nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc8__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (196) hide show
  1. nexaai/_stub.cpython-310-darwin.so +0 -0
  2. nexaai/_version.py +1 -1
  3. nexaai/binds/libnexa_bridge.dylib +0 -0
  4. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/METADATA +1 -1
  5. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/RECORD +7 -196
  6. nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
  7. nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
  8. nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
  9. nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
  10. nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
  11. nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
  12. nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
  13. nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
  14. nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
  15. nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
  16. nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
  17. nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
  18. nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
  19. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
  20. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
  21. nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
  22. nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
  23. nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
  24. nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
  25. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
  26. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
  27. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
  28. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
  29. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
  30. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
  31. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
  32. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
  33. nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
  34. nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
  35. nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
  36. nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
  37. nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
  38. nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
  39. nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
  40. nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
  41. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
  42. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
  43. nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
  44. nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
  45. nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
  46. nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
  47. nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
  48. nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
  49. nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
  50. nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
  51. nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
  52. nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
  53. nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
  54. nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
  55. nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
  56. nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
  57. nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
  58. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
  59. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
  60. nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
  61. nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
  62. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
  63. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
  64. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
  65. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
  66. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
  67. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
  68. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
  69. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
  70. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
  71. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
  72. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
  73. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
  74. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
  75. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
  76. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
  77. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
  78. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
  79. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
  80. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
  81. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
  82. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
  83. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
  84. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
  85. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
  86. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
  87. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
  88. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
  89. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
  90. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
  91. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
  92. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
  93. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
  94. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
  95. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
  96. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
  97. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
  98. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
  99. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
  100. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
  101. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
  102. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
  103. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
  104. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
  105. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
  106. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
  107. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
  108. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
  109. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
  110. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
  111. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
  112. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
  113. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
  114. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
  115. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
  116. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
  117. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
  118. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
  119. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
  120. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
  121. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
  122. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
  123. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
  124. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
  125. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
  126. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
  127. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
  128. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
  129. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
  130. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
  131. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
  132. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
  133. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
  134. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
  135. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
  136. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
  137. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
  138. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
  139. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
  140. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
  141. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
  142. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
  143. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
  144. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
  145. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
  146. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
  147. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
  148. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
  149. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
  150. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
  151. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
  152. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
  153. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
  154. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
  155. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
  156. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
  157. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
  158. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
  159. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
  160. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
  161. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
  162. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
  163. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
  164. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  165. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
  166. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
  167. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
  168. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
  169. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
  170. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
  171. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
  172. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
  173. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  174. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
  175. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
  176. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
  177. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
  178. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
  179. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
  180. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
  181. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
  182. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
  183. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
  184. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
  185. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
  186. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
  187. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
  188. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
  189. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
  190. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
  191. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
  192. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
  193. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
  194. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
  195. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/WHEEL +0 -0
  196. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/top_level.txt +0 -0
@@ -1,296 +0,0 @@
1
- import json
2
- import warnings
3
- from dataclasses import dataclass, field
4
- from pathlib import Path
5
- from typing import Union
6
-
7
- import mlx.core as mx
8
- import mlx.nn as nn
9
- import numpy as np
10
- from mlx.utils import tree_flatten, tree_map
11
-
12
-
13
- def get_prompt(model_type, processor, conversation):
14
- if model_type == "paligemma":
15
- return conversation
16
-
17
- if "chat_template" in processor.__dict__.keys():
18
- prompt = processor.apply_chat_template(
19
- conversation,
20
- tokenize=False,
21
- add_generation_prompt=False,
22
- )
23
- elif "tokenizer" in processor.__dict__.keys():
24
- prompt = processor.tokenizer.apply_chat_template(
25
- conversation,
26
- tokenize=False,
27
- add_generation_prompt=False,
28
- )
29
-
30
- return prompt
31
-
32
-
33
- class Dataset:
34
- def __init__(
35
- self,
36
- hf_dataset,
37
- config,
38
- processor,
39
- image_processor=None,
40
- take=None,
41
- split=None,
42
- image_resize_shape=None,
43
- ):
44
- if split is not None:
45
- self.dataset = hf_dataset[split]
46
- else:
47
- self.dataset = hf_dataset
48
- if take is not None:
49
- self.dataset = self.dataset.take(take)
50
- self.processor = processor
51
- self.config = config
52
- self.image_processor = image_processor
53
- self.image_resize_shape = image_resize_shape
54
-
55
- def __len__(self):
56
- return len(self.dataset)
57
-
58
- def __getitem__(self, idx):
59
- from mlx_vlm.utils import prepare_inputs
60
-
61
- item = self.dataset[idx]
62
-
63
- images = item["images"]
64
- conversations = item["messages"]
65
- prompts = []
66
-
67
- if isinstance(conversations, list) and isinstance(conversations[0], list):
68
- for conversation in conversations:
69
- if self.config["model_type"] == "pixtral":
70
- conversation = [json.loads(i) for i in conversation]
71
- if len(conversations) > 1:
72
- warnings.warn(
73
- "Pixtral batch processing is not supported yet. Set batch size to 1."
74
- )
75
-
76
- prompt = get_prompt(
77
- self.config["model_type"], self.processor, conversation
78
- )
79
- prompts.append(prompt)
80
-
81
- else:
82
- if self.config["model_type"] == "pixtral":
83
- conversations = [json.loads(i) for i in conversations]
84
- prompt = get_prompt(
85
- self.config["model_type"], self.processor, conversations
86
- )
87
- prompts.append(prompt)
88
-
89
- image_token_index = self.config["image_token_index"]
90
-
91
- inputs = prepare_inputs(
92
- self.processor,
93
- images,
94
- prompts,
95
- image_token_index,
96
- self.image_resize_shape,
97
- )
98
- input_ids = inputs["input_ids"]
99
- pixel_values = inputs["pixel_values"]
100
- mask = inputs["attention_mask"]
101
- kwargs = {
102
- k: v
103
- for k, v in inputs.items()
104
- if k not in ["input_ids", "pixel_values", "attention_mask"]
105
- }
106
-
107
- if mask is None:
108
- mask = mx.ones_like(input_ids)
109
-
110
- return {
111
- "pixel_values": pixel_values,
112
- "input_ids": input_ids,
113
- "attention_mask": mask,
114
- **kwargs,
115
- }
116
-
117
-
118
- def grad_checkpoint(layer):
119
- """
120
- Update all instances of type(layer) to use gradient checkpointing.
121
- """
122
- fn = type(layer).__call__
123
-
124
- def checkpointed_fn(model, *args, **kwargs):
125
- def inner_fn(params, *args, **kwargs):
126
- model.update(params)
127
- return fn(model, *args, **kwargs)
128
-
129
- return mx.checkpoint(inner_fn)(model.trainable_parameters(), *args, **kwargs)
130
-
131
- type(layer).__call__ = checkpointed_fn
132
-
133
-
134
- @dataclass
135
- class TrainingArgs:
136
- batch_size: int = field(default=4, metadata={"help": "Minibatch size."})
137
- iters: int = field(default=100, metadata={"help": "Iterations to train for."})
138
- val_batches: int = field(
139
- default=25,
140
- metadata={
141
- "help": "Number of validation batches, -1 uses the entire validation set."
142
- },
143
- )
144
- steps_per_report: int = field(
145
- default=10,
146
- metadata={"help": "Number of training steps between loss reporting."},
147
- )
148
- steps_per_eval: int = field(
149
- default=200, metadata={"help": "Number of training steps between validations."}
150
- )
151
- steps_per_save: int = field(
152
- default=100, metadata={"help": "Save the model every number steps"}
153
- )
154
- max_seq_length: int = field(
155
- default=2048, metadata={"help": "Maximum sequence length."}
156
- )
157
- adapter_file: str = field(
158
- default="adapters.safetensors",
159
- metadata={"help": "Save/load path for the trained adapter weights."},
160
- )
161
- grad_checkpoint: bool = field(
162
- default=False,
163
- metadata={"help": "Use gradient checkpointing to reduce memory use."},
164
- )
165
-
166
-
167
- def default_loss(model, inputs, targets, lengths):
168
- logits = model(inputs)
169
- logits = logits.astype(mx.float32)
170
-
171
- length_mask = mx.arange(inputs.shape[1])[None, :] < lengths[:, None]
172
-
173
- ce = nn.losses.cross_entropy(logits, targets) * length_mask
174
- ntoks = length_mask.sum()
175
- ce = ce.sum() / ntoks
176
-
177
- return ce, ntoks
178
-
179
-
180
- class Trainer:
181
- def __init__(
182
- self,
183
- model,
184
- optimizer,
185
- train_on_completions=False,
186
- assistant_id=77091,
187
- clip_gradients=None,
188
- ):
189
- self.model = model
190
- self.optimizer = optimizer
191
- self.train_on_completions = train_on_completions
192
- self.assistant_id = assistant_id
193
- self.clip_gradients = clip_gradients
194
-
195
- def loss_fn(self, model, batch):
196
- pixel_values = batch["pixel_values"]
197
- input_ids = batch["input_ids"]
198
- attention_mask = batch["attention_mask"]
199
- lengths = mx.sum(attention_mask, axis=1)
200
- labels = input_ids[:, 1:]
201
-
202
- batch_size, seq_length = input_ids.shape
203
-
204
- if self.train_on_completions:
205
- weight_mask = mx.ones_like(attention_mask)
206
-
207
- assistant_response_index = np.where(input_ids == self.assistant_id)[1]
208
- range_matrix = mx.repeat(
209
- mx.expand_dims(mx.arange(seq_length), 0), batch_size, axis=0
210
- )
211
- assistant_mask = range_matrix <= mx.array(assistant_response_index).reshape(
212
- -1, 1
213
- )
214
- # Apply the mask to weight_mask
215
- weight_mask = mx.where(
216
- assistant_mask, mx.zeros_like(weight_mask), weight_mask
217
- )[:, 1:]
218
- else:
219
- weight_mask = None
220
-
221
- input_ids = input_ids[:, :-1]
222
-
223
- kwargs = {
224
- k: v
225
- for k, v in batch.items()
226
- if k not in ["input_ids", "pixel_values", "attention_mask"]
227
- }
228
-
229
- # Forward pass
230
- outputs = model(input_ids, pixel_values, attention_mask, **kwargs)
231
-
232
- # Cast to float32
233
- logits = outputs.logits.astype(mx.float32)
234
-
235
- # Ensure logits and labels have the same sequence length
236
- def align_logits_with_labels(logits, labels):
237
- if logits.shape[1] < labels.shape[1]:
238
- pad_length = labels.shape[1] - logits.shape[1]
239
- pad_width = ((0, 0), (0, pad_length), (0, 0))
240
- return mx.pad(logits, pad_width, mode="constant", constant_values=-100)
241
- elif logits.shape[1] > labels.shape[1]:
242
- return logits[:, -labels.shape[1] :, :]
243
- return logits
244
-
245
- logits = align_logits_with_labels(logits, labels)
246
-
247
- length_mask = mx.arange(input_ids.shape[1])[None, :] < lengths[:, None]
248
-
249
- # Compute loss only on non-padded tokens
250
- ce = (
251
- nn.losses.cross_entropy(
252
- logits,
253
- labels,
254
- weights=weight_mask,
255
- )
256
- * length_mask
257
- )
258
- ntoks = length_mask.sum()
259
- ce = ce.sum() / ntoks
260
-
261
- return ce
262
-
263
- def train_step(self, batch):
264
- loss_and_grad_fn = nn.value_and_grad(self.model, self.loss_fn)
265
- loss, grads = loss_and_grad_fn(self.model, batch)
266
-
267
- # Add gradient clipping
268
- if self.clip_gradients is not None:
269
- grads = tree_map(
270
- lambda g: mx.clip(g, -self.clip_gradients, self.clip_gradients), grads
271
- )
272
-
273
- self.optimizer.update(self.model, grads)
274
-
275
- return loss
276
-
277
- @mx.compile
278
- def train_epoch(self, dataloader):
279
- total_loss = 0
280
- for batch in dataloader:
281
- loss = self.train_step(batch)
282
- mx.eval(self.model, self.optimizer.state)
283
- total_loss += loss
284
- return total_loss / len(dataloader)
285
-
286
-
287
- def save_adapter(
288
- model: nn.Module,
289
- adapter_file: Union[str, Path],
290
- ):
291
- path = Path(adapter_file)
292
- if hasattr(model.config, "lora"):
293
- with open(path.parent / "adapter_config.json", "w") as f:
294
- json.dump(model.config.lora, f)
295
- flattened_tree = tree_flatten(model.trainable_parameters())
296
- mx.save_safetensors(str(adapter_file), dict(flattened_tree))
@@ -1,160 +0,0 @@
1
- import json
2
- from pathlib import Path
3
-
4
- import mlx.nn as nn
5
- from mlx.utils import tree_flatten
6
-
7
- from .lora import LoRaLayer
8
-
9
-
10
- def get_module_by_name(model, name):
11
- parts = name.split(".")
12
- module = model
13
- for part in parts:
14
- if part.isdigit():
15
- module = module[int(part)]
16
- else:
17
- module = getattr(module, part)
18
- return module
19
-
20
-
21
- def set_module_by_name(model, name, new_module):
22
- parts = name.split(".")
23
- module = model
24
- for part in parts[:-1]:
25
- if part.isdigit():
26
- module = module[int(part)]
27
- else:
28
- module = getattr(module, part)
29
- if parts[-1].isdigit():
30
- module[int(parts[-1])] = new_module
31
- else:
32
- setattr(module, parts[-1], new_module)
33
-
34
-
35
- def get_peft_model(
36
- model, linear_layers, rank=10, alpha=0.1, dropout=0.1, freeze=True, verbose=True
37
- ):
38
- if freeze:
39
- freeze_model(model)
40
-
41
- for name, module in model.language_model.named_modules():
42
- if isinstance(module, nn.Linear) or isinstance(module, nn.QuantizedLinear):
43
- if name.split(".")[-1] in linear_layers:
44
- lora_layer = LoRaLayer(module, rank, alpha, dropout)
45
- set_module_by_name(model.language_model, name, lora_layer)
46
-
47
- model.config.lora = {}
48
- model.config.lora["rank"] = rank
49
- model.config.lora["alpha"] = alpha
50
- model.config.lora["dropout"] = dropout
51
-
52
- if verbose:
53
- print_trainable_parameters(model.language_model)
54
-
55
- return model
56
-
57
-
58
- def freeze_model(model):
59
- for name, module in model.named_modules():
60
- name = name.split(".")[0]
61
- if name in [
62
- "language_model",
63
- "vision_model",
64
- "vision_tower",
65
- "aligner",
66
- "connector",
67
- "multi_modal_projector",
68
- "mm_projector",
69
- ]:
70
- model[f"{name}"].freeze()
71
-
72
-
73
- def find_all_linear_names(model):
74
- cls = nn.Linear
75
- quantized_cls = nn.QuantizedLinear
76
- lora_module_names = set()
77
- multimodal_keywords = [
78
- "mm_projector",
79
- "vision_tower",
80
- "vision_resampler",
81
- "aligner",
82
- ]
83
- for name, module in model.named_modules():
84
- if any(mm_keyword in name for mm_keyword in multimodal_keywords):
85
- continue
86
- if isinstance(module, cls) or isinstance(module, quantized_cls):
87
- names = name.split(".")
88
- lora_module_names.add(names[0] if len(names) == 1 else names[-1])
89
-
90
- if "lm_head" in lora_module_names: # needed for 16-bit
91
- lora_module_names.remove("lm_head")
92
- return list(lora_module_names)
93
-
94
-
95
- def count_parameters(model):
96
- def nparams(m):
97
- if isinstance(m, (nn.QuantizedLinear, nn.QuantizedEmbedding)):
98
- return m.weight.size * (32 // m.bits)
99
- return sum(v.size for _, v in tree_flatten(m.parameters()))
100
-
101
- leaf_modules = tree_flatten(
102
- model.leaf_modules(), is_leaf=lambda m: isinstance(m, nn.Module)
103
- )
104
- total_p = sum(nparams(m) for _, m in leaf_modules) / 10**6
105
-
106
- return total_p
107
-
108
-
109
- def print_trainable_parameters(model):
110
- def nparams(m):
111
- if isinstance(m, (nn.QuantizedLinear, nn.QuantizedEmbedding)):
112
- return m.weight.size * (32 // m.bits)
113
- return sum(v.size for _, v in tree_flatten(m.parameters()))
114
-
115
- leaf_modules = tree_flatten(
116
- model.leaf_modules(), is_leaf=lambda m: isinstance(m, nn.Module)
117
- )
118
- total_p = sum(nparams(m) for _, m in leaf_modules) / 10**6
119
- trainable_p = (
120
- sum(v.size for _, v in tree_flatten(model.trainable_parameters())) / 10**6
121
- )
122
-
123
- print(
124
- f"#trainable params: {trainable_p} M || all params: {total_p} M || trainable%: {(trainable_p * 100 / total_p):.3f}%"
125
- )
126
-
127
-
128
- def apply_lora_layers(model: nn.Module, adapter_path: str) -> nn.Module:
129
- """
130
- Apply LoRA layers to the model.
131
-
132
- Args:
133
- model (nn.Module): The neural network model.
134
- adapter_path (str): Path to the adapter configuration file.
135
-
136
- Returns:
137
- nn.Module: The updated model with LoRA layers applied.
138
- """
139
- adapter_path = Path(adapter_path)
140
-
141
- if not adapter_path.exists():
142
- raise FileNotFoundError(f"The adapter path does not exist: {adapter_path}")
143
-
144
- # Check if the adapter has lora params in the config (adapter_config.json)
145
- with open(adapter_path / "adapter_config.json", "r") as f:
146
- config = json.load(f)
147
- if "rank" not in config:
148
- raise ValueError("The adapter does not have lora params in the config")
149
-
150
- # TODO: add lora params to the config and load them here
151
- list_of_modules = find_all_linear_names(model.language_model.model)
152
- if config is not None:
153
- model = get_peft_model(model, list_of_modules, **config)
154
- else:
155
- model = get_peft_model(model, list_of_modules)
156
-
157
- # TODO: Use custom adapter name
158
- model.load_weights(str(adapter_path / "adapters.safetensors"), strict=False)
159
-
160
- return model