nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc8__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (196) hide show
  1. nexaai/_stub.cpython-310-darwin.so +0 -0
  2. nexaai/_version.py +1 -1
  3. nexaai/binds/libnexa_bridge.dylib +0 -0
  4. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/METADATA +1 -1
  5. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/RECORD +7 -196
  6. nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
  7. nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
  8. nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
  9. nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
  10. nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
  11. nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
  12. nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
  13. nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
  14. nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
  15. nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
  16. nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
  17. nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
  18. nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
  19. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
  20. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
  21. nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
  22. nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
  23. nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
  24. nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
  25. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
  26. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
  27. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
  28. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
  29. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
  30. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
  31. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
  32. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
  33. nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
  34. nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
  35. nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
  36. nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
  37. nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
  38. nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
  39. nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
  40. nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
  41. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
  42. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
  43. nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
  44. nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
  45. nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
  46. nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
  47. nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
  48. nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
  49. nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
  50. nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
  51. nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
  52. nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
  53. nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
  54. nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
  55. nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
  56. nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
  57. nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
  58. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
  59. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
  60. nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
  61. nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
  62. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
  63. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
  64. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
  65. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
  66. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
  67. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
  68. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
  69. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
  70. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
  71. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
  72. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
  73. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
  74. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
  75. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
  76. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
  77. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
  78. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
  79. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
  80. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
  81. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
  82. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
  83. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
  84. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
  85. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
  86. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
  87. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
  88. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
  89. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
  90. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
  91. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
  92. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
  93. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
  94. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
  95. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
  96. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
  97. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
  98. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
  99. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
  100. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
  101. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
  102. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
  103. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
  104. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
  105. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
  106. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
  107. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
  108. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
  109. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
  110. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
  111. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
  112. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
  113. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
  114. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
  115. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
  116. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
  117. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
  118. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
  119. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
  120. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
  121. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
  122. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
  123. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
  124. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
  125. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
  126. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
  127. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
  128. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
  129. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
  130. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
  131. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
  132. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
  133. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
  134. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
  135. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
  136. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
  137. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
  138. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
  139. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
  140. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
  141. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
  142. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
  143. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
  144. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
  145. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
  146. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
  147. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
  148. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
  149. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
  150. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
  151. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
  152. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
  153. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
  154. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
  155. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
  156. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
  157. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
  158. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
  159. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
  160. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
  161. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
  162. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
  163. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
  164. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  165. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
  166. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
  167. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
  168. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
  169. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
  170. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
  171. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
  172. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
  173. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  174. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
  175. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
  176. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
  177. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
  178. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
  179. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
  180. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
  181. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
  182. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
  183. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
  184. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
  185. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
  186. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
  187. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
  188. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
  189. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
  190. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
  191. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
  192. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
  193. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
  194. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
  195. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/WHEEL +0 -0
  196. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc8.dist-info}/top_level.txt +0 -0
@@ -1,168 +0,0 @@
1
- import glob
2
- import json
3
- from pathlib import Path
4
- from typing import Optional
5
-
6
- import mlx.core as mx
7
- import mlx.nn as nn
8
- from huggingface_hub import snapshot_download
9
-
10
- from .config import ModelConfig, TextConfig, VisionConfig
11
- from .language import LanguageModel
12
- from .vision import VisionModel
13
-
14
-
15
- class Model(nn.Module):
16
- def __init__(self, config: ModelConfig):
17
- super().__init__()
18
- self.config = config
19
- self.vision_tower = VisionModel(config.vision_config)
20
- self.language_model = LanguageModel(config.text_config, config)
21
-
22
- def get_input_embeddings(
23
- self,
24
- input_ids: Optional[mx.array] = None,
25
- pixel_values: Optional[mx.array] = None,
26
- image_grid_thw: Optional[mx.array] = None,
27
- ):
28
- if pixel_values is None:
29
- return self.language_model.model.embed_tokens(input_ids)
30
-
31
- dtype = self.vision_tower.patch_embed.proj.weight.dtype
32
- pixel_values = pixel_values.astype(dtype)
33
-
34
- # Get the input embeddings from the language model
35
- inputs_embeds = self.language_model.model.embed_tokens(input_ids)
36
-
37
- # Get the ouptut hidden states from the vision model
38
- hidden_states = self.vision_tower(
39
- pixel_values, image_grid_thw, output_hidden_states=False
40
- )
41
-
42
- # Insert special image tokens in the input_ids
43
- final_inputs_embeds = self.merge_input_ids_with_image_features(
44
- self.config.image_token_id,
45
- self.config.video_token_id,
46
- hidden_states,
47
- inputs_embeds,
48
- input_ids,
49
- )
50
- return final_inputs_embeds
51
-
52
- @staticmethod
53
- def merge_input_ids_with_image_features(
54
- image_token_id,
55
- video_token_id,
56
- image_features,
57
- inputs_embeds,
58
- input_ids,
59
- ):
60
- """Merge image features into input embeddings at image token positions.
61
-
62
- Args:
63
- image_token_id: The token ID for image placeholders
64
- video_token_id: The token ID for video placeholders (fallback)
65
- image_features: Vision features from the vision tower [num_features, hidden_dim]
66
- inputs_embeds: Input embeddings [batch_size, seq_len, hidden_dim]
67
- input_ids: Input token IDs [batch_size, seq_len]
68
- grid_thw: Grid dimensions for each image (optional, not used in simple case)
69
-
70
- Returns:
71
- Updated input embeddings with image features inserted
72
- """
73
- # Find positions of image tokens
74
- image_positions = input_ids == image_token_id
75
- if mx.sum(image_positions) == 0:
76
- image_positions = input_ids == video_token_id
77
-
78
- # Get dimensions
79
- batch_size, seq_len = input_ids.shape
80
-
81
- # Process each batch item
82
- batch_outputs = []
83
- feature_start_idx = 0
84
-
85
- for batch_idx in range(batch_size):
86
- # Get mask for this batch
87
- image_mask = image_positions[batch_idx]
88
- num_positions = mx.sum(image_mask).item()
89
-
90
- if num_positions > 0:
91
- # Extract features for this batch
92
- batch_features = image_features[
93
- feature_start_idx : feature_start_idx + num_positions
94
- ]
95
-
96
- # Validate we have the right number of features
97
- if batch_features.shape[0] != num_positions:
98
- raise ValueError(
99
- f"Number of image token positions ({num_positions}) does not match "
100
- f"number of image features ({batch_features.shape[0]}) for batch {batch_idx}"
101
- )
102
-
103
- # Create indices for gathering
104
- cumsum = mx.cumsum(image_mask.astype(mx.int32))
105
- feature_indices = mx.where(image_mask, cumsum - 1, 0)
106
-
107
- # Gather features
108
- gathered_features = batch_features[feature_indices]
109
-
110
- # Combine with original embeddings
111
- image_mask_expanded = mx.expand_dims(image_mask, axis=-1)
112
- batch_output = mx.where(
113
- image_mask_expanded, gathered_features, inputs_embeds[batch_idx]
114
- )
115
-
116
- feature_start_idx += num_positions
117
- else:
118
- # No image tokens in this batch item
119
- batch_output = inputs_embeds[batch_idx]
120
-
121
- batch_outputs.append(batch_output)
122
-
123
- # Stack all batch outputs
124
- return mx.stack(batch_outputs, axis=0)
125
-
126
- @property
127
- def layers(self):
128
- return self.language_model.model.layers
129
-
130
- def __call__(
131
- self,
132
- input_ids: mx.array,
133
- pixel_values: Optional[mx.array] = None,
134
- mask: Optional[mx.array] = None,
135
- cache=None,
136
- **kwargs,
137
- ):
138
- image_grid_thw = kwargs.pop("image_grid_thw", None)
139
- video_grid_thw = kwargs.pop("video_grid_thw", None)
140
- grid_thw = image_grid_thw if image_grid_thw is not None else video_grid_thw
141
-
142
- inputs_embeds = self.get_input_embeddings(input_ids, pixel_values, grid_thw)
143
-
144
- kwargs = {
145
- "pixel_values": pixel_values,
146
- "image_grid_thw": image_grid_thw,
147
- "video_grid_thw": video_grid_thw,
148
- **kwargs,
149
- }
150
-
151
- logits = self.language_model(
152
- input_ids, inputs_embeds, mask=mask, cache=cache, **kwargs
153
- )
154
-
155
- return logits
156
-
157
- def sanitize(self, weights):
158
- def transform_key(key):
159
- if "vision_tower" not in key:
160
- key = key.replace("visual", "vision_tower")
161
- if "language_model" not in key:
162
- if "model" in key:
163
- key = key.replace("model", "language_model.model")
164
- elif "lm_head" in key:
165
- key = key.replace("lm_head", "language_model.lm_head")
166
- return key
167
-
168
- return {transform_key(k): v for k, v in weights.items()}
@@ -1,414 +0,0 @@
1
- from typing import Optional
2
-
3
- import mlx.core as mx
4
- import mlx.nn as nn
5
- import numpy as np
6
-
7
- from .config import VisionConfig
8
-
9
-
10
- def check_array_shape(arr):
11
- shape = arr.shape
12
-
13
- # Check if the shape has 4 dimensions
14
- if len(shape) not in [4, 5]:
15
- return False
16
-
17
- B, out_channels, kH, KW, t = shape
18
-
19
- if t == 3:
20
- return True
21
-
22
- # Check if out_channels is the largest, and kH and KW are the same
23
- if (out_channels >= kH) and (out_channels >= KW) and (kH == KW):
24
- return True
25
- else:
26
- return False
27
-
28
-
29
- def rotate_half(x):
30
- """Rotates half the hidden dims of the input."""
31
- x1 = x[..., : x.shape[-1] // 2]
32
- x2 = x[..., x.shape[-1] // 2 :]
33
- return mx.concatenate([-x2, x1], axis=-1)
34
-
35
-
36
- def apply_rotary_pos_emb_vision(tensor, freqs) -> mx.array:
37
- orig_dtype = tensor.dtype
38
-
39
- cos = mx.cos(freqs)
40
- sin = mx.sin(freqs)
41
-
42
- cos = mx.expand_dims(cos, axis=1) # Equivalent to unsqueeze(1)
43
- cos = mx.tile(cos, (1, 1, 2)) # Equivalent to repeat(1, 1, 2)
44
- cos = mx.expand_dims(cos, axis=0) # Equivalent to [None, ...]
45
-
46
- sin = mx.expand_dims(sin, axis=1) # Equivalent to unsqueeze(1)
47
- sin = mx.tile(sin, (1, 1, 2)) # Equivalent to repeat(1, 1, 2)
48
- sin = mx.expand_dims(sin, axis=0) # Equivalent to [None, ...]
49
-
50
- output = (tensor * cos) + (rotate_half(tensor) * sin)
51
- return output.astype(orig_dtype)
52
-
53
-
54
- class VisionRotaryEmbedding(nn.Module):
55
- def __init__(self, dim: int, theta: float = 10000.0) -> None:
56
- super().__init__()
57
- self.dim = dim
58
- self.theta = theta
59
-
60
- def __call__(self, seqlen: int) -> mx.array:
61
- inv_freq = 1.0 / (
62
- self.theta ** (mx.arange(0, self.dim, 2, dtype=mx.float32) / self.dim)
63
- )
64
- seq = mx.arange(seqlen.item(), dtype=inv_freq.dtype)
65
- freqs = mx.outer(seq, inv_freq)
66
- return freqs
67
-
68
-
69
- class PatchEmbed(nn.Module):
70
- def __init__(
71
- self,
72
- patch_size: int = 14,
73
- temporal_patch_size: int = 2,
74
- in_channels: int = 3,
75
- hidden_size: int = 1152,
76
- ) -> None:
77
- super().__init__()
78
- self.patch_size = patch_size
79
- self.temporal_patch_size = temporal_patch_size
80
- self.in_channels = in_channels
81
- self.hidden_size = hidden_size
82
-
83
- kernel_size = [temporal_patch_size, patch_size, patch_size]
84
- self.proj = nn.Conv3d(
85
- in_channels,
86
- hidden_size,
87
- kernel_size=kernel_size,
88
- stride=kernel_size,
89
- bias=False,
90
- )
91
-
92
- def __call__(self, hidden_states: mx.array) -> mx.array:
93
- hidden_states = hidden_states.reshape(
94
- -1,
95
- self.in_channels,
96
- self.temporal_patch_size,
97
- self.patch_size,
98
- self.patch_size,
99
- ).moveaxis(1, 4)
100
-
101
- hidden_states = self.proj(hidden_states)
102
- hidden_states = hidden_states.reshape(-1, self.hidden_size)
103
- return hidden_states
104
-
105
-
106
- class PatchMerger(nn.Module):
107
- def __init__(self, dim: int, context_dim: int, spatial_merge_size: int = 2) -> None:
108
- super().__init__()
109
- self.hidden_size = context_dim * (spatial_merge_size**2)
110
- self.ln_q = nn.RMSNorm(context_dim, eps=1e-6)
111
- self.mlp = [
112
- nn.Linear(self.hidden_size, self.hidden_size),
113
- nn.GELU(),
114
- nn.Linear(self.hidden_size, dim),
115
- ]
116
-
117
- def __call__(self, x: mx.array) -> mx.array:
118
- x = self.ln_q(x).reshape(-1, self.hidden_size)
119
- for layer in self.mlp:
120
- x = layer(x)
121
- return x
122
-
123
-
124
- class Attention(nn.Module):
125
- def __init__(self, dim: int, num_heads: int = 16) -> None:
126
- super().__init__()
127
- self.num_heads = num_heads
128
- self.head_dim = head_dim = dim // num_heads
129
- self.scale = head_dim**-0.5
130
- self.qkv = nn.Linear(dim, dim * 3, bias=True)
131
- self.proj = nn.Linear(dim, dim)
132
-
133
- def __call__(
134
- self, x: mx.array, cu_seqlens: mx.array, rotary_pos_emb: mx.array = None
135
- ) -> mx.array:
136
- seq_length = x.shape[0]
137
- qkv = (
138
- self.qkv(x).reshape(seq_length, 3, self.num_heads, -1).transpose(1, 0, 2, 3)
139
- )
140
- q, k, v = mx.split(qkv, 3)
141
-
142
- q = apply_rotary_pos_emb_vision(mx.expand_dims(q, 0), rotary_pos_emb)[0]
143
- k = apply_rotary_pos_emb_vision(mx.expand_dims(k, 0), rotary_pos_emb)[0]
144
- attention_mask = mx.full(
145
- (1, seq_length, seq_length), mx.finfo(q.dtype).min, dtype=q.dtype
146
- )
147
-
148
- for i in range(1, len(cu_seqlens)):
149
- start = int(cu_seqlens[i - 1])
150
- end = int(cu_seqlens[i])
151
- attention_mask[..., start:end, start:end] = 0
152
-
153
- q = q.transpose(0, 2, 1, 3)
154
- k = k.transpose(0, 2, 1, 3)
155
- v = v.transpose(0, 2, 1, 3)
156
-
157
- output = mx.fast.scaled_dot_product_attention(
158
- q, k, v, scale=self.scale, mask=attention_mask
159
- )
160
- output = output.transpose(0, 2, 1, 3)
161
- output = output.reshape(seq_length, -1)
162
- return self.proj(output)
163
-
164
-
165
- class MLP(nn.Module):
166
- def __init__(self, dim, hidden_dim):
167
- super().__init__()
168
- self.gate_proj = nn.Linear(dim, hidden_dim)
169
- self.up_proj = nn.Linear(dim, hidden_dim)
170
- self.down_proj = nn.Linear(hidden_dim, dim)
171
-
172
- def __call__(self, x: mx.array) -> mx.array:
173
- return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
174
-
175
-
176
- class Qwen2VLVisionBlock(nn.Module):
177
- def __init__(self, config: VisionConfig) -> None:
178
- super().__init__()
179
- self.norm1 = nn.RMSNorm(config.hidden_size, eps=1e-6)
180
- self.norm2 = nn.RMSNorm(config.hidden_size, eps=1e-6)
181
-
182
- self.attn = Attention(dim=config.hidden_size, num_heads=config.num_heads)
183
- self.mlp = MLP(dim=config.hidden_size, hidden_dim=config.intermediate_size)
184
-
185
- def __call__(self, hidden_states, cu_seqlens, rotary_pos_emb) -> mx.array:
186
- hidden_states = hidden_states + self.attn(
187
- self.norm1(hidden_states),
188
- cu_seqlens=cu_seqlens,
189
- rotary_pos_emb=rotary_pos_emb,
190
- )
191
- hidden_states = hidden_states + self.mlp(self.norm2(hidden_states))
192
- return hidden_states
193
-
194
-
195
- class VisionModel(nn.Module):
196
-
197
- def __init__(self, config: VisionConfig) -> None:
198
- super().__init__()
199
- self.config = config
200
- self.model_type = config.model_type
201
- if self.model_type != "qwen2_5_vl":
202
- raise ValueError(f"Unsupported model type: {self.model_type}")
203
- self.spatial_merge_size = config.spatial_merge_size
204
-
205
- self.patch_embed = PatchEmbed(
206
- patch_size=config.patch_size,
207
- temporal_patch_size=config.temporal_patch_size,
208
- in_channels=config.in_channels,
209
- hidden_size=config.hidden_size,
210
- )
211
-
212
- self.window_size = config.window_size
213
- self.patch_size = config.patch_size
214
- self.spatial_merge_unit = self.spatial_merge_size * self.spatial_merge_size
215
- self.fullatt_block_indexes = config.fullatt_block_indexes
216
- head_dim = config.hidden_size // config.num_heads
217
- self.rotary_pos_emb = VisionRotaryEmbedding(head_dim // 2)
218
-
219
- self.blocks = [Qwen2VLVisionBlock(config) for _ in range(config.depth)]
220
- self.merger = PatchMerger(
221
- dim=config.out_hidden_size, context_dim=config.hidden_size
222
- )
223
-
224
- def rot_pos_emb(self, grid_thw):
225
- pos_ids = []
226
-
227
- for t, h, w in grid_thw.tolist():
228
- hpos_ids = mx.expand_dims(mx.arange(h), 1)
229
- hpos_ids = mx.repeat(hpos_ids, w, axis=1)
230
- hpos_ids = hpos_ids.reshape(
231
- h // self.spatial_merge_size,
232
- self.spatial_merge_size,
233
- w // self.spatial_merge_size,
234
- self.spatial_merge_size,
235
- )
236
- hpos_ids = mx.transpose(hpos_ids, (0, 2, 1, 3))
237
- hpos_ids = hpos_ids.flatten()
238
-
239
- wpos_ids = mx.expand_dims(mx.arange(w), 0)
240
- wpos_ids = mx.repeat(wpos_ids, h, axis=0)
241
- wpos_ids = wpos_ids.reshape(
242
- h // self.spatial_merge_size,
243
- self.spatial_merge_size,
244
- w // self.spatial_merge_size,
245
- self.spatial_merge_size,
246
- )
247
- wpos_ids = mx.transpose(wpos_ids, (0, 2, 1, 3))
248
- wpos_ids = wpos_ids.flatten()
249
-
250
- stacked_pos_ids = mx.stack([hpos_ids, wpos_ids], axis=-1)
251
- pos_ids.append(mx.tile(stacked_pos_ids, (t, 1)))
252
-
253
- pos_ids = mx.concatenate(pos_ids, axis=0)
254
- max_grid_size = mx.max(grid_thw[:, 1:])
255
- rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size)
256
- rotary_pos_emb = rotary_pos_emb_full[pos_ids]
257
-
258
- return rotary_pos_emb.reshape(pos_ids.shape[0], -1)
259
-
260
- def get_window_index(self, grid_thw):
261
- window_index = []
262
- cu_window_seqlens = [0]
263
- window_index_id = 0
264
- vit_merger_window_size = (
265
- self.window_size // self.spatial_merge_size // self.patch_size
266
- )
267
-
268
- for grid_t, grid_h, grid_w in grid_thw.tolist():
269
- llm_grid_h = grid_h // self.spatial_merge_size
270
- llm_grid_w = grid_w // self.spatial_merge_size
271
-
272
- index = mx.arange(grid_t * llm_grid_h * llm_grid_w).reshape(
273
- grid_t, llm_grid_h, llm_grid_w
274
- )
275
-
276
- pad_h = vit_merger_window_size - llm_grid_h % vit_merger_window_size
277
- pad_w = vit_merger_window_size - llm_grid_w % vit_merger_window_size
278
- num_windows_h = (llm_grid_h + pad_h) // vit_merger_window_size
279
- num_windows_w = (llm_grid_w + pad_w) // vit_merger_window_size
280
-
281
- # Replace F.pad with np.pad
282
- index_padded = mx.pad(
283
- index,
284
- ((0, 0), (0, pad_h), (0, pad_w)),
285
- mode="constant",
286
- constant_values=-100,
287
- )
288
-
289
- index_padded = index_padded.reshape(
290
- grid_t,
291
- num_windows_h,
292
- vit_merger_window_size,
293
- num_windows_w,
294
- vit_merger_window_size,
295
- )
296
-
297
- # Replace permute with np.transpose
298
- index_padded = mx.transpose(index_padded, (0, 1, 3, 2, 4)).reshape(
299
- grid_t,
300
- num_windows_h * num_windows_w,
301
- vit_merger_window_size,
302
- vit_merger_window_size,
303
- )
304
-
305
- # Replace torch operations with numpy
306
- seqlens = mx.sum(index_padded != -100, axis=(2, 3)).reshape(-1)
307
- index_padded = index_padded.reshape(-1)
308
- index = np.where(index_padded != -100)[
309
- 0
310
- ].tolist() # [i for i, x in enumerate(index_padded) if x != -100]
311
- index_new = index_padded[index]
312
-
313
- window_index.append(index_new + window_index_id)
314
- cu_seqlens_tmp = (
315
- mx.cumsum(seqlens, axis=0) * self.spatial_merge_unit
316
- + cu_window_seqlens[-1]
317
- )
318
- cu_window_seqlens.extend(cu_seqlens_tmp.tolist())
319
- window_index_id += int(grid_t * llm_grid_h * llm_grid_w)
320
-
321
- # Replace torch.cat with np.concatenate
322
- window_index = mx.concatenate(window_index, axis=0)
323
- cu_window_seqlens = mx.array(cu_window_seqlens)
324
-
325
- return window_index, cu_window_seqlens
326
-
327
- def __call__(
328
- self,
329
- hidden_states: mx.array,
330
- grid_thw: mx.array,
331
- output_hidden_states: Optional[bool] = None,
332
- ) -> mx.array:
333
-
334
- hidden_states = self.patch_embed(hidden_states)
335
- rotary_pos_emb = self.rot_pos_emb(grid_thw)
336
- window_index, cu_window_seqlens = self.get_window_index(grid_thw)
337
-
338
- # Get indices of first occurrence of each unique value
339
- seen = set()
340
- idx = []
341
- for i, x in enumerate(cu_window_seqlens):
342
- if x not in seen:
343
- seen.add(x)
344
- idx.append(i)
345
-
346
- idx = mx.array(idx, dtype=mx.int32)
347
- cu_window_seqlens = cu_window_seqlens[idx]
348
-
349
- seq_len, _ = hidden_states.shape
350
- hidden_states = hidden_states.reshape(
351
- seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1
352
- )
353
- hidden_states = hidden_states[window_index, :, :]
354
- hidden_states = hidden_states.reshape(seq_len, -1)
355
- rotary_pos_emb = rotary_pos_emb.reshape(
356
- seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1
357
- )
358
- rotary_pos_emb = rotary_pos_emb[window_index, :, :]
359
- rotary_pos_emb = rotary_pos_emb.reshape(seq_len, -1)
360
-
361
- # Assuming grid_thw has shape (batch_size, 3)
362
- batch_size = grid_thw.shape[0]
363
-
364
- # Calculate cu_seqlens for each item in the batch
365
- cu_seqlens = []
366
- for i in range(batch_size):
367
- seq_len = grid_thw[i, 1] * grid_thw[i, 2]
368
- cu_seqlens.append(mx.repeat(seq_len, grid_thw[i, 0]))
369
-
370
- # Concatenate the cu_seqlens for all items in the batch
371
- cu_seqlens = mx.concatenate(cu_seqlens)
372
-
373
- cu_seqlens = mx.cumsum(cu_seqlens.astype(mx.int32), axis=0)
374
- cu_seqlens = mx.pad(cu_seqlens, (1, 0), mode="constant", constant_values=0)
375
-
376
- encoder_states = (hidden_states,) if output_hidden_states else None
377
-
378
- for layer_num, blk in enumerate(self.blocks):
379
- if layer_num in self.fullatt_block_indexes:
380
- cu_seqlens_now = cu_seqlens
381
- else:
382
- cu_seqlens_now = cu_window_seqlens
383
-
384
- hidden_states = blk(
385
- hidden_states, cu_seqlens=cu_seqlens_now, rotary_pos_emb=rotary_pos_emb
386
- )
387
-
388
- if output_hidden_states:
389
- encoder_states = encoder_states + (hidden_states,)
390
-
391
- hidden_states = self.merger(hidden_states)
392
- reverse_indices = mx.argsort(window_index, axis=0)
393
- hidden_states = hidden_states[reverse_indices, :]
394
- return hidden_states
395
-
396
- def sanitize(self, weights):
397
- sanitized_weights = {}
398
- for k, v in weights.items():
399
- if "position_ids" in k:
400
- # Remove unused position_ids
401
- continue
402
- elif "patch_embed.proj.weight" in k:
403
- # PyTorch conv2d weight tensors have shape:
404
- # [out_channels, in_channels, kH, KW]
405
- # MLX conv2d expects the weight be of shape:
406
- # [out_channels, kH, KW, in_channels]
407
- if check_array_shape(v):
408
- sanitized_weights[k] = v
409
- else:
410
- sanitized_weights[k] = v.transpose(0, 2, 3, 4, 1)
411
- else:
412
- sanitized_weights[k] = v
413
-
414
- return sanitized_weights
@@ -1,2 +0,0 @@
1
- from .config import ModelConfig, TextConfig, VisionConfig
2
- from .qwen2_vl import LanguageModel, Model, VisionModel
@@ -1,104 +0,0 @@
1
- import inspect
2
- from dataclasses import dataclass
3
- from typing import Dict, List, Optional, Union
4
-
5
-
6
- @dataclass
7
- class VisionConfig:
8
- model_type: str = "qwen2_vl"
9
- depth: int = 32
10
- embed_dim: int = 1280
11
- hidden_size: int = 1536
12
- num_heads: int = 16
13
- image_size: int = 384
14
- patch_size: int = 14
15
- vocab_size: int = 32000
16
- mlp_ratio: float = 4.0
17
- in_channels: int = 3
18
- layer_norm_eps: float = 1e-6
19
- spatial_patch_size: int = 14
20
- spatial_merge_size: int = 2
21
- temporal_patch_size: int = 2
22
-
23
- @classmethod
24
- def from_dict(cls, params):
25
- return cls(
26
- **{
27
- k: v
28
- for k, v in params.items()
29
- if k in inspect.signature(cls).parameters
30
- }
31
- )
32
-
33
-
34
- @dataclass
35
- class TextConfig:
36
- model_type: str
37
- hidden_size: int
38
- num_hidden_layers: int
39
- intermediate_size: int
40
- num_attention_heads: int
41
- rms_norm_eps: float
42
- vocab_size: int
43
- num_key_value_heads: Optional[int] = 8
44
- max_position_embeddings: Optional[int] = 40960
45
- rope_theta: float = 1000000.0
46
- rope_traditional: bool = False
47
- rope_scaling: Optional[Dict[str, Union[float, str]]] = None
48
- tie_word_embeddings: bool = False
49
- sliding_window: int = 32768
50
- use_sliding_window: bool = False
51
- use_cache: bool = True
52
-
53
- def __post_init__(self):
54
- if self.num_key_value_heads is None:
55
- self.num_key_value_heads = self.num_attention_heads
56
-
57
- if self.rope_scaling:
58
- required_keys = {"mrope_section", "type"}
59
- if not all(key in self.rope_scaling for key in required_keys):
60
- raise ValueError(f"rope_scaling must contain keys {required_keys}")
61
-
62
- if not self.rope_scaling["type"] in ["mrope", "default"]:
63
- raise ValueError(f"rope_scaling type must be 'mrope' or 'default'")
64
-
65
- @classmethod
66
- def from_dict(cls, params):
67
- return cls(
68
- **{
69
- k: v
70
- for k, v in params.items()
71
- if k in inspect.signature(cls).parameters
72
- }
73
- )
74
-
75
-
76
- @dataclass
77
- class ModelConfig:
78
- text_config: TextConfig
79
- vision_config: VisionConfig
80
- model_type: str
81
- ignore_index: int = -100
82
- image_token_id: int = 151655
83
- video_token_id: int = 151656
84
- vision_start_token_id: int = 151652
85
- vision_feature_select_strategy: str = "default"
86
- vision_feature_layer: int = -2
87
- vocab_size: int = 32000
88
- eos_token_id: Optional[List[int]] = None
89
-
90
- @classmethod
91
- def from_dict(cls, params):
92
- # Copy text config parameters from root level
93
- excluded_keys = {"vision_config"}
94
- params["text_config"] = dict(
95
- filter(lambda x: x[0] not in excluded_keys, params.items())
96
- )
97
-
98
- return cls(
99
- **{
100
- k: v
101
- for k, v in params.items()
102
- if k in inspect.signature(cls).parameters
103
- }
104
- )