nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc8__cp310-cp310-macosx_14_0_universal2.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of nexaai might be problematic. Click here for more details.
- nexaai/_stub.cpython-310-darwin.so +0 -0
- nexaai/_version.py +1 -1
- nexaai/binds/libnexa_bridge.dylib +0 -0
- {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/METADATA +1 -1
- {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/RECORD +7 -196
- nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
- nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
- nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
- nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
- nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
- nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
- nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
- nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
- nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
- nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
- nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
- nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
- nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
- nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
- nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
- nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
- nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
- nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
- nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
- nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
- nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
- nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
- nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
- nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
- nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
- nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
- nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
- nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
- nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
- nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
- nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
- nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
- nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
- nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
- nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
- nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
- {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/WHEEL +0 -0
- {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/top_level.txt +0 -0
|
@@ -1,488 +0,0 @@
|
|
|
1
|
-
import inspect
|
|
2
|
-
import math
|
|
3
|
-
from dataclasses import dataclass
|
|
4
|
-
from typing import Optional, Tuple
|
|
5
|
-
|
|
6
|
-
import mlx.core as mx
|
|
7
|
-
import mlx.nn as nn
|
|
8
|
-
|
|
9
|
-
from ..base import (
|
|
10
|
-
LanguageModelOutput,
|
|
11
|
-
create_attention_mask,
|
|
12
|
-
scaled_dot_product_attention,
|
|
13
|
-
)
|
|
14
|
-
from ..cache import SimpleKVCache
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
@dataclass
|
|
18
|
-
class TextConfig:
|
|
19
|
-
d_model: int = 768
|
|
20
|
-
model_type: str = "florence2"
|
|
21
|
-
encoder_attention_heads: int = 8
|
|
22
|
-
decoder_attention_heads: int = 8
|
|
23
|
-
encoder_ffn_dim: int = 3072
|
|
24
|
-
decoder_ffn_dim: int = 3072
|
|
25
|
-
dropout: float = 0.1
|
|
26
|
-
attention_dropout: float = 0.0
|
|
27
|
-
activation_dropout: float = 0.0
|
|
28
|
-
activation_function: str = "gelu"
|
|
29
|
-
init_std: float = 0.02
|
|
30
|
-
encoder_layerdrop: float = 0.0
|
|
31
|
-
decoder_layerdrop: float = 0.0
|
|
32
|
-
scale_embedding: bool = False
|
|
33
|
-
use_cache: bool = True
|
|
34
|
-
max_position_embeddings: int = 1024
|
|
35
|
-
vocab_size: int = 51289
|
|
36
|
-
pad_token_id: int = 1
|
|
37
|
-
bos_token_id: int = 0
|
|
38
|
-
eos_token_id: int = 2
|
|
39
|
-
encoder_layers: int = 6
|
|
40
|
-
decoder_layers: int = 6
|
|
41
|
-
|
|
42
|
-
@classmethod
|
|
43
|
-
def from_dict(cls, params):
|
|
44
|
-
return cls(
|
|
45
|
-
**{
|
|
46
|
-
k: v
|
|
47
|
-
for k, v in params.items()
|
|
48
|
-
if k in inspect.signature(cls).parameters
|
|
49
|
-
}
|
|
50
|
-
)
|
|
51
|
-
|
|
52
|
-
|
|
53
|
-
class Florence2Attention(nn.Module):
|
|
54
|
-
def __init__(
|
|
55
|
-
self, config: TextConfig, is_decoder: bool = False, is_causal: bool = False
|
|
56
|
-
):
|
|
57
|
-
super().__init__()
|
|
58
|
-
self.embed_dim = config.d_model
|
|
59
|
-
self.num_heads = (
|
|
60
|
-
config.decoder_attention_heads
|
|
61
|
-
if is_decoder
|
|
62
|
-
else config.encoder_attention_heads
|
|
63
|
-
)
|
|
64
|
-
self.is_decoder = is_decoder
|
|
65
|
-
self.is_causal = is_causal
|
|
66
|
-
self.head_dim = self.embed_dim // self.num_heads
|
|
67
|
-
self.scaling = self.head_dim**-0.5
|
|
68
|
-
|
|
69
|
-
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
|
70
|
-
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
|
71
|
-
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
|
72
|
-
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
|
73
|
-
|
|
74
|
-
def __call__(
|
|
75
|
-
self,
|
|
76
|
-
hidden_states,
|
|
77
|
-
key_value_states=None,
|
|
78
|
-
cache: Optional[SimpleKVCache] = None,
|
|
79
|
-
attention_mask=None,
|
|
80
|
-
layer_head_mask=None,
|
|
81
|
-
):
|
|
82
|
-
batch_size, tgt_len, _ = hidden_states.shape
|
|
83
|
-
|
|
84
|
-
q = (
|
|
85
|
-
self.q_proj(hidden_states)
|
|
86
|
-
.reshape(batch_size, tgt_len, self.num_heads, self.head_dim)
|
|
87
|
-
.transpose(0, 2, 1, 3)
|
|
88
|
-
)
|
|
89
|
-
|
|
90
|
-
is_cross_attention = key_value_states is not None
|
|
91
|
-
|
|
92
|
-
batch_size, tgt_len, _ = hidden_states.shape
|
|
93
|
-
src_len = (
|
|
94
|
-
key_value_states.shape[1]
|
|
95
|
-
if key_value_states is not None
|
|
96
|
-
else hidden_states.shape[1]
|
|
97
|
-
)
|
|
98
|
-
|
|
99
|
-
if (
|
|
100
|
-
is_cross_attention
|
|
101
|
-
and cache.cache_length > 0
|
|
102
|
-
and cache.keys.shape[2] == key_value_states.shape[1]
|
|
103
|
-
):
|
|
104
|
-
# k = cache[0]
|
|
105
|
-
# v = cache[1]
|
|
106
|
-
k = cache.keys
|
|
107
|
-
v = cache.values
|
|
108
|
-
|
|
109
|
-
elif is_cross_attention:
|
|
110
|
-
# Cross attention
|
|
111
|
-
k = (
|
|
112
|
-
self.k_proj(key_value_states)
|
|
113
|
-
.reshape(batch_size, src_len, self.num_heads, self.head_dim)
|
|
114
|
-
.transpose(0, 2, 1, 3)
|
|
115
|
-
)
|
|
116
|
-
v = (
|
|
117
|
-
self.v_proj(key_value_states)
|
|
118
|
-
.reshape(batch_size, src_len, self.num_heads, self.head_dim)
|
|
119
|
-
.transpose(0, 2, 1, 3)
|
|
120
|
-
)
|
|
121
|
-
elif cache is not None:
|
|
122
|
-
# reuse k, v, self_attention
|
|
123
|
-
k = (
|
|
124
|
-
self.k_proj(hidden_states)
|
|
125
|
-
.reshape(batch_size, src_len, self.num_heads, -1)
|
|
126
|
-
.transpose(0, 2, 1, 3)
|
|
127
|
-
)
|
|
128
|
-
v = (
|
|
129
|
-
self.v_proj(hidden_states)
|
|
130
|
-
.reshape(batch_size, src_len, self.num_heads, -1)
|
|
131
|
-
.transpose(0, 2, 1, 3)
|
|
132
|
-
)
|
|
133
|
-
|
|
134
|
-
k, v = cache.update_and_fetch(k, v)
|
|
135
|
-
else:
|
|
136
|
-
# Self attention
|
|
137
|
-
k = (
|
|
138
|
-
self.k_proj(hidden_states)
|
|
139
|
-
.reshape(batch_size, src_len, self.num_heads, self.head_dim)
|
|
140
|
-
.transpose(0, 2, 1, 3)
|
|
141
|
-
)
|
|
142
|
-
v = (
|
|
143
|
-
self.v_proj(hidden_states)
|
|
144
|
-
.reshape(batch_size, src_len, self.num_heads, self.head_dim)
|
|
145
|
-
.transpose(0, 2, 1, 3)
|
|
146
|
-
)
|
|
147
|
-
|
|
148
|
-
if self.is_decoder:
|
|
149
|
-
cache.update(k, v)
|
|
150
|
-
|
|
151
|
-
if self.is_causal and self.is_decoder:
|
|
152
|
-
causal_mask = create_attention_mask(hidden_states)
|
|
153
|
-
attention_mask = causal_mask
|
|
154
|
-
|
|
155
|
-
attn_output = (
|
|
156
|
-
scaled_dot_product_attention(
|
|
157
|
-
q, k, v, cache=cache, scale=self.scaling, mask=attention_mask
|
|
158
|
-
)
|
|
159
|
-
.transpose(0, 2, 1, 3)
|
|
160
|
-
.reshape(batch_size, tgt_len, -1)
|
|
161
|
-
)
|
|
162
|
-
|
|
163
|
-
attn_output = self.out_proj(attn_output)
|
|
164
|
-
|
|
165
|
-
return attn_output
|
|
166
|
-
|
|
167
|
-
|
|
168
|
-
class Florence2EncoderLayer(nn.Module):
|
|
169
|
-
def __init__(self, config: TextConfig):
|
|
170
|
-
super().__init__()
|
|
171
|
-
self.embed_dim = config.d_model
|
|
172
|
-
self.self_attn = Florence2Attention(config, is_decoder=False, is_causal=False)
|
|
173
|
-
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
|
|
174
|
-
self.activation_fn = nn.GELU()
|
|
175
|
-
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
|
|
176
|
-
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
|
|
177
|
-
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
|
|
178
|
-
|
|
179
|
-
def __call__(self, hidden_states, attention_mask=None):
|
|
180
|
-
residual = hidden_states
|
|
181
|
-
hidden_states = self.self_attn(hidden_states, attention_mask=attention_mask)
|
|
182
|
-
hidden_states = residual + hidden_states
|
|
183
|
-
hidden_states = self.self_attn_layer_norm(hidden_states)
|
|
184
|
-
|
|
185
|
-
residual = hidden_states
|
|
186
|
-
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
|
187
|
-
hidden_states = self.fc2(hidden_states)
|
|
188
|
-
hidden_states = residual + hidden_states
|
|
189
|
-
hidden_states = self.final_layer_norm(hidden_states)
|
|
190
|
-
|
|
191
|
-
return hidden_states
|
|
192
|
-
|
|
193
|
-
|
|
194
|
-
class Florence2DecoderLayer(nn.Module):
|
|
195
|
-
def __init__(self, config: TextConfig):
|
|
196
|
-
super().__init__()
|
|
197
|
-
self.embed_dim = config.d_model
|
|
198
|
-
self.self_attn = Florence2Attention(config, is_decoder=True, is_causal=True)
|
|
199
|
-
self.dropout = config.dropout
|
|
200
|
-
self.activation_fn = nn.GELU()
|
|
201
|
-
self.activation_dropout = config.activation_dropout
|
|
202
|
-
|
|
203
|
-
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
|
|
204
|
-
self.encoder_attn = Florence2Attention(config, is_decoder=True)
|
|
205
|
-
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
|
|
206
|
-
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
|
|
207
|
-
self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
|
|
208
|
-
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
|
|
209
|
-
|
|
210
|
-
def __call__(
|
|
211
|
-
self,
|
|
212
|
-
hidden_states,
|
|
213
|
-
encoder_hidden_states,
|
|
214
|
-
attention_mask=None,
|
|
215
|
-
encoder_attention_mask=None,
|
|
216
|
-
cache: Optional[Tuple[SimpleKVCache, SimpleKVCache]] = None,
|
|
217
|
-
):
|
|
218
|
-
residual = hidden_states
|
|
219
|
-
|
|
220
|
-
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
|
221
|
-
self_attn_cache = cache[0] if cache[0] is not None else None
|
|
222
|
-
|
|
223
|
-
hidden_states = self.self_attn(
|
|
224
|
-
hidden_states, attention_mask=attention_mask, cache=self_attn_cache
|
|
225
|
-
)
|
|
226
|
-
|
|
227
|
-
hidden_states = residual + hidden_states
|
|
228
|
-
hidden_states = self.self_attn_layer_norm(hidden_states)
|
|
229
|
-
|
|
230
|
-
if encoder_hidden_states is not None:
|
|
231
|
-
residual = hidden_states
|
|
232
|
-
|
|
233
|
-
mask = create_attention_mask(hidden_states)
|
|
234
|
-
|
|
235
|
-
# cross_attn cached key/values tuple is at positions 3,4 of cache tuple
|
|
236
|
-
cross_attn_cache = cache[-1] if cache[-1] is not None else None
|
|
237
|
-
|
|
238
|
-
hidden_states = self.encoder_attn(
|
|
239
|
-
hidden_states,
|
|
240
|
-
key_value_states=encoder_hidden_states,
|
|
241
|
-
attention_mask=mask,
|
|
242
|
-
cache=cross_attn_cache,
|
|
243
|
-
)
|
|
244
|
-
hidden_states = residual + hidden_states
|
|
245
|
-
hidden_states = self.encoder_attn_layer_norm(hidden_states)
|
|
246
|
-
|
|
247
|
-
# Fully Connected
|
|
248
|
-
residual = hidden_states
|
|
249
|
-
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
|
250
|
-
hidden_states = self.fc2(hidden_states)
|
|
251
|
-
hidden_states = residual + hidden_states
|
|
252
|
-
hidden_states = self.final_layer_norm(hidden_states)
|
|
253
|
-
|
|
254
|
-
return hidden_states
|
|
255
|
-
|
|
256
|
-
|
|
257
|
-
class Florence2Encoder(nn.Module):
|
|
258
|
-
def __init__(self, config: TextConfig):
|
|
259
|
-
super().__init__()
|
|
260
|
-
self.config = config
|
|
261
|
-
self.dropout = config.dropout
|
|
262
|
-
self.layerdrop = config.encoder_layerdrop
|
|
263
|
-
|
|
264
|
-
embed_dim = config.d_model
|
|
265
|
-
self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
|
|
266
|
-
self.offset = 2
|
|
267
|
-
self.embed_positions = nn.Embedding(
|
|
268
|
-
config.max_position_embeddings + self.offset, embed_dim
|
|
269
|
-
)
|
|
270
|
-
self.layers = [
|
|
271
|
-
Florence2EncoderLayer(config) for _ in range(config.encoder_layers)
|
|
272
|
-
]
|
|
273
|
-
self.layernorm_embedding = nn.LayerNorm(embed_dim)
|
|
274
|
-
|
|
275
|
-
def __call__(self, input_ids=None, inputs_embeds=None, attention_mask=None):
|
|
276
|
-
|
|
277
|
-
if inputs_embeds is None:
|
|
278
|
-
inputs_embeds = self.embed_tokens(input_ids)
|
|
279
|
-
input_shape = inputs_embeds.shape
|
|
280
|
-
else:
|
|
281
|
-
input_shape = inputs_embeds.shape
|
|
282
|
-
|
|
283
|
-
positions = mx.arange(input_shape[1])
|
|
284
|
-
|
|
285
|
-
if positions.ndim == 1:
|
|
286
|
-
positions = mx.expand_dims(positions, axis=0)
|
|
287
|
-
|
|
288
|
-
embed_pos = self.embed_positions(positions + self.offset)
|
|
289
|
-
|
|
290
|
-
hidden_states = inputs_embeds + embed_pos
|
|
291
|
-
hidden_states = self.layernorm_embedding(hidden_states)
|
|
292
|
-
|
|
293
|
-
for encoder_layer in self.layers:
|
|
294
|
-
# Add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
|
295
|
-
dropout_probability = mx.random.uniform()
|
|
296
|
-
if self.training and (dropout_probability < self.layerdrop):
|
|
297
|
-
continue
|
|
298
|
-
hidden_states = encoder_layer(hidden_states, attention_mask)
|
|
299
|
-
|
|
300
|
-
return hidden_states
|
|
301
|
-
|
|
302
|
-
|
|
303
|
-
class Florence2Decoder(nn.Module):
|
|
304
|
-
def __init__(self, config: TextConfig):
|
|
305
|
-
super().__init__()
|
|
306
|
-
self.config = config
|
|
307
|
-
self.dropout = config.dropout
|
|
308
|
-
self.layerdrop = config.decoder_layerdrop
|
|
309
|
-
self.padding_idx = config.pad_token_id
|
|
310
|
-
self.max_target_positions = config.max_position_embeddings
|
|
311
|
-
self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
|
|
312
|
-
self.offset = 2
|
|
313
|
-
self.embed_positions = nn.Embedding(
|
|
314
|
-
config.max_position_embeddings + self.offset, config.d_model
|
|
315
|
-
)
|
|
316
|
-
self.layers = [
|
|
317
|
-
Florence2DecoderLayer(config) for _ in range(config.decoder_layers)
|
|
318
|
-
]
|
|
319
|
-
self.layernorm_embedding = nn.LayerNorm(config.d_model)
|
|
320
|
-
|
|
321
|
-
def __call__(
|
|
322
|
-
self,
|
|
323
|
-
input_ids=None,
|
|
324
|
-
attention_mask=None,
|
|
325
|
-
encoder_hidden_states=None,
|
|
326
|
-
encoder_attention_mask=None,
|
|
327
|
-
head_mask=None,
|
|
328
|
-
cross_attn_head_mask=None,
|
|
329
|
-
inputs_embeds=None,
|
|
330
|
-
cache=None,
|
|
331
|
-
):
|
|
332
|
-
if input_ids is not None and inputs_embeds is not None:
|
|
333
|
-
raise ValueError(
|
|
334
|
-
"You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time"
|
|
335
|
-
)
|
|
336
|
-
elif input_ids is not None:
|
|
337
|
-
inputs_embeds = self.embed_tokens(input_ids)
|
|
338
|
-
input_shape = inputs_embeds.shape # for 2d masks
|
|
339
|
-
positions = input_ids
|
|
340
|
-
elif inputs_embeds is not None:
|
|
341
|
-
input_shape = inputs_embeds.shape[:-1] # for 4d masks
|
|
342
|
-
positions = inputs_embeds[:, :, -1]
|
|
343
|
-
else:
|
|
344
|
-
raise ValueError(
|
|
345
|
-
"You have to specify either decoder_input_ids or decoder_inputs_embeds"
|
|
346
|
-
)
|
|
347
|
-
|
|
348
|
-
if positions.ndim == 1:
|
|
349
|
-
positions = mx.expand_dims(positions, axis=0)
|
|
350
|
-
|
|
351
|
-
cache_length = cache[0][0].keys.shape[2] if cache[0][0].cache_length > 0 else 0
|
|
352
|
-
|
|
353
|
-
bsz, seq_len = inputs_embeds.shape[:2]
|
|
354
|
-
positions = mx.arange(
|
|
355
|
-
cache_length,
|
|
356
|
-
cache_length + seq_len,
|
|
357
|
-
dtype=mx.int64,
|
|
358
|
-
)
|
|
359
|
-
positions = mx.expand_dims(positions, axis=0)
|
|
360
|
-
|
|
361
|
-
embed_pos = self.embed_positions(positions + self.offset)
|
|
362
|
-
|
|
363
|
-
hidden_states = inputs_embeds + embed_pos
|
|
364
|
-
hidden_states = self.layernorm_embedding(hidden_states)
|
|
365
|
-
|
|
366
|
-
for decoder_layer, c in zip(self.layers, cache):
|
|
367
|
-
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
|
368
|
-
dropout_probability = mx.random.uniform()
|
|
369
|
-
if self.training and (dropout_probability < self.layerdrop):
|
|
370
|
-
continue
|
|
371
|
-
hidden_states = decoder_layer(
|
|
372
|
-
hidden_states=hidden_states,
|
|
373
|
-
encoder_hidden_states=encoder_hidden_states,
|
|
374
|
-
attention_mask=attention_mask,
|
|
375
|
-
encoder_attention_mask=encoder_attention_mask,
|
|
376
|
-
cache=c,
|
|
377
|
-
)
|
|
378
|
-
|
|
379
|
-
return hidden_states
|
|
380
|
-
|
|
381
|
-
|
|
382
|
-
class Florence2LanguageModel(nn.Module):
|
|
383
|
-
def __init__(self, config: TextConfig):
|
|
384
|
-
super().__init__()
|
|
385
|
-
self.config = config
|
|
386
|
-
self.shared = nn.Embedding(config.vocab_size, config.d_model)
|
|
387
|
-
self.encoder = Florence2Encoder(config)
|
|
388
|
-
self.decoder = Florence2Decoder(config)
|
|
389
|
-
if config.scale_embedding:
|
|
390
|
-
self.embed_scale = math.sqrt(config.d_model)
|
|
391
|
-
else:
|
|
392
|
-
self.embed_scale = 1.0
|
|
393
|
-
|
|
394
|
-
def __call__(
|
|
395
|
-
self,
|
|
396
|
-
input_ids=None,
|
|
397
|
-
inputs_embeds=None,
|
|
398
|
-
decoder_input_ids=None,
|
|
399
|
-
decoder_inputs_embeds=None,
|
|
400
|
-
attention_mask=None,
|
|
401
|
-
decoder_attention_mask=None,
|
|
402
|
-
encoder_outputs=None,
|
|
403
|
-
cache=None,
|
|
404
|
-
):
|
|
405
|
-
self.encoder.embed_tokens = self.shared
|
|
406
|
-
self.decoder.embed_tokens = self.shared
|
|
407
|
-
|
|
408
|
-
if decoder_input_ids is None and decoder_inputs_embeds is None:
|
|
409
|
-
if input_ids is None:
|
|
410
|
-
raise ValueError(
|
|
411
|
-
"If no `decoder_input_ids` or `decoder_inputs_embeds` are "
|
|
412
|
-
"passed, `input_ids` cannot be `None`. Please pass either "
|
|
413
|
-
"`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`."
|
|
414
|
-
)
|
|
415
|
-
|
|
416
|
-
decoder_input_ids = mx.zeros_like(input_ids)
|
|
417
|
-
decoder_input_ids[:, 1:] = input_ids[:, :-1]
|
|
418
|
-
decoder_input_ids[:, 0] = self.config.bos_token_id
|
|
419
|
-
|
|
420
|
-
if inputs_embeds is not None:
|
|
421
|
-
inputs_embeds = inputs_embeds * self.embed_scale
|
|
422
|
-
|
|
423
|
-
if cache is None:
|
|
424
|
-
cache = [(SimpleKVCache(), SimpleKVCache())] * len(self.decoder.layers)
|
|
425
|
-
|
|
426
|
-
if encoder_outputs is None:
|
|
427
|
-
encoder_outputs = self.encoder(
|
|
428
|
-
input_ids=input_ids,
|
|
429
|
-
inputs_embeds=inputs_embeds,
|
|
430
|
-
attention_mask=attention_mask,
|
|
431
|
-
)
|
|
432
|
-
|
|
433
|
-
decoder_outputs = self.decoder(
|
|
434
|
-
input_ids=decoder_input_ids,
|
|
435
|
-
attention_mask=decoder_attention_mask,
|
|
436
|
-
encoder_hidden_states=encoder_outputs,
|
|
437
|
-
encoder_attention_mask=attention_mask,
|
|
438
|
-
inputs_embeds=decoder_inputs_embeds,
|
|
439
|
-
cache=cache,
|
|
440
|
-
)
|
|
441
|
-
return decoder_outputs, encoder_outputs
|
|
442
|
-
|
|
443
|
-
|
|
444
|
-
class LanguageModel(nn.Module):
|
|
445
|
-
def __init__(self, config: TextConfig):
|
|
446
|
-
super().__init__()
|
|
447
|
-
self.config = config
|
|
448
|
-
self.model = Florence2LanguageModel(config)
|
|
449
|
-
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
|
|
450
|
-
|
|
451
|
-
def __call__(
|
|
452
|
-
self,
|
|
453
|
-
input_ids=None,
|
|
454
|
-
inputs_embeds=None,
|
|
455
|
-
decoder_input_ids=None,
|
|
456
|
-
decoder_inputs_embeds=None,
|
|
457
|
-
attention_mask=None,
|
|
458
|
-
decoder_attention_mask=None,
|
|
459
|
-
encoder_outputs=None,
|
|
460
|
-
cache=None,
|
|
461
|
-
):
|
|
462
|
-
decoder_outputs, encoder_outputs = self.model(
|
|
463
|
-
input_ids,
|
|
464
|
-
inputs_embeds,
|
|
465
|
-
decoder_input_ids,
|
|
466
|
-
decoder_inputs_embeds,
|
|
467
|
-
attention_mask,
|
|
468
|
-
decoder_attention_mask,
|
|
469
|
-
encoder_outputs,
|
|
470
|
-
cache,
|
|
471
|
-
)
|
|
472
|
-
out = self.lm_head(decoder_outputs)
|
|
473
|
-
return LanguageModelOutput(logits=out, encoder_outputs=encoder_outputs)
|
|
474
|
-
|
|
475
|
-
@property
|
|
476
|
-
def layers(self):
|
|
477
|
-
return range(self.model.config.decoder_layers)
|
|
478
|
-
|
|
479
|
-
@property
|
|
480
|
-
def head_dim(self):
|
|
481
|
-
return self.config.d_model // self.config.decoder_attention_heads
|
|
482
|
-
|
|
483
|
-
@property
|
|
484
|
-
def n_kv_heads(self):
|
|
485
|
-
return self.config.decoder_attention_heads
|
|
486
|
-
|
|
487
|
-
def make_cache(self):
|
|
488
|
-
return [(SimpleKVCache(), SimpleKVCache()) for n in self.layers]
|