nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc8__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (196) hide show
  1. nexaai/_stub.cpython-310-darwin.so +0 -0
  2. nexaai/_version.py +1 -1
  3. nexaai/binds/libnexa_bridge.dylib +0 -0
  4. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/METADATA +1 -1
  5. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/RECORD +7 -196
  6. nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
  7. nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
  8. nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
  9. nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
  10. nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
  11. nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
  12. nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
  13. nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
  14. nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
  15. nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
  16. nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
  17. nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
  18. nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
  19. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
  20. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
  21. nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
  22. nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
  23. nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
  24. nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
  25. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
  26. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
  27. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
  28. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
  29. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
  30. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
  31. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
  32. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
  33. nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
  34. nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
  35. nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
  36. nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
  37. nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
  38. nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
  39. nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
  40. nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
  41. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
  42. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
  43. nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
  44. nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
  45. nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
  46. nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
  47. nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
  48. nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
  49. nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
  50. nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
  51. nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
  52. nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
  53. nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
  54. nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
  55. nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
  56. nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
  57. nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
  58. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
  59. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
  60. nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
  61. nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
  62. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
  63. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
  64. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
  65. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
  66. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
  67. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
  68. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
  69. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
  70. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
  71. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
  72. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
  73. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
  74. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
  75. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
  76. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
  77. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
  78. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
  79. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
  80. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
  81. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
  82. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
  83. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
  84. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
  85. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
  86. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
  87. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
  88. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
  89. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
  90. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
  91. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
  92. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
  93. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
  94. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
  95. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
  96. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
  97. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
  98. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
  99. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
  100. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
  101. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
  102. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
  103. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
  104. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
  105. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
  106. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
  107. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
  108. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
  109. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
  110. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
  111. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
  112. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
  113. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
  114. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
  115. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
  116. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
  117. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
  118. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
  119. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
  120. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
  121. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
  122. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
  123. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
  124. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
  125. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
  126. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
  127. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
  128. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
  129. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
  130. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
  131. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
  132. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
  133. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
  134. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
  135. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
  136. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
  137. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
  138. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
  139. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
  140. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
  141. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
  142. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
  143. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
  144. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
  145. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
  146. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
  147. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
  148. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
  149. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
  150. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
  151. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
  152. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
  153. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
  154. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
  155. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
  156. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
  157. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
  158. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
  159. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
  160. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
  161. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
  162. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
  163. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
  164. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  165. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
  166. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
  167. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
  168. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
  169. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
  170. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
  171. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
  172. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
  173. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  174. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
  175. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
  176. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
  177. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
  178. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
  179. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
  180. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
  181. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
  182. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
  183. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
  184. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
  185. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
  186. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
  187. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
  188. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
  189. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
  190. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
  191. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
  192. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
  193. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
  194. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
  195. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/WHEEL +0 -0
  196. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/top_level.txt +0 -0
@@ -1,330 +0,0 @@
1
- # Copyright © 2023-2024 Apple Inc.
2
-
3
- import math
4
- from dataclasses import dataclass
5
- from typing import Any, Dict, List, Optional, Union
6
-
7
- import mlx.core as mx
8
- import mlx.nn as nn
9
-
10
- from mlx_lm.models.base import (
11
- BaseModelArgs,
12
- scaled_dot_product_attention,
13
- )
14
-
15
-
16
- @dataclass
17
- class ModelArgs(BaseModelArgs):
18
- model_type: str = "xlm_roberta"
19
- vocab_size: int = 250002
20
- hidden_size: int = 768
21
- num_hidden_layers: int = 12
22
- num_attention_heads: int = 12
23
- intermediate_size: int = 3072
24
- hidden_act: str = "gelu"
25
- hidden_dropout_prob: float = 0.1
26
- attention_probs_dropout_prob: float = 0.1
27
- max_position_embeddings: int = 1026
28
- type_vocab_size: int = 1
29
- initializer_range: float = 0.02
30
- layer_norm_eps: float = 1e-05
31
- pad_token_id: int = 1
32
- bos_token_id: int = 0
33
- eos_token_id: int = 2
34
- position_embedding_type: str = "absolute"
35
- use_cache: bool = True
36
- classifier_dropout: Optional[float] = None
37
- num_labels: int = 1
38
-
39
-
40
- class XLMRobertaEmbeddings(nn.Module):
41
- def __init__(self, config: ModelArgs):
42
- super().__init__()
43
- self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
44
- self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
45
- self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
46
-
47
- def __call__(
48
- self,
49
- input_ids: Optional[mx.array] = None,
50
- position_ids: Optional[mx.array] = None,
51
- token_type_ids: Optional[mx.array] = None,
52
- ) -> mx.array:
53
- if token_type_ids is None:
54
- token_type_ids = mx.zeros_like(input_ids)
55
-
56
- inputs_embeds = self.word_embeddings(input_ids)
57
- position_embeddings = self.position_embeddings(position_ids)
58
- token_type_embeddings = self.token_type_embeddings(token_type_ids)
59
-
60
- embeddings = inputs_embeds + position_embeddings + token_type_embeddings
61
- return embeddings
62
-
63
-
64
- class SelfAttention(nn.Module):
65
- def __init__(self, config: ModelArgs):
66
- super().__init__()
67
- self.num_attention_heads = config.num_attention_heads
68
- self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
69
- self.all_head_size = self.num_attention_heads * self.attention_head_size
70
-
71
- def __call__(
72
- self,
73
- qkv: mx.array,
74
- key_padding_mask: Optional[mx.array] = None,
75
- ) -> mx.array:
76
- # qkv shape: [batch, seqlen, 3, num_heads, head_dim]
77
- batch_size, seqlen = qkv.shape[0], qkv.shape[1]
78
- q, k, v = mx.split(qkv, 3, axis=2) # Each: [batch, seqlen, 1, num_heads, head_dim]
79
- q = mx.squeeze(q, axis=2) # [batch, seqlen, num_heads, head_dim]
80
- k = mx.squeeze(k, axis=2)
81
- v = mx.squeeze(v, axis=2)
82
-
83
- # Transpose for attention computation: [batch, num_heads, seqlen, head_dim]
84
- q = mx.transpose(q, (0, 2, 1, 3))
85
- k = mx.transpose(k, (0, 2, 1, 3))
86
- v = mx.transpose(v, (0, 2, 1, 3))
87
-
88
- scale = 1.0 / math.sqrt(self.attention_head_size)
89
-
90
- mask = None
91
- if key_padding_mask is not None:
92
- # key_padding_mask: [batch, seqlen] where True means keep, False means mask
93
- # Convert to attention mask: [batch, 1, 1, seqlen]
94
- mask = mx.expand_dims(mx.expand_dims(key_padding_mask, axis=1), axis=1)
95
- # Use the same dtype as the query tensor to match model dtype
96
- target_dtype = q.dtype
97
- mask = (1.0 - mask.astype(target_dtype)) * -10000.0
98
-
99
- context = scaled_dot_product_attention(q, k, v, cache=None, scale=scale, mask=mask)
100
-
101
- # Transpose back and reshape: [batch, seqlen, hidden_size]
102
- context = mx.transpose(context, (0, 2, 1, 3))
103
- new_context_shape = context.shape[:-2] + (self.all_head_size,)
104
- context = mx.reshape(context, new_context_shape)
105
- return context
106
-
107
-
108
- class MHA(nn.Module):
109
- def __init__(self, config: ModelArgs):
110
- super().__init__()
111
- self.embed_dim = config.hidden_size
112
- self.num_heads = config.num_attention_heads
113
- self.head_dim = self.embed_dim // self.num_heads
114
-
115
- # QKV projection
116
- qkv_dim = self.head_dim * (self.num_heads + 2 * self.num_heads) # q + k + v
117
- self.Wqkv = nn.Linear(self.embed_dim, qkv_dim, bias=True)
118
-
119
- # Self attention
120
- self.inner_attn = SelfAttention(config)
121
-
122
- # Output projection
123
- self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=True)
124
-
125
- def __call__(
126
- self,
127
- x: mx.array,
128
- key_padding_mask: Optional[mx.array] = None,
129
- ) -> tuple:
130
- residual = x
131
- qkv = self.Wqkv(x)
132
-
133
- # Reshape to [batch, seqlen, 3, num_heads, head_dim]
134
- batch, seqlen = qkv.shape[0], qkv.shape[1]
135
- qkv = mx.reshape(qkv, (batch, seqlen, 3, self.num_heads, self.head_dim))
136
-
137
- context = self.inner_attn(qkv, key_padding_mask=key_padding_mask)
138
- out = self.out_proj(context)
139
-
140
- return out, residual
141
-
142
-
143
- class Mlp(nn.Module):
144
- def __init__(self, config: ModelArgs):
145
- super().__init__()
146
- self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size, bias=True)
147
- self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size, bias=True)
148
-
149
- def __call__(self, x: mx.array) -> tuple:
150
- residual = x
151
- y = self.fc1(x)
152
- y = nn.gelu(y)
153
- y = self.fc2(y)
154
- return y, residual
155
-
156
-
157
- class Block(nn.Module):
158
- def __init__(self, config: ModelArgs):
159
- super().__init__()
160
- self.mixer = MHA(config)
161
- self.norm1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
162
- self.mlp = Mlp(config)
163
- self.norm2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
164
-
165
- def __call__(
166
- self,
167
- hidden_states: mx.array,
168
- mixer_kwargs: Optional[dict] = None,
169
- ) -> mx.array:
170
- mixer_kwargs = mixer_kwargs or {}
171
-
172
- # Attention block
173
- mixer_out, residual = self.mixer(hidden_states, **mixer_kwargs)
174
- hidden_states = self.norm1(mixer_out + residual)
175
-
176
- # MLP block
177
- mlp_out, residual = self.mlp(hidden_states)
178
- hidden_states = self.norm2(mlp_out + residual)
179
-
180
- return hidden_states
181
-
182
-
183
- class XLMRobertaEncoder(nn.Module):
184
- def __init__(self, config: ModelArgs):
185
- super().__init__()
186
- # Create layers list to match torch naming
187
- self.layers = [Block(config) for _ in range(config.num_hidden_layers)]
188
-
189
- def __call__(
190
- self,
191
- hidden_states: mx.array,
192
- key_padding_mask: Optional[mx.array] = None,
193
- ) -> mx.array:
194
- mixer_kwargs = None
195
- if key_padding_mask is not None:
196
- mixer_kwargs = {"key_padding_mask": key_padding_mask}
197
-
198
- # Access layers from the list
199
- for layer_module in self.layers:
200
- hidden_states = layer_module(hidden_states, mixer_kwargs=mixer_kwargs)
201
-
202
- return hidden_states
203
-
204
-
205
- class XLMRobertaModel(nn.Module):
206
- def __init__(self, config: ModelArgs):
207
- super().__init__()
208
- self.config = config
209
- self.embeddings = XLMRobertaEmbeddings(config)
210
- self.emb_ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
211
- self.encoder = XLMRobertaEncoder(config)
212
-
213
- def __call__(
214
- self,
215
- input_ids: mx.array,
216
- attention_mask: Optional[mx.array] = None,
217
- token_type_ids: Optional[mx.array] = None,
218
- position_ids: Optional[mx.array] = None,
219
- ) -> mx.array:
220
- hidden_states = self.embeddings(
221
- input_ids=input_ids,
222
- position_ids=position_ids,
223
- token_type_ids=token_type_ids,
224
- )
225
-
226
- hidden_states = self.emb_ln(hidden_states)
227
-
228
- # Convert attention_mask for padding (True=keep, False=mask)
229
- key_padding_mask = attention_mask
230
-
231
- sequence_output = self.encoder(hidden_states, key_padding_mask=key_padding_mask)
232
-
233
- return sequence_output
234
-
235
-
236
- class XLMRobertaClassificationHead(nn.Module):
237
- def __init__(self, config: ModelArgs):
238
- super().__init__()
239
- self.dense = nn.Linear(config.hidden_size, config.hidden_size)
240
- self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
241
-
242
- def __call__(self, features: mx.array) -> mx.array:
243
- x = features[:, 0, :] # take first token (equivalent to [CLS])
244
- x = self.dense(x)
245
- x = mx.tanh(x)
246
- x = self.out_proj(x)
247
- return x
248
-
249
-
250
- class XLMRobertaForSequenceClassification(nn.Module):
251
- def __init__(self, config: ModelArgs):
252
- super().__init__()
253
- self.num_labels = config.num_labels
254
- self.config = config
255
- self.roberta = XLMRobertaModel(config)
256
- self.classifier = XLMRobertaClassificationHead(config)
257
-
258
- def __call__(
259
- self,
260
- input_ids: mx.array,
261
- attention_mask: Optional[mx.array] = None,
262
- token_type_ids: Optional[mx.array] = None,
263
- position_ids: Optional[mx.array] = None,
264
- ) -> mx.array:
265
- sequence_output = self.roberta(
266
- input_ids=input_ids,
267
- attention_mask=attention_mask,
268
- token_type_ids=token_type_ids,
269
- position_ids=position_ids,
270
- )
271
- logits = self.classifier(sequence_output)
272
- return logits
273
-
274
- def nexa_forward(
275
- self,
276
- input_ids: mx.array,
277
- attention_mask: mx.array,
278
- token_type_ids: mx.array,
279
- position_ids: mx.array,
280
- ) -> mx.array:
281
- return self(
282
- input_ids=input_ids,
283
- attention_mask=attention_mask,
284
- token_type_ids=token_type_ids,
285
- position_ids=position_ids,
286
- )
287
-
288
-
289
- class Model(nn.Module):
290
- def __init__(self, args: ModelArgs):
291
- super().__init__()
292
- self.args = args
293
- self.model_type = args.model_type
294
- self.model = XLMRobertaForSequenceClassification(args)
295
-
296
- def __call__(
297
- self,
298
- input_ids: mx.array,
299
- attention_mask: Optional[mx.array] = None,
300
- token_type_ids: Optional[mx.array] = None,
301
- position_ids: Optional[mx.array] = None,
302
- ) -> mx.array:
303
- return self.model(
304
- input_ids=input_ids,
305
- attention_mask=attention_mask,
306
- token_type_ids=token_type_ids,
307
- position_ids=position_ids,
308
- )
309
-
310
- def nexa_forward(
311
- self,
312
- input_ids: mx.array,
313
- attention_mask: mx.array,
314
- token_type_ids: mx.array,
315
- position_ids: mx.array,
316
- ) -> mx.array:
317
- return self.model.nexa_forward(
318
- input_ids=input_ids,
319
- attention_mask=attention_mask,
320
- token_type_ids=token_type_ids,
321
- position_ids=position_ids,
322
- )
323
-
324
- def sanitize(self, weights):
325
- """Remove parameters that don't exist in our model"""
326
- return weights
327
-
328
- @property
329
- def layers(self):
330
- return self.model.roberta.encoder.layers
@@ -1 +0,0 @@
1
- """Stable Diffusion MLX interface package"""
@@ -1,362 +0,0 @@
1
- from __future__ import annotations
2
-
3
- import time
4
- from typing import (
5
- Any,
6
- Callable,
7
- List,
8
- Optional,
9
- )
10
-
11
- import mlx.core as mx
12
- import numpy as np
13
- from PIL import Image as PILImage
14
- import mlx.nn as nn
15
- import os
16
-
17
- from .modeling import StableDiffusion, StableDiffusionXL
18
-
19
- # --------------------------------------------------------------------------------------
20
- # Core aliases & callback protocols
21
- # --------------------------------------------------------------------------------------
22
-
23
- Path = str
24
- LogCallback = Callable[[str], None]
25
-
26
- # --------------------------------------------------------------------------------------
27
- # Core module functions
28
- # --------------------------------------------------------------------------------------
29
-
30
- def init() -> None:
31
- """Initialize the stable diffusion module"""
32
- pass
33
-
34
- def deinit() -> None:
35
- """Deinitialize the stable diffusion module"""
36
- pass
37
-
38
- def set_log(callback: LogCallback) -> None:
39
- """Set the logging callback"""
40
- pass
41
-
42
- def log(message: str) -> None:
43
- """Log a message"""
44
- print(message)
45
-
46
- # --------------------------------------------------------------------------------------
47
- # Basic data structures
48
- # --------------------------------------------------------------------------------------
49
-
50
- class Image:
51
- def __init__(self, data: List[float], width: int, height: int, channels: int) -> None:
52
- """Initialize an image with pixel data"""
53
- self.data = data
54
- self.width = width
55
- self.height = height
56
- self.channels = channels
57
-
58
- @classmethod
59
- def from_numpy(cls, array: np.ndarray) -> 'Image':
60
- """Create Image from numpy array (H, W, C)"""
61
- height, width, channels = array.shape
62
- data = array.flatten().tolist()
63
- return cls(data, width, height, channels)
64
-
65
- @classmethod
66
- def from_pil(cls, pil_image: PILImage.Image) -> 'Image':
67
- """Create Image from PIL Image"""
68
- array = np.array(pil_image).astype(np.float32) / 255.0
69
- return cls.from_numpy(array)
70
-
71
- def to_numpy(self) -> np.ndarray:
72
- """Convert to numpy array (H, W, C)"""
73
- return np.array(self.data).reshape(self.height, self.width, self.channels)
74
-
75
- def to_pil(self) -> PILImage.Image:
76
- """Convert to PIL Image"""
77
- array = (self.to_numpy() * 255).astype(np.uint8)
78
- return PILImage.fromarray(array)
79
-
80
- class ImageSamplerConfig:
81
- def __init__(
82
- self,
83
- method: str = "ddim",
84
- steps: int = 20,
85
- guidance_scale: float = 7.5,
86
- eta: float = 0.0,
87
- seed: int = -1,
88
- ) -> None:
89
- """Initialize sampler configuration"""
90
- self.method = method
91
- self.steps = steps
92
- self.guidance_scale = guidance_scale
93
- self.eta = eta
94
- self.seed = seed
95
-
96
- class ImageGenerationConfig:
97
- def __init__(
98
- self,
99
- prompts: str | List[str],
100
- negative_prompts: str | List[str] | None = None,
101
- height: int = 512,
102
- width: int = 512,
103
- sampler_config: Optional[ImageSamplerConfig] = None,
104
- lora_id: int = -1, # Not used but kept for compatibility
105
- init_image: Optional[Image] = None,
106
- strength: float = 1.0,
107
- n_images: int = 1,
108
- n_rows: int = 1,
109
- decoding_batch_size: int = 1,
110
- ) -> None:
111
- """Initialize image generation configuration"""
112
- self.prompts = prompts
113
- self.negative_prompts = negative_prompts or ""
114
- self.height = height
115
- self.width = width
116
- self.sampler_config = sampler_config or ImageSamplerConfig()
117
- self.lora_id = lora_id
118
- self.init_image = init_image
119
- self.strength = strength
120
- self.n_images = n_images
121
- self.n_rows = n_rows
122
- self.decoding_batch_size = decoding_batch_size
123
-
124
- # --------------------------------------------------------------------------------------
125
- # Helper functions - following txt2img.py pattern
126
- # --------------------------------------------------------------------------------------
127
-
128
- def load_model(model_path: Path, float16: bool = True, quantize: bool = False) -> StableDiffusion:
129
- """Load a model from the given path - following txt2img.py pattern"""
130
-
131
- # Check if it's a local path or HuggingFace repo
132
- # If it contains path separators or exists as a file/directory, treat as local
133
- is_local_path = ('/' in model_path or '\\' in model_path or os.path.exists(model_path))
134
-
135
- if is_local_path:
136
- # For local paths, determine model type from the path or model files
137
- if "xl" in model_path.lower() or "turbo" in model_path.lower():
138
- model = StableDiffusionXL(model_path, float16=float16)
139
- else:
140
- model = StableDiffusion(model_path, float16=float16)
141
- else:
142
- # For HuggingFace repo names, use the original logic
143
- if "xl" in model_path.lower() or "turbo" in model_path.lower():
144
- model = StableDiffusionXL(model_path, float16=float16)
145
- else:
146
- model = StableDiffusion(model_path, float16=float16)
147
-
148
- # Apply quantization if requested - same as txt2img.py
149
- if quantize:
150
- if "xl" in model_path.lower() or "turbo" in model_path.lower():
151
- nn.quantize(
152
- model.text_encoder_1, class_predicate=lambda _, m: isinstance(m, nn.Linear)
153
- )
154
- nn.quantize(
155
- model.text_encoder_2, class_predicate=lambda _, m: isinstance(m, nn.Linear)
156
- )
157
- else:
158
- nn.quantize(
159
- model.text_encoder, class_predicate=lambda _, m: isinstance(m, nn.Linear)
160
- )
161
- nn.quantize(model.unet, group_size=32, bits=8)
162
-
163
- return model
164
-
165
- def _prepare_image_for_sd(image: Image, target_width: int, target_height: int) -> mx.array:
166
- """Prepare image for stable diffusion processing - simplified"""
167
- # Convert to PIL and resize
168
- pil_img = image.to_pil()
169
- pil_img = pil_img.resize((target_width, target_height), PILImage.LANCZOS)
170
-
171
- # Convert to array and normalize to [0,1] range (following txt2img.py pattern)
172
- img_array = np.array(pil_img).astype(np.float32)[:, :, :3] # Ensure RGB
173
- img_tensor = mx.array(img_array / 255.0)
174
-
175
- return img_tensor
176
-
177
- # --------------------------------------------------------------------------------------
178
- # Image generation
179
- # --------------------------------------------------------------------------------------
180
-
181
- class ImageGen:
182
- def __init__(
183
- self,
184
- model_path: Path,
185
- scheduler_config_path: Path = "", # Make optional
186
- device: Optional[str] = None,
187
- float16: bool = True,
188
- quantize: bool = False,
189
- ) -> None:
190
- """Initialize the image generation model"""
191
- self.model_path = model_path
192
- self.scheduler_config_path = scheduler_config_path # Store for compatibility
193
- self.float16 = float16
194
- self.quantize = quantize
195
- self.model = None
196
-
197
- def destroy(self) -> None:
198
- """Clean up resources"""
199
- self.model = None
200
-
201
- def load_model(self, model_path: Path, extra_data: Any = None) -> bool:
202
- """Load the model from a file"""
203
- try:
204
- if os.path.isfile(model_path):
205
- model_path = os.path.dirname(model_path)
206
-
207
- self.model_path = model_path
208
- self.model = load_model(model_path, self.float16, self.quantize)
209
- self.model.ensure_models_are_loaded()
210
- return True
211
- except Exception as e:
212
- log(f"Failed to load model: {e}")
213
- return False
214
-
215
- def close(self) -> None:
216
- """Close the model"""
217
- self.destroy()
218
-
219
- def set_scheduler(self, config: Any) -> None:
220
- """Set scheduler configuration (placeholder for compatibility)"""
221
- log("Warning: set_scheduler not implemented")
222
- pass
223
-
224
- def set_sampler(self, config: ImageSamplerConfig) -> None:
225
- """Set sampler configuration (placeholder for compatibility)"""
226
- log("Warning: set_sampler not implemented")
227
- pass
228
-
229
- def reset_sampler(self) -> None:
230
- """Reset sampler configuration (placeholder for compatibility)"""
231
- log("Warning: reset_sampler not implemented")
232
- pass
233
-
234
- def set_lora(self, lora_id: int) -> None:
235
- """Set LoRA (placeholder for compatibility)"""
236
- log("Warning: LoRA management not implemented")
237
- pass
238
-
239
- def add_lora(self, lora_path: Path) -> int:
240
- """Add LoRA (placeholder for compatibility)"""
241
- log("Warning: LoRA management not implemented")
242
- return -1
243
-
244
- def remove_lora(self, lora_id: int) -> None:
245
- """Remove LoRA (placeholder for compatibility)"""
246
- log("Warning: LoRA management not implemented")
247
- pass
248
-
249
- def list_loras(self) -> List[int]:
250
- """List LoRAs (placeholder for compatibility)"""
251
- log("Warning: LoRA management not implemented")
252
- return []
253
-
254
- def txt2img(self, prompt: str, config: ImageGenerationConfig, clear_cache: bool = True) -> Image:
255
- """Generate an image from a text prompt - following txt2img.py pattern"""
256
- if not self.model and not self.load_model(self.model_path):
257
- raise RuntimeError("Model not loaded")
258
-
259
- sampler_config = config.sampler_config
260
-
261
- # Extract prompts
262
- negative_prompt = ""
263
- if config.negative_prompts:
264
- negative_prompt = config.negative_prompts if isinstance(config.negative_prompts, str) else config.negative_prompts[0]
265
-
266
- try:
267
- # Generate latents - following txt2img.py approach
268
- latents_generator = self.model.generate_latents(
269
- prompt,
270
- n_images=1,
271
- num_steps=sampler_config.steps,
272
- cfg_weight=sampler_config.guidance_scale,
273
- negative_text=negative_prompt,
274
- seed=sampler_config.seed if sampler_config.seed >= 0 else None
275
- )
276
-
277
- # Get final latents - following txt2img.py pattern
278
- final_latents = None
279
- for latents in latents_generator:
280
- final_latents = latents
281
- mx.eval(final_latents)
282
-
283
- if final_latents is None:
284
- raise RuntimeError("No latents generated")
285
-
286
- # Decode to image - following txt2img.py pattern
287
- decoded_image = self.model.decode(final_latents)
288
- mx.eval(decoded_image)
289
-
290
- # Convert to numpy array - following txt2img.py pattern
291
- image_array = np.array(decoded_image.squeeze(0))
292
-
293
- if clear_cache:
294
- mx.clear_cache()
295
-
296
- return Image.from_numpy(image_array)
297
-
298
- except Exception as e:
299
- log(f"Generation failed: {e}")
300
- raise e
301
-
302
- def img2img(self, init_image: Image, prompt: str, config: ImageGenerationConfig, clear_cache: bool = True) -> Image:
303
- """Generate an image from an initial image and a text prompt"""
304
- if not self.model and not self.load_model(self.model_path):
305
- raise RuntimeError("Model not loaded")
306
-
307
- sampler_config = config.sampler_config
308
-
309
- # Extract prompts
310
- negative_prompt = ""
311
- if config.negative_prompts:
312
- negative_prompt = config.negative_prompts if isinstance(config.negative_prompts, str) else config.negative_prompts[0]
313
-
314
- try:
315
- # Prepare image for SD processing
316
- img_tensor = _prepare_image_for_sd(init_image, config.width, config.height)
317
-
318
- # Generate latents from image
319
- latents_generator = self.model.generate_latents_from_image(
320
- img_tensor,
321
- prompt,
322
- n_images=1,
323
- strength=config.strength,
324
- num_steps=sampler_config.steps,
325
- cfg_weight=sampler_config.guidance_scale,
326
- negative_text=negative_prompt,
327
- seed=sampler_config.seed if sampler_config.seed >= 0 else None
328
- )
329
-
330
- # Get final latents
331
- final_latents = None
332
- for latents in latents_generator:
333
- final_latents = latents
334
- mx.eval(final_latents)
335
-
336
- if final_latents is None:
337
- raise RuntimeError("No latents generated")
338
-
339
- # Decode to image
340
- decoded_image = self.model.decode(final_latents)
341
- mx.eval(decoded_image)
342
-
343
- # Convert to numpy array
344
- image_array = np.array(decoded_image.squeeze(0))
345
-
346
- if clear_cache:
347
- mx.clear_cache()
348
-
349
- return Image.from_numpy(image_array)
350
-
351
- except Exception as e:
352
- log(f"Generation failed: {e}")
353
- raise e
354
-
355
- def generate(self, config: ImageGenerationConfig) -> Image:
356
- """Generate an image from configuration"""
357
- if config.init_image:
358
- prompt = config.prompts if isinstance(config.prompts, str) else config.prompts[0]
359
- return self.img2img(config.init_image, prompt, config)
360
- else:
361
- prompt = config.prompts if isinstance(config.prompts, str) else config.prompts[0]
362
- return self.txt2img(prompt, config)