attention block"""
349
-
350
- def __init__(
351
- self,
352
- dim: int,
353
- num_heads: int,
354
- window_size: int,
355
- mlp_ratio: float = 4.0,
356
- qkv_bias: bool = True,
357
- drop_path_rate: float = 0.0,
358
- conv_at_attn: bool = True,
359
- conv_at_ffn: bool = True,
360
- ):
361
- super().__init__()
362
-
363
- drop_path = DropPath(drop_path_rate) if drop_path_rate > 0.0 else None
364
-
365
- self.conv1 = (
366
- PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1), None) if conv_at_attn else None
367
- )
368
-
369
- self.window_attn = PreNorm(
370
- nn.LayerNorm(dim),
371
- WindowAttention(dim, num_heads, window_size, qkv_bias=qkv_bias),
372
- drop_path,
373
- )
374
-
375
- self.conv2 = (
376
- PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1), None) if conv_at_ffn else None
377
- )
378
-
379
- self.ffn = PreNorm(
380
- nn.LayerNorm(dim),
381
- Mlp(
382
- in_features=dim, hidden_features=int(dim * mlp_ratio), out_features=dim
383
- ),
384
- drop_path,
385
- )
386
-
387
- def __call__(self, x, size):
388
- if self.conv1 is not None:
389
- x, size = self.conv1(x, size)
390
- x, size = self.window_attn(x, size)
391
-
392
- if self.conv2 is not None:
393
- x, size = self.conv2(x, size)
394
- x, size = self.ffn(x, size)
395
- return x, size
396
-
397
-
398
- class ChannelBlock(nn.Module):
399
- """Channel attention block"""
400
-
401
- def __init__(
402
- self,
403
- dim: int,
404
- groups: int,
405
- mlp_ratio: float = 4.0,
406
- qkv_bias: bool = True,
407
- drop_path_rate: float = 0.0,
408
- conv_at_attn: bool = True,
409
- conv_at_ffn: bool = True,
410
- ):
411
- super().__init__()
412
-
413
- drop_path = DropPath(drop_path_rate) if drop_path_rate > 0.0 else None
414
-
415
- self.conv1 = (
416
- PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1), None) if conv_at_attn else None
417
- )
418
-
419
- self.channel_attn = PreNorm(
420
- nn.LayerNorm(dim),
421
- ChannelAttention(dim, groups=groups, qkv_bias=qkv_bias),
422
- drop_path,
423
- )
424
-
425
- self.conv2 = (
426
- PreNorm(None, DepthWiseConv2d(dim, 3, 1, 1), None) if conv_at_ffn else None
427
- )
428
-
429
- self.ffn = PreNorm(
430
- nn.LayerNorm(dim),
431
- Mlp(
432
- in_features=dim, hidden_features=int(dim * mlp_ratio), out_features=dim
433
- ),
434
- drop_path,
435
- )
436
-
437
- def __call__(self, x, size):
438
- if self.conv1 is not None:
439
- x, size = self.conv1(x, size)
440
- x, size = self.channel_attn(x, size)
441
-
442
- if self.conv2 is not None:
443
- x, size = self.conv2(x, size)
444
- x, size = self.ffn(x, size)
445
-
446
- return x, size
447
-
448
-
449
- class Block(nn.Module):
450
- def __init__(
451
- self,
452
- dim: int,
453
- num_heads: int,
454
- num_groups: int,
455
- window_size: int,
456
- mlp_ratio: float = 4.0,
457
- qkv_bias: bool = True,
458
- drop_path_rate: Tuple[float, float] = (0.0, 0.0),
459
- conv_at_attn: bool = True,
460
- conv_at_ffn: bool = True,
461
- ):
462
- super().__init__()
463
- self.spatial_block = SpatialBlock(
464
- dim,
465
- num_heads,
466
- window_size,
467
- drop_path_rate=drop_path_rate[0],
468
- qkv_bias=qkv_bias,
469
- mlp_ratio=mlp_ratio,
470
- conv_at_attn=conv_at_attn,
471
- conv_at_ffn=conv_at_ffn,
472
- )
473
- self.channel_block = ChannelBlock(
474
- dim,
475
- num_groups,
476
- drop_path_rate=drop_path_rate[1],
477
- qkv_bias=qkv_bias,
478
- mlp_ratio=mlp_ratio,
479
- conv_at_attn=conv_at_attn,
480
- conv_at_ffn=conv_at_ffn,
481
- )
482
-
483
- def __call__(self, x, size):
484
- x, size = self.spatial_block(x, size)
485
- x, size = self.channel_block(x, size)
486
- return x, size
487
-
488
-
489
- class VisionModel(nn.Module):
490
- """DaViT: Dual Attention Vision Transformer"""
491
-
492
- def __init__(self, config: VisionConfig):
493
- super().__init__()
494
-
495
- self.num_classes = config.num_classes
496
- self.model_type = config.model_type
497
- self.dim_embed = config.dim_embed
498
- self.num_heads = config.num_heads
499
- self.num_groups = config.num_groups
500
- self.num_stages = len(self.dim_embed)
501
- assert self.num_stages == len(self.num_heads) == len(self.num_groups)
502
-
503
- if self.model_type not in ["davit", ""]:
504
- raise ValueError(
505
- f"Model type {self.model_type} not supported. Currently only 'davit' is supported"
506
- )
507
-
508
- # Convert PyTorch's linspace to MLX equivalent
509
- total_blocks = sum(config.depths) * 2
510
- dpr = [
511
- i * config.drop_path_rate / (total_blocks - 1) for i in range(total_blocks)
512
- ]
513
-
514
- depth_offset = 0
515
- self.convs = []
516
- self.blocks = []
517
-
518
- for i in range(self.num_stages):
519
-
520
- conv_embed = ConvEmbed(
521
- patch_size=config.patch_size[i],
522
- stride=config.patch_stride[i],
523
- padding=config.patch_padding[i],
524
- in_chans=config.in_chans if i == 0 else self.dim_embed[i - 1],
525
- embed_dim=self.dim_embed[i],
526
- norm_layer=nn.LayerNorm,
527
- pre_norm=config.patch_prenorm[i],
528
- )
529
- self.convs.append(conv_embed)
530
-
531
- block = []
532
- for j in range(config.depths[i]):
533
- block.append(
534
- Block(
535
- self.dim_embed[i],
536
- config.num_heads[i],
537
- config.num_groups[i],
538
- config.window_size,
539
- config.mlp_ratio,
540
- config.qkv_bias,
541
- (dpr[depth_offset + j * 2], dpr[depth_offset + j * 2 + 1]),
542
- config.conv_at_attn,
543
- config.conv_at_ffn,
544
- )
545
- )
546
-
547
- self.blocks.append(block)
548
-
549
- depth_offset += config.depths[i] * 2
550
-
551
- def __call__(self, x):
552
- input_size = x.shape[2:]
553
-
554
- # Process through stages
555
- for conv, blks in zip(self.convs, self.blocks):
556
- x, input_size = conv(x, input_size)
557
- for blk in blks:
558
- x, input_size = blk(x, input_size)
559
-
560
- return x
561
-
562
- @staticmethod
563
- def sanitize(weights):
564
- sanitized_weights = {}
565
- for k, v in weights.items():
566
- if "position_ids" in k:
567
- # Remove unused position_ids
568
- continue
569
- elif "convs" in k:
570
- if "proj.weight" in k:
571
- # PyTorch conv2d weight tensors have shape:
572
- # [out_channels, in_channels, kH, KW]
573
- # MLX conv2d expects the weight be of shape:
574
- # [out_channels, kH, KW, in_channels]
575
- if check_array_shape(v):
576
- sanitized_weights[k] = v
577
- else:
578
- sanitized_weights[k] = v.transpose(0, 2, 3, 1)
579
- else:
580
- sanitized_weights[k] = v
581
- elif "blocks" in k:
582
- if "dw.weight" in k:
583
- sanitized_weights[k] = (
584
- v.transpose(0, 2, 3, 1) if v.shape[1] < v.shape[-1] else v
585
- )
586
- else:
587
- sanitized_weights[k] = v
588
- else:
589
- sanitized_weights[k] = v
590
-
591
- return sanitized_weights
@@ -1,8 +0,0 @@
1
- from .gemma3 import (
2
- LanguageModel,
3
- Model,
4
- ModelConfig,
5
- TextConfig,
6
- VisionConfig,
7
- VisionModel,
8
- )