nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc8__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (196) hide show
  1. nexaai/_stub.cpython-310-darwin.so +0 -0
  2. nexaai/_version.py +1 -1
  3. nexaai/binds/libnexa_bridge.dylib +0 -0
  4. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/METADATA +1 -1
  5. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/RECORD +7 -196
  6. nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
  7. nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
  8. nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
  9. nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
  10. nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
  11. nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
  12. nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
  13. nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
  14. nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
  15. nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
  16. nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
  17. nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
  18. nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
  19. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
  20. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
  21. nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
  22. nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
  23. nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
  24. nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
  25. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
  26. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
  27. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
  28. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
  29. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
  30. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
  31. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
  32. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
  33. nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
  34. nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
  35. nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
  36. nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
  37. nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
  38. nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
  39. nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
  40. nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
  41. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
  42. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
  43. nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
  44. nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
  45. nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
  46. nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
  47. nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
  48. nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
  49. nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
  50. nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
  51. nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
  52. nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
  53. nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
  54. nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
  55. nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
  56. nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
  57. nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
  58. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
  59. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
  60. nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
  61. nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
  62. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
  63. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
  64. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
  65. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
  66. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
  67. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
  68. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
  69. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
  70. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
  71. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
  72. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
  73. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
  74. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
  75. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
  76. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
  77. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
  78. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
  79. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
  80. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
  81. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
  82. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
  83. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
  84. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
  85. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
  86. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
  87. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
  88. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
  89. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
  90. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
  91. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
  92. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
  93. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
  94. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
  95. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
  96. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
  97. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
  98. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
  99. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
  100. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
  101. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
  102. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
  103. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
  104. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
  105. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
  106. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
  107. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
  108. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
  109. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
  110. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
  111. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
  112. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
  113. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
  114. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
  115. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
  116. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
  117. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
  118. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
  119. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
  120. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
  121. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
  122. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
  123. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
  124. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
  125. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
  126. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
  127. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
  128. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
  129. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
  130. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
  131. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
  132. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
  133. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
  134. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
  135. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
  136. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
  137. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
  138. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
  139. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
  140. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
  141. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
  142. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
  143. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
  144. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
  145. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
  146. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
  147. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
  148. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
  149. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
  150. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
  151. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
  152. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
  153. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
  154. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
  155. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
  156. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
  157. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
  158. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
  159. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
  160. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
  161. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
  162. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
  163. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
  164. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  165. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
  166. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
  167. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
  168. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
  169. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
  170. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
  171. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
  172. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
  173. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  174. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
  175. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
  176. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
  177. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
  178. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
  179. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
  180. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
  181. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
  182. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
  183. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
  184. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
  185. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
  186. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
  187. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
  188. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
  189. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
  190. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
  191. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
  192. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
  193. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
  194. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
  195. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/WHEEL +0 -0
  196. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/top_level.txt +0 -0
@@ -1,460 +0,0 @@
1
- # Copyright © 2023 Apple Inc.
2
-
3
- import math
4
- from typing import Optional
5
-
6
- import mlx.core as mx
7
- import mlx.nn as nn
8
-
9
- from .config import UNetConfig
10
-
11
-
12
- def upsample_nearest(x, scale: int = 2):
13
- B, H, W, C = x.shape
14
- x = mx.broadcast_to(x[:, :, None, :, None, :], (B, H, scale, W, scale, C))
15
- x = x.reshape(B, H * scale, W * scale, C)
16
-
17
- return x
18
-
19
-
20
- class TimestepEmbedding(nn.Module):
21
- def __init__(self, in_channels: int, time_embed_dim: int):
22
- super().__init__()
23
-
24
- self.linear_1 = nn.Linear(in_channels, time_embed_dim)
25
- self.linear_2 = nn.Linear(time_embed_dim, time_embed_dim)
26
-
27
- def __call__(self, x):
28
- x = self.linear_1(x)
29
- x = nn.silu(x)
30
- x = self.linear_2(x)
31
-
32
- return x
33
-
34
-
35
- class TransformerBlock(nn.Module):
36
- def __init__(
37
- self,
38
- model_dims: int,
39
- num_heads: int,
40
- hidden_dims: Optional[int] = None,
41
- memory_dims: Optional[int] = None,
42
- ):
43
- super().__init__()
44
-
45
- self.norm1 = nn.LayerNorm(model_dims)
46
- self.attn1 = nn.MultiHeadAttention(model_dims, num_heads)
47
- self.attn1.out_proj.bias = mx.zeros(model_dims)
48
-
49
- memory_dims = memory_dims or model_dims
50
- self.norm2 = nn.LayerNorm(model_dims)
51
- self.attn2 = nn.MultiHeadAttention(
52
- model_dims, num_heads, key_input_dims=memory_dims
53
- )
54
- self.attn2.out_proj.bias = mx.zeros(model_dims)
55
-
56
- hidden_dims = hidden_dims or 4 * model_dims
57
- self.norm3 = nn.LayerNorm(model_dims)
58
- self.linear1 = nn.Linear(model_dims, hidden_dims)
59
- self.linear2 = nn.Linear(model_dims, hidden_dims)
60
- self.linear3 = nn.Linear(hidden_dims, model_dims)
61
-
62
- def __call__(self, x, memory, attn_mask, memory_mask):
63
- # Self attention
64
- y = self.norm1(x)
65
- y = self.attn1(y, y, y, attn_mask)
66
- x = x + y
67
-
68
- # Cross attention
69
- y = self.norm2(x)
70
- y = self.attn2(y, memory, memory, memory_mask)
71
- x = x + y
72
-
73
- # FFN
74
- y = self.norm3(x)
75
- y_a = self.linear1(y)
76
- y_b = self.linear2(y)
77
- y = y_a * nn.gelu(y_b)
78
- y = self.linear3(y)
79
- x = x + y
80
-
81
- return x
82
-
83
-
84
- class Transformer2D(nn.Module):
85
- """A transformer model for inputs with 2 spatial dimensions."""
86
-
87
- def __init__(
88
- self,
89
- in_channels: int,
90
- model_dims: int,
91
- encoder_dims: int,
92
- num_heads: int,
93
- num_layers: int = 1,
94
- norm_num_groups: int = 32,
95
- ):
96
- super().__init__()
97
-
98
- self.norm = nn.GroupNorm(norm_num_groups, in_channels, pytorch_compatible=True)
99
- self.proj_in = nn.Linear(in_channels, model_dims)
100
- self.transformer_blocks = [
101
- TransformerBlock(model_dims, num_heads, memory_dims=encoder_dims)
102
- for i in range(num_layers)
103
- ]
104
- self.proj_out = nn.Linear(model_dims, in_channels)
105
-
106
- def __call__(self, x, encoder_x, attn_mask, encoder_attn_mask):
107
- # Save the input to add to the output
108
- input_x = x
109
- dtype = x.dtype
110
-
111
- # Perform the input norm and projection
112
- B, H, W, C = x.shape
113
- x = self.norm(x).reshape(B, -1, C)
114
- x = self.proj_in(x)
115
-
116
- # Apply the transformer
117
- for block in self.transformer_blocks:
118
- x = block(x, encoder_x, attn_mask, encoder_attn_mask)
119
-
120
- # Apply the output projection and reshape
121
- x = self.proj_out(x)
122
- x = x.reshape(B, H, W, C)
123
-
124
- return x + input_x
125
-
126
-
127
- class ResnetBlock2D(nn.Module):
128
- def __init__(
129
- self,
130
- in_channels: int,
131
- out_channels: Optional[int] = None,
132
- groups: int = 32,
133
- temb_channels: Optional[int] = None,
134
- ):
135
- super().__init__()
136
-
137
- out_channels = out_channels or in_channels
138
-
139
- self.norm1 = nn.GroupNorm(groups, in_channels, pytorch_compatible=True)
140
- self.conv1 = nn.Conv2d(
141
- in_channels, out_channels, kernel_size=3, stride=1, padding=1
142
- )
143
- if temb_channels is not None:
144
- self.time_emb_proj = nn.Linear(temb_channels, out_channels)
145
- self.norm2 = nn.GroupNorm(groups, out_channels, pytorch_compatible=True)
146
- self.conv2 = nn.Conv2d(
147
- out_channels, out_channels, kernel_size=3, stride=1, padding=1
148
- )
149
-
150
- if in_channels != out_channels:
151
- self.conv_shortcut = nn.Linear(in_channels, out_channels)
152
-
153
- def __call__(self, x, temb=None):
154
- dtype = x.dtype
155
-
156
- if temb is not None:
157
- temb = self.time_emb_proj(nn.silu(temb))
158
-
159
- y = self.norm1(x)
160
- y = nn.silu(y)
161
- y = self.conv1(y)
162
- if temb is not None:
163
- y = y + temb[:, None, None, :]
164
- y = self.norm2(y)
165
- y = nn.silu(y)
166
- y = self.conv2(y)
167
-
168
- x = y + (x if "conv_shortcut" not in self else self.conv_shortcut(x))
169
-
170
- return x
171
-
172
-
173
- class UNetBlock2D(nn.Module):
174
- def __init__(
175
- self,
176
- in_channels: int,
177
- out_channels: int,
178
- temb_channels: int,
179
- prev_out_channels: Optional[int] = None,
180
- num_layers: int = 1,
181
- transformer_layers_per_block: int = 1,
182
- num_attention_heads: int = 8,
183
- cross_attention_dim=1280,
184
- resnet_groups: int = 32,
185
- add_downsample=True,
186
- add_upsample=True,
187
- add_cross_attention=True,
188
- ):
189
- super().__init__()
190
-
191
- # Prepare the in channels list for the resnets
192
- if prev_out_channels is None:
193
- in_channels_list = [in_channels] + [out_channels] * (num_layers - 1)
194
- else:
195
- in_channels_list = [prev_out_channels] + [out_channels] * (num_layers - 1)
196
- res_channels_list = [out_channels] * (num_layers - 1) + [in_channels]
197
- in_channels_list = [
198
- a + b for a, b in zip(in_channels_list, res_channels_list)
199
- ]
200
-
201
- # Add resnet blocks that also process the time embedding
202
- self.resnets = [
203
- ResnetBlock2D(
204
- in_channels=ic,
205
- out_channels=out_channels,
206
- temb_channels=temb_channels,
207
- groups=resnet_groups,
208
- )
209
- for ic in in_channels_list
210
- ]
211
-
212
- # Add optional cross attention layers
213
- if add_cross_attention:
214
- self.attentions = [
215
- Transformer2D(
216
- in_channels=out_channels,
217
- model_dims=out_channels,
218
- num_heads=num_attention_heads,
219
- num_layers=transformer_layers_per_block,
220
- encoder_dims=cross_attention_dim,
221
- )
222
- for i in range(num_layers)
223
- ]
224
-
225
- # Add an optional downsampling layer
226
- if add_downsample:
227
- self.downsample = nn.Conv2d(
228
- out_channels, out_channels, kernel_size=3, stride=2, padding=1
229
- )
230
-
231
- # or upsampling layer
232
- if add_upsample:
233
- self.upsample = nn.Conv2d(
234
- out_channels, out_channels, kernel_size=3, stride=1, padding=1
235
- )
236
-
237
- def __call__(
238
- self,
239
- x,
240
- encoder_x=None,
241
- temb=None,
242
- attn_mask=None,
243
- encoder_attn_mask=None,
244
- residual_hidden_states=None,
245
- ):
246
- output_states = []
247
-
248
- for i in range(len(self.resnets)):
249
- if residual_hidden_states is not None:
250
- x = mx.concatenate([x, residual_hidden_states.pop()], axis=-1)
251
-
252
- x = self.resnets[i](x, temb)
253
-
254
- if "attentions" in self:
255
- x = self.attentions[i](x, encoder_x, attn_mask, encoder_attn_mask)
256
-
257
- output_states.append(x)
258
-
259
- if "downsample" in self:
260
- x = self.downsample(x)
261
- output_states.append(x)
262
-
263
- if "upsample" in self:
264
- x = self.upsample(upsample_nearest(x))
265
- output_states.append(x)
266
-
267
- return x, output_states
268
-
269
-
270
- class UNetModel(nn.Module):
271
- """The conditional 2D UNet model that actually performs the denoising."""
272
-
273
- def __init__(self, config: UNetConfig):
274
- super().__init__()
275
-
276
- self.conv_in = nn.Conv2d(
277
- config.in_channels,
278
- config.block_out_channels[0],
279
- config.conv_in_kernel,
280
- padding=(config.conv_in_kernel - 1) // 2,
281
- )
282
-
283
- self.timesteps = nn.SinusoidalPositionalEncoding(
284
- config.block_out_channels[0],
285
- max_freq=1,
286
- min_freq=math.exp(
287
- -math.log(10000) + 2 * math.log(10000) / config.block_out_channels[0]
288
- ),
289
- scale=1.0,
290
- cos_first=True,
291
- full_turns=False,
292
- )
293
- self.time_embedding = TimestepEmbedding(
294
- config.block_out_channels[0],
295
- config.block_out_channels[0] * 4,
296
- )
297
-
298
- if config.addition_embed_type == "text_time":
299
- self.add_time_proj = nn.SinusoidalPositionalEncoding(
300
- config.addition_time_embed_dim,
301
- max_freq=1,
302
- min_freq=math.exp(
303
- -math.log(10000)
304
- + 2 * math.log(10000) / config.addition_time_embed_dim
305
- ),
306
- scale=1.0,
307
- cos_first=True,
308
- full_turns=False,
309
- )
310
- self.add_embedding = TimestepEmbedding(
311
- config.projection_class_embeddings_input_dim,
312
- config.block_out_channels[0] * 4,
313
- )
314
-
315
- # Make the downsampling blocks
316
- block_channels = [config.block_out_channels[0]] + list(
317
- config.block_out_channels
318
- )
319
- self.down_blocks = [
320
- UNetBlock2D(
321
- in_channels=in_channels,
322
- out_channels=out_channels,
323
- temb_channels=config.block_out_channels[0] * 4,
324
- num_layers=config.layers_per_block[i],
325
- transformer_layers_per_block=config.transformer_layers_per_block[i],
326
- num_attention_heads=config.num_attention_heads[i],
327
- cross_attention_dim=config.cross_attention_dim[i],
328
- resnet_groups=config.norm_num_groups,
329
- add_downsample=(i < len(config.block_out_channels) - 1),
330
- add_upsample=False,
331
- add_cross_attention="CrossAttn" in config.down_block_types[i],
332
- )
333
- for i, (in_channels, out_channels) in enumerate(
334
- zip(block_channels, block_channels[1:])
335
- )
336
- ]
337
-
338
- # Make the middle block
339
- self.mid_blocks = [
340
- ResnetBlock2D(
341
- in_channels=config.block_out_channels[-1],
342
- out_channels=config.block_out_channels[-1],
343
- temb_channels=config.block_out_channels[0] * 4,
344
- groups=config.norm_num_groups,
345
- ),
346
- Transformer2D(
347
- in_channels=config.block_out_channels[-1],
348
- model_dims=config.block_out_channels[-1],
349
- num_heads=config.num_attention_heads[-1],
350
- num_layers=config.transformer_layers_per_block[-1],
351
- encoder_dims=config.cross_attention_dim[-1],
352
- ),
353
- ResnetBlock2D(
354
- in_channels=config.block_out_channels[-1],
355
- out_channels=config.block_out_channels[-1],
356
- temb_channels=config.block_out_channels[0] * 4,
357
- groups=config.norm_num_groups,
358
- ),
359
- ]
360
-
361
- # Make the upsampling blocks
362
- block_channels = (
363
- [config.block_out_channels[0]]
364
- + list(config.block_out_channels)
365
- + [config.block_out_channels[-1]]
366
- )
367
- self.up_blocks = [
368
- UNetBlock2D(
369
- in_channels=in_channels,
370
- out_channels=out_channels,
371
- temb_channels=config.block_out_channels[0] * 4,
372
- prev_out_channels=prev_out_channels,
373
- num_layers=config.layers_per_block[i] + 1,
374
- transformer_layers_per_block=config.transformer_layers_per_block[i],
375
- num_attention_heads=config.num_attention_heads[i],
376
- cross_attention_dim=config.cross_attention_dim[i],
377
- resnet_groups=config.norm_num_groups,
378
- add_downsample=False,
379
- add_upsample=(i > 0),
380
- add_cross_attention="CrossAttn" in config.up_block_types[i],
381
- )
382
- for i, (in_channels, out_channels, prev_out_channels) in reversed(
383
- list(
384
- enumerate(
385
- zip(block_channels, block_channels[1:], block_channels[2:])
386
- )
387
- )
388
- )
389
- ]
390
-
391
- self.conv_norm_out = nn.GroupNorm(
392
- config.norm_num_groups,
393
- config.block_out_channels[0],
394
- pytorch_compatible=True,
395
- )
396
- self.conv_out = nn.Conv2d(
397
- config.block_out_channels[0],
398
- config.out_channels,
399
- config.conv_out_kernel,
400
- padding=(config.conv_out_kernel - 1) // 2,
401
- )
402
-
403
- def __call__(
404
- self,
405
- x,
406
- timestep,
407
- encoder_x,
408
- attn_mask=None,
409
- encoder_attn_mask=None,
410
- text_time=None,
411
- ):
412
- # Compute the time embeddings
413
- temb = self.timesteps(timestep).astype(x.dtype)
414
- temb = self.time_embedding(temb)
415
-
416
- # Add the extra text_time conditioning
417
- if text_time is not None:
418
- text_emb, time_ids = text_time
419
- emb = self.add_time_proj(time_ids).flatten(1).astype(x.dtype)
420
- emb = mx.concatenate([text_emb, emb], axis=-1)
421
- emb = self.add_embedding(emb)
422
- temb = temb + emb
423
-
424
- # Preprocess the input
425
- x = self.conv_in(x)
426
-
427
- # Run the downsampling part of the unet
428
- residuals = [x]
429
- for block in self.down_blocks:
430
- x, res = block(
431
- x,
432
- encoder_x=encoder_x,
433
- temb=temb,
434
- attn_mask=attn_mask,
435
- encoder_attn_mask=encoder_attn_mask,
436
- )
437
- residuals.extend(res)
438
-
439
- # Run the middle part of the unet
440
- x = self.mid_blocks[0](x, temb)
441
- x = self.mid_blocks[1](x, encoder_x, attn_mask, encoder_attn_mask)
442
- x = self.mid_blocks[2](x, temb)
443
-
444
- # Run the upsampling part of the unet
445
- for block in self.up_blocks:
446
- x, _ = block(
447
- x,
448
- encoder_x=encoder_x,
449
- temb=temb,
450
- attn_mask=attn_mask,
451
- encoder_attn_mask=encoder_attn_mask,
452
- residual_hidden_states=residuals,
453
- )
454
-
455
- # Postprocess the output
456
- x = self.conv_norm_out(x)
457
- x = nn.silu(x)
458
- x = self.conv_out(x)
459
-
460
- return x