ai-edge-torch-nightly 0.3.0.dev20250114__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- ai_edge_torch/__init__.py +32 -0
- ai_edge_torch/_config.py +69 -0
- ai_edge_torch/_convert/__init__.py +14 -0
- ai_edge_torch/_convert/conversion.py +153 -0
- ai_edge_torch/_convert/conversion_utils.py +64 -0
- ai_edge_torch/_convert/converter.py +270 -0
- ai_edge_torch/_convert/fx_passes/__init__.py +23 -0
- ai_edge_torch/_convert/fx_passes/build_aten_composite_pass.py +288 -0
- ai_edge_torch/_convert/fx_passes/build_interpolate_composite_pass.py +131 -0
- ai_edge_torch/_convert/fx_passes/inject_mlir_debuginfo_pass.py +73 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/__init__.py +16 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_check.py +258 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_mark.py +50 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +18 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +68 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +216 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +449 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +30 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/pass_body.py +303 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/utils.py +64 -0
- ai_edge_torch/_convert/fx_passes/remove_non_user_outputs_pass.py +52 -0
- ai_edge_torch/_convert/signature.py +66 -0
- ai_edge_torch/_convert/test/__init__.py +14 -0
- ai_edge_torch/_convert/test/test_convert.py +558 -0
- ai_edge_torch/_convert/test/test_convert_composites.py +234 -0
- ai_edge_torch/_convert/test/test_convert_multisig.py +189 -0
- ai_edge_torch/_convert/test/test_to_channel_last_io.py +96 -0
- ai_edge_torch/_convert/to_channel_last_io.py +92 -0
- ai_edge_torch/conftest.py +20 -0
- ai_edge_torch/debug/__init__.py +17 -0
- ai_edge_torch/debug/culprit.py +496 -0
- ai_edge_torch/debug/test/__init__.py +14 -0
- ai_edge_torch/debug/test/test_culprit.py +140 -0
- ai_edge_torch/debug/test/test_search_model.py +51 -0
- ai_edge_torch/debug/utils.py +59 -0
- ai_edge_torch/experimental/__init__.py +14 -0
- ai_edge_torch/fx_pass_base.py +110 -0
- ai_edge_torch/generative/__init__.py +14 -0
- ai_edge_torch/generative/examples/__init__.py +14 -0
- ai_edge_torch/generative/examples/amd_llama_135m/__init__.py +14 -0
- ai_edge_torch/generative/examples/amd_llama_135m/amd_llama_135m.py +87 -0
- ai_edge_torch/generative/examples/amd_llama_135m/convert_to_tflite.py +70 -0
- ai_edge_torch/generative/examples/amd_llama_135m/verify.py +72 -0
- ai_edge_torch/generative/examples/gemma/__init__.py +14 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/gemma/gemma1.py +107 -0
- ai_edge_torch/generative/examples/gemma/gemma2.py +295 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma1.py +56 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma2.py +43 -0
- ai_edge_torch/generative/examples/gemma/verify_util.py +157 -0
- ai_edge_torch/generative/examples/llama/__init__.py +14 -0
- ai_edge_torch/generative/examples/llama/convert_to_tflite.py +91 -0
- ai_edge_torch/generative/examples/llama/llama.py +196 -0
- ai_edge_torch/generative/examples/llama/verify.py +88 -0
- ai_edge_torch/generative/examples/moonshine/__init__.py +14 -0
- ai_edge_torch/generative/examples/moonshine/convert_moonshine_to_tflite.py +50 -0
- ai_edge_torch/generative/examples/moonshine/moonshine.py +103 -0
- ai_edge_torch/generative/examples/openelm/__init__.py +14 -0
- ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/openelm/openelm.py +127 -0
- ai_edge_torch/generative/examples/openelm/verify.py +71 -0
- ai_edge_torch/generative/examples/paligemma/__init__.py +14 -0
- ai_edge_torch/generative/examples/paligemma/convert_to_tflite.py +95 -0
- ai_edge_torch/generative/examples/paligemma/decoder.py +151 -0
- ai_edge_torch/generative/examples/paligemma/decoder2.py +177 -0
- ai_edge_torch/generative/examples/paligemma/image_encoder.py +160 -0
- ai_edge_torch/generative/examples/paligemma/paligemma.py +179 -0
- ai_edge_torch/generative/examples/paligemma/verify.py +161 -0
- ai_edge_torch/generative/examples/paligemma/verify_decoder.py +75 -0
- ai_edge_torch/generative/examples/paligemma/verify_decoder2.py +72 -0
- ai_edge_torch/generative/examples/paligemma/verify_image_encoder.py +99 -0
- ai_edge_torch/generative/examples/phi/__init__.py +14 -0
- ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/phi/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/phi/phi2.py +107 -0
- ai_edge_torch/generative/examples/phi/phi3.py +219 -0
- ai_edge_torch/generative/examples/phi/verify.py +64 -0
- ai_edge_torch/generative/examples/phi/verify_phi3.py +69 -0
- ai_edge_torch/generative/examples/qwen/__init__.py +14 -0
- ai_edge_torch/generative/examples/qwen/convert_to_tflite.py +93 -0
- ai_edge_torch/generative/examples/qwen/qwen.py +134 -0
- ai_edge_torch/generative/examples/qwen/verify.py +88 -0
- ai_edge_torch/generative/examples/smollm/__init__.py +14 -0
- ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/smollm/convert_v2_to_tflite.py +71 -0
- ai_edge_torch/generative/examples/smollm/smollm.py +125 -0
- ai_edge_torch/generative/examples/smollm/verify.py +86 -0
- ai_edge_torch/generative/examples/stable_diffusion/__init__.py +14 -0
- ai_edge_torch/generative/examples/stable_diffusion/attention.py +108 -0
- ai_edge_torch/generative/examples/stable_diffusion/clip.py +185 -0
- ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +173 -0
- ai_edge_torch/generative/examples/stable_diffusion/decoder.py +398 -0
- ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +749 -0
- ai_edge_torch/generative/examples/stable_diffusion/encoder.py +119 -0
- ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +254 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/__init__.py +19 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +62 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +66 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +74 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +39 -0
- ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +111 -0
- ai_edge_torch/generative/examples/stable_diffusion/util.py +77 -0
- ai_edge_torch/generative/examples/t5/__init__.py +14 -0
- ai_edge_torch/generative/examples/t5/convert_to_tflite.py +138 -0
- ai_edge_torch/generative/examples/t5/t5.py +655 -0
- ai_edge_torch/generative/examples/t5/t5_attention.py +246 -0
- ai_edge_torch/generative/examples/test_models/__init__.py +14 -0
- ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
- ai_edge_torch/generative/examples/test_models/toy_model.py +156 -0
- ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +138 -0
- ai_edge_torch/generative/examples/tiny_llama/__init__.py +14 -0
- ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +88 -0
- ai_edge_torch/generative/examples/tiny_llama/verify.py +72 -0
- ai_edge_torch/generative/fx_passes/__init__.py +30 -0
- ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +50 -0
- ai_edge_torch/generative/layers/__init__.py +14 -0
- ai_edge_torch/generative/layers/attention.py +399 -0
- ai_edge_torch/generative/layers/attention_utils.py +210 -0
- ai_edge_torch/generative/layers/builder.py +160 -0
- ai_edge_torch/generative/layers/feed_forward.py +120 -0
- ai_edge_torch/generative/layers/kv_cache.py +204 -0
- ai_edge_torch/generative/layers/lora.py +557 -0
- ai_edge_torch/generative/layers/model_config.py +238 -0
- ai_edge_torch/generative/layers/normalization.py +222 -0
- ai_edge_torch/generative/layers/rotary_position_embedding.py +94 -0
- ai_edge_torch/generative/layers/scaled_dot_product_attention.py +144 -0
- ai_edge_torch/generative/layers/unet/__init__.py +14 -0
- ai_edge_torch/generative/layers/unet/blocks_2d.py +806 -0
- ai_edge_torch/generative/layers/unet/builder.py +50 -0
- ai_edge_torch/generative/layers/unet/model_config.py +282 -0
- ai_edge_torch/generative/quantize/__init__.py +14 -0
- ai_edge_torch/generative/quantize/example.py +47 -0
- ai_edge_torch/generative/quantize/quant_attrs.py +68 -0
- ai_edge_torch/generative/quantize/quant_recipe.py +154 -0
- ai_edge_torch/generative/quantize/quant_recipe_utils.py +62 -0
- ai_edge_torch/generative/quantize/quant_recipes.py +56 -0
- ai_edge_torch/generative/quantize/supported_schemes.py +32 -0
- ai_edge_torch/generative/test/__init__.py +14 -0
- ai_edge_torch/generative/test/test_custom_dus.py +107 -0
- ai_edge_torch/generative/test/test_kv_cache.py +120 -0
- ai_edge_torch/generative/test/test_loader.py +83 -0
- ai_edge_torch/generative/test/test_lora.py +147 -0
- ai_edge_torch/generative/test/test_model_conversion.py +191 -0
- ai_edge_torch/generative/test/test_model_conversion_large.py +362 -0
- ai_edge_torch/generative/test/test_quantize.py +183 -0
- ai_edge_torch/generative/test/utils.py +82 -0
- ai_edge_torch/generative/utilities/__init__.py +15 -0
- ai_edge_torch/generative/utilities/converter.py +215 -0
- ai_edge_torch/generative/utilities/dynamic_update_slice.py +56 -0
- ai_edge_torch/generative/utilities/loader.py +398 -0
- ai_edge_torch/generative/utilities/model_builder.py +180 -0
- ai_edge_torch/generative/utilities/moonshine_loader.py +154 -0
- ai_edge_torch/generative/utilities/stable_diffusion_loader.py +1032 -0
- ai_edge_torch/generative/utilities/t5_loader.py +512 -0
- ai_edge_torch/generative/utilities/transformers_verifier.py +42 -0
- ai_edge_torch/generative/utilities/verifier.py +335 -0
- ai_edge_torch/hlfb/__init__.py +16 -0
- ai_edge_torch/hlfb/mark_pattern/__init__.py +153 -0
- ai_edge_torch/hlfb/mark_pattern/fx_utils.py +69 -0
- ai_edge_torch/hlfb/mark_pattern/pattern.py +288 -0
- ai_edge_torch/hlfb/test/__init__.py +14 -0
- ai_edge_torch/hlfb/test/test_mark_pattern.py +185 -0
- ai_edge_torch/lowertools/__init__.py +18 -0
- ai_edge_torch/lowertools/_shim.py +86 -0
- ai_edge_torch/lowertools/common_utils.py +142 -0
- ai_edge_torch/lowertools/odml_torch_utils.py +260 -0
- ai_edge_torch/lowertools/test_utils.py +62 -0
- ai_edge_torch/lowertools/torch_xla_utils.py +301 -0
- ai_edge_torch/lowertools/translate_recipe.py +163 -0
- ai_edge_torch/model.py +177 -0
- ai_edge_torch/odml_torch/__init__.py +20 -0
- ai_edge_torch/odml_torch/_torch_future.py +88 -0
- ai_edge_torch/odml_torch/_torch_library.py +19 -0
- ai_edge_torch/odml_torch/composite/__init__.py +16 -0
- ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
- ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
- ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
- ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
- ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
- ai_edge_torch/odml_torch/export.py +403 -0
- ai_edge_torch/odml_torch/export_utils.py +157 -0
- ai_edge_torch/odml_torch/jax_bridge/__init__.py +18 -0
- ai_edge_torch/odml_torch/jax_bridge/_wrap.py +180 -0
- ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
- ai_edge_torch/odml_torch/lowerings/__init__.py +27 -0
- ai_edge_torch/odml_torch/lowerings/_basic.py +294 -0
- ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
- ai_edge_torch/odml_torch/lowerings/_convolution.py +243 -0
- ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +285 -0
- ai_edge_torch/odml_torch/lowerings/_layer_norm.py +87 -0
- ai_edge_torch/odml_torch/lowerings/_quantized_decomposed.py +177 -0
- ai_edge_torch/odml_torch/lowerings/_rand.py +142 -0
- ai_edge_torch/odml_torch/lowerings/context.py +42 -0
- ai_edge_torch/odml_torch/lowerings/decomp.py +69 -0
- ai_edge_torch/odml_torch/lowerings/registry.py +65 -0
- ai_edge_torch/odml_torch/lowerings/utils.py +201 -0
- ai_edge_torch/odml_torch/passes/__init__.py +38 -0
- ai_edge_torch/odml_torch/tf_integration.py +156 -0
- ai_edge_torch/quantize/__init__.py +16 -0
- ai_edge_torch/quantize/pt2e_quantizer.py +466 -0
- ai_edge_torch/quantize/pt2e_quantizer_utils.py +1061 -0
- ai_edge_torch/quantize/quant_config.py +85 -0
- ai_edge_torch/testing/__init__.py +14 -0
- ai_edge_torch/testing/model_coverage/__init__.py +16 -0
- ai_edge_torch/testing/model_coverage/model_coverage.py +145 -0
- ai_edge_torch/version.py +16 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/LICENSE +202 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/METADATA +44 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/RECORD +213 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/WHEEL +5 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/top_level.txt +1 -0
@@ -0,0 +1,234 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
"""Tests conversion modules that are meant to be wrapped as composites."""
|
16
|
+
|
17
|
+
from collections.abc import Callable
|
18
|
+
|
19
|
+
import ai_edge_torch
|
20
|
+
from ai_edge_torch.testing import model_coverage
|
21
|
+
import parameterized
|
22
|
+
import torch
|
23
|
+
|
24
|
+
from absl.testing import absltest as googletest
|
25
|
+
|
26
|
+
|
27
|
+
def _func_to_torch_module(func: Callable[..., torch.Tensor]):
|
28
|
+
"""Wraps a function into a torch module."""
|
29
|
+
|
30
|
+
class TestModule(torch.nn.Module):
|
31
|
+
|
32
|
+
def __init__(self, func):
|
33
|
+
super().__init__()
|
34
|
+
self._func = func
|
35
|
+
|
36
|
+
def forward(self, *args, **kwargs):
|
37
|
+
return self._func(*args, **kwargs)
|
38
|
+
|
39
|
+
return TestModule(func).eval()
|
40
|
+
|
41
|
+
|
42
|
+
class TestConvertComposites(googletest.TestCase):
|
43
|
+
"""Tests conversion modules that are meant to be wrapped as composites."""
|
44
|
+
|
45
|
+
def test_convert_hardswish(self):
|
46
|
+
"""Tests conversion of a HardSwish module."""
|
47
|
+
|
48
|
+
args = (torch.randn((5, 10)),)
|
49
|
+
torch_module = torch.nn.Hardswish().eval()
|
50
|
+
edge_model = ai_edge_torch.convert(torch_module, args)
|
51
|
+
|
52
|
+
self.assertTrue(
|
53
|
+
model_coverage.compare_tflite_torch(edge_model, torch_module, args)
|
54
|
+
)
|
55
|
+
|
56
|
+
@parameterized.parameterized.expand([
|
57
|
+
# (input_size, kernel_size, stride, padding, ceil_mode,
|
58
|
+
# count_include_pad, divisor_override)
|
59
|
+
# no padding, stride = 1
|
60
|
+
([1, 3, 6, 6], [3, 3], [1, 1], [0, 0], False, True, None),
|
61
|
+
# add stride
|
62
|
+
([1, 3, 6, 6], [3, 3], [2, 2], [0, 0], False, True, None),
|
63
|
+
# default values
|
64
|
+
([1, 3, 6, 6], [3, 3]),
|
65
|
+
# add padding
|
66
|
+
([1, 3, 6, 6], [3, 3], [1, 1], [1, 1], False, True, None),
|
67
|
+
# add different padding for different dims
|
68
|
+
([1, 3, 6, 6], [3, 3], [1, 1], [0, 1], False, True, None),
|
69
|
+
# add both stride and padding
|
70
|
+
([1, 3, 6, 6], [3, 3], [2, 2], [1, 1], False, True, None),
|
71
|
+
# padding set to one number
|
72
|
+
([1, 3, 6, 6], [3, 3], [1, 1], 1, False, True, None),
|
73
|
+
# count_include_pad = False
|
74
|
+
([1, 3, 6, 6], [3, 3], [1, 1], [1, 1], False, False, None),
|
75
|
+
# ceil_mode = True
|
76
|
+
([1, 3, 6, 6], [3, 3], [1, 1], [1, 1], True, True, None),
|
77
|
+
# ceil_mode = True, stride=[3, 3]
|
78
|
+
([1, 3, 6, 6], [3, 3], [3, 3], [1, 1], True, True, None),
|
79
|
+
# set divisor_override
|
80
|
+
([1, 3, 6, 6], [3, 3], [1, 1], 0, False, True, 6),
|
81
|
+
])
|
82
|
+
def test_convert_avg_pool2d(self, input_size, *args):
|
83
|
+
"""Tests conversion of a module containing an avg_pool2d aten."""
|
84
|
+
torch_module = _func_to_torch_module(
|
85
|
+
lambda input_tensor: torch.ops.aten.avg_pool2d(input_tensor, *args)
|
86
|
+
)
|
87
|
+
tracing_args = (torch.randn(*input_size),)
|
88
|
+
edge_model = ai_edge_torch.convert(torch_module, tracing_args)
|
89
|
+
|
90
|
+
self.assertTrue(
|
91
|
+
model_coverage.compare_tflite_torch(
|
92
|
+
edge_model, torch_module, tracing_args
|
93
|
+
)
|
94
|
+
)
|
95
|
+
|
96
|
+
@parameterized.parameterized.expand([
|
97
|
+
# use scale_factor with align_corners=False
|
98
|
+
(
|
99
|
+
[1, 3, 10, 10],
|
100
|
+
dict(scale_factor=3.0, mode='bilinear', align_corners=False),
|
101
|
+
),
|
102
|
+
# use scale_factor with align_corners=true
|
103
|
+
(
|
104
|
+
[1, 3, 10, 10],
|
105
|
+
dict(scale_factor=3.0, mode='bilinear', align_corners=True),
|
106
|
+
),
|
107
|
+
# use size
|
108
|
+
([1, 3, 10, 10], dict(size=[15, 20], mode='bilinear')),
|
109
|
+
# use size with align_corners=true
|
110
|
+
(
|
111
|
+
[1, 3, 10, 10],
|
112
|
+
dict(size=[15, 20], mode='bilinear', align_corners=True),
|
113
|
+
),
|
114
|
+
])
|
115
|
+
def test_convert_upsample_bilinear_functional(self, input_size, kwargs):
|
116
|
+
"""Tests conversion of a torch.nn.functional.upsample module."""
|
117
|
+
torch_module = _func_to_torch_module(
|
118
|
+
lambda input_tensor: torch.nn.functional.upsample( # pylint: disable=unnecessary-lambda
|
119
|
+
input_tensor, **kwargs
|
120
|
+
)
|
121
|
+
)
|
122
|
+
tracing_args = (torch.randn(*input_size),)
|
123
|
+
edge_model = ai_edge_torch.convert(torch_module, tracing_args)
|
124
|
+
|
125
|
+
self.assertTrue(
|
126
|
+
model_coverage.compare_tflite_torch(
|
127
|
+
edge_model, torch_module, tracing_args
|
128
|
+
)
|
129
|
+
)
|
130
|
+
|
131
|
+
@parameterized.parameterized.expand([
|
132
|
+
# use scale_factor with align_corners=False
|
133
|
+
(
|
134
|
+
[1, 3, 10, 10],
|
135
|
+
dict(scale_factor=3.0, mode='bilinear', align_corners=False),
|
136
|
+
),
|
137
|
+
# use scale_factor with align_corners=true
|
138
|
+
(
|
139
|
+
[1, 3, 10, 10],
|
140
|
+
dict(scale_factor=3.0, mode='bilinear', align_corners=True),
|
141
|
+
),
|
142
|
+
# use size
|
143
|
+
([1, 3, 10, 10], dict(size=[15, 20], mode='bilinear')),
|
144
|
+
# use size with align_corners=true
|
145
|
+
(
|
146
|
+
[1, 3, 10, 10],
|
147
|
+
dict(size=[15, 20], mode='bilinear', align_corners=True),
|
148
|
+
),
|
149
|
+
])
|
150
|
+
def test_convert_upsample_bilinear(self, input_size, kwargs):
|
151
|
+
"""Tests conversion of a torch.nn.Upsample module."""
|
152
|
+
torch_module = _func_to_torch_module(
|
153
|
+
lambda input_tensor: torch.nn.Upsample(**kwargs)(input_tensor) # pylint: disable=unnecessary-lambda
|
154
|
+
)
|
155
|
+
tracing_args = (torch.randn(*input_size),)
|
156
|
+
edge_model = ai_edge_torch.convert(torch_module, tracing_args)
|
157
|
+
|
158
|
+
self.assertTrue(
|
159
|
+
model_coverage.compare_tflite_torch(
|
160
|
+
edge_model, torch_module, tracing_args
|
161
|
+
)
|
162
|
+
)
|
163
|
+
|
164
|
+
@parameterized.parameterized.expand([
|
165
|
+
# use scale_factor with align_corners=False
|
166
|
+
(
|
167
|
+
[1, 3, 10, 10],
|
168
|
+
dict(scale_factor=3.0, mode='bilinear', align_corners=False),
|
169
|
+
),
|
170
|
+
# use scale_factor with align_corners=true
|
171
|
+
(
|
172
|
+
[1, 3, 10, 10],
|
173
|
+
dict(scale_factor=3.0, mode='bilinear', align_corners=True),
|
174
|
+
),
|
175
|
+
# use size
|
176
|
+
([1, 3, 10, 10], dict(size=[15, 20], mode='bilinear')),
|
177
|
+
# use size with align_corners=true
|
178
|
+
(
|
179
|
+
[1, 3, 10, 10],
|
180
|
+
dict(size=[15, 20], mode='bilinear', align_corners=True),
|
181
|
+
),
|
182
|
+
])
|
183
|
+
def test_convert_interpolate_bilinear_functional(self, input_size, kwargs):
|
184
|
+
"""Tests conversion of a torch.nn.functional.interpolate module."""
|
185
|
+
torch_module = _func_to_torch_module(
|
186
|
+
lambda input_tensor: torch.nn.functional.interpolate( # pylint: disable=unnecessary-lambda
|
187
|
+
input_tensor, **kwargs
|
188
|
+
)
|
189
|
+
)
|
190
|
+
tracing_args = (torch.randn(*input_size),)
|
191
|
+
edge_model = ai_edge_torch.convert(torch_module, tracing_args)
|
192
|
+
|
193
|
+
self.assertTrue(
|
194
|
+
model_coverage.compare_tflite_torch(
|
195
|
+
edge_model, torch_module, tracing_args
|
196
|
+
)
|
197
|
+
)
|
198
|
+
|
199
|
+
def test_convert_gelu(self):
|
200
|
+
"""Tests conversion of a GELU module."""
|
201
|
+
|
202
|
+
args = (torch.randn((5, 10)),)
|
203
|
+
torch_module = torch.nn.GELU().eval()
|
204
|
+
edge_model = ai_edge_torch.convert(torch_module, args)
|
205
|
+
|
206
|
+
self.assertTrue(
|
207
|
+
model_coverage.compare_tflite_torch(edge_model, torch_module, args)
|
208
|
+
)
|
209
|
+
|
210
|
+
def test_convert_gelu_approximate(self):
|
211
|
+
"""Tests conversion of an Approximate GELU module."""
|
212
|
+
|
213
|
+
args = (torch.randn((5, 10)),)
|
214
|
+
torch_module = torch.nn.GELU('tanh').eval()
|
215
|
+
edge_model = ai_edge_torch.convert(torch_module, args)
|
216
|
+
|
217
|
+
self.assertTrue(
|
218
|
+
model_coverage.compare_tflite_torch(edge_model, torch_module, args)
|
219
|
+
)
|
220
|
+
|
221
|
+
def test_convert_embedding_lookup(self):
|
222
|
+
"""Tests conversion of an Embedding module."""
|
223
|
+
|
224
|
+
args = (torch.full((1, 10), 0, dtype=torch.long),)
|
225
|
+
torch_module = torch.nn.Embedding(10, 10)
|
226
|
+
edge_model = ai_edge_torch.convert(torch_module, args)
|
227
|
+
|
228
|
+
self.assertTrue(
|
229
|
+
model_coverage.compare_tflite_torch(edge_model, torch_module, args)
|
230
|
+
)
|
231
|
+
|
232
|
+
|
233
|
+
if __name__ == '__main__':
|
234
|
+
googletest.main()
|
@@ -0,0 +1,189 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
"""Tests for multi-signature conversion."""
|
16
|
+
|
17
|
+
import ai_edge_torch
|
18
|
+
from ai_edge_torch.testing import model_coverage
|
19
|
+
import torch
|
20
|
+
from torch import nn
|
21
|
+
|
22
|
+
from absl.testing import absltest as googletest
|
23
|
+
|
24
|
+
|
25
|
+
class FullyConnectedModel(nn.Module):
|
26
|
+
"""A simple fully connected model with two fully connected layers."""
|
27
|
+
|
28
|
+
def __init__(self, input_size, hidden_size, output_size):
|
29
|
+
super(FullyConnectedModel, self).__init__()
|
30
|
+
self.fc = nn.Linear(input_size, hidden_size) # Fully connected layer
|
31
|
+
self.relu = nn.ReLU() # Activation function
|
32
|
+
self.output = nn.Linear(hidden_size, output_size)
|
33
|
+
|
34
|
+
def forward(self, x):
|
35
|
+
x = self.fc(x)
|
36
|
+
x = self.relu(x)
|
37
|
+
x = self.output(x)
|
38
|
+
return x
|
39
|
+
|
40
|
+
|
41
|
+
class FullyConvModel(nn.Module):
|
42
|
+
"""A simple fully convolutional model with two convolutions."""
|
43
|
+
|
44
|
+
def __init__(self):
|
45
|
+
super(FullyConvModel, self).__init__()
|
46
|
+
self.conv1 = nn.Conv2d(
|
47
|
+
3, 16, kernel_size=3, padding=1
|
48
|
+
) # Input channels: 3 (RGB), Output channels: 16
|
49
|
+
self.relu = nn.ReLU(inplace=True)
|
50
|
+
self.conv2 = nn.Conv2d(
|
51
|
+
16, 1, kernel_size=1
|
52
|
+
) # Output channels: 1 (single channel output)
|
53
|
+
|
54
|
+
def forward(self, x):
|
55
|
+
x = self.conv1(x)
|
56
|
+
x = self.relu(x)
|
57
|
+
x = self.conv2(x)
|
58
|
+
return x
|
59
|
+
|
60
|
+
|
61
|
+
class TestConvertMultiSignature(googletest.TestCase):
|
62
|
+
"""Tests conversion of various modules through multi-signature conversion."""
|
63
|
+
|
64
|
+
def setUp(self):
|
65
|
+
super().setUp()
|
66
|
+
torch.manual_seed(0)
|
67
|
+
|
68
|
+
def test_convert_with_default(self):
|
69
|
+
"""Tests conversion of a model with two signatures one of which is the default."""
|
70
|
+
torch_module = FullyConvModel().eval()
|
71
|
+
|
72
|
+
args = (torch.randn(4, 3, 12, 12),)
|
73
|
+
large_args = (torch.randn(4, 3, 24, 24),)
|
74
|
+
|
75
|
+
signature_name = "large_input"
|
76
|
+
|
77
|
+
edge_model = ai_edge_torch.signature(
|
78
|
+
signature_name, torch_module, large_args
|
79
|
+
).convert(torch_module, args)
|
80
|
+
|
81
|
+
self.assertTrue(
|
82
|
+
model_coverage.compare_tflite_torch(edge_model, torch_module, args)
|
83
|
+
)
|
84
|
+
self.assertTrue(
|
85
|
+
model_coverage.compare_tflite_torch(
|
86
|
+
edge_model, torch_module, large_args, signature_name=signature_name
|
87
|
+
)
|
88
|
+
)
|
89
|
+
|
90
|
+
def test_convert_no_default(self):
|
91
|
+
"""Tests conversion of a model with two signatures none of which is the default."""
|
92
|
+
torch_module = FullyConvModel().eval()
|
93
|
+
|
94
|
+
args = (torch.randn(4, 3, 12, 12),)
|
95
|
+
large_args = (torch.randn(4, 3, 24, 24),)
|
96
|
+
|
97
|
+
signature_name_1 = "input"
|
98
|
+
signature_name_2 = "large_input"
|
99
|
+
|
100
|
+
edge_model = (
|
101
|
+
ai_edge_torch.signature(signature_name_1, torch_module, args)
|
102
|
+
.signature(signature_name_2, torch_module, large_args)
|
103
|
+
.convert()
|
104
|
+
)
|
105
|
+
|
106
|
+
with self.assertRaises(ValueError):
|
107
|
+
edge_model(*args)
|
108
|
+
|
109
|
+
self.assertTrue(
|
110
|
+
model_coverage.compare_tflite_torch(
|
111
|
+
edge_model, torch_module, args, signature_name=signature_name_1
|
112
|
+
)
|
113
|
+
)
|
114
|
+
self.assertTrue(
|
115
|
+
model_coverage.compare_tflite_torch(
|
116
|
+
edge_model,
|
117
|
+
torch_module,
|
118
|
+
large_args,
|
119
|
+
signature_name=signature_name_2,
|
120
|
+
)
|
121
|
+
)
|
122
|
+
|
123
|
+
def test_convert_signature_helper(self):
|
124
|
+
"""Tests the ai_edge_torch.signature helper function works."""
|
125
|
+
torch_module = FullyConvModel().eval()
|
126
|
+
|
127
|
+
args = (torch.randn(4, 3, 12, 12),)
|
128
|
+
large_args = (torch.randn(4, 3, 24, 24),)
|
129
|
+
|
130
|
+
signature_name = "large_input"
|
131
|
+
|
132
|
+
edge_model = ai_edge_torch.signature(
|
133
|
+
signature_name, torch_module, large_args
|
134
|
+
).convert(torch_module, args)
|
135
|
+
|
136
|
+
self.assertTrue(
|
137
|
+
model_coverage.compare_tflite_torch(edge_model, torch_module, args)
|
138
|
+
)
|
139
|
+
self.assertTrue(
|
140
|
+
model_coverage.compare_tflite_torch(
|
141
|
+
edge_model, torch_module, large_args, signature_name=signature_name
|
142
|
+
)
|
143
|
+
)
|
144
|
+
|
145
|
+
def test_convert_separate_modules(self):
|
146
|
+
"""Tests conversion of two completely different modules as separate signatures."""
|
147
|
+
fully_conv = FullyConvModel().eval()
|
148
|
+
fully_connected = FullyConnectedModel(10, 5, 10).eval()
|
149
|
+
|
150
|
+
fully_conv_args = (torch.randn(4, 3, 12, 12),)
|
151
|
+
fully_connected_args = (torch.randn(10),)
|
152
|
+
|
153
|
+
fully_conv_signature_name = "fully_conv"
|
154
|
+
fully_connected_signature_name = "fully_connected"
|
155
|
+
|
156
|
+
edge_model = (
|
157
|
+
ai_edge_torch.signature(
|
158
|
+
fully_conv_signature_name, fully_conv, fully_conv_args
|
159
|
+
)
|
160
|
+
.signature(
|
161
|
+
fully_connected_signature_name,
|
162
|
+
fully_connected,
|
163
|
+
fully_connected_args,
|
164
|
+
)
|
165
|
+
.convert(fully_connected, fully_connected_args)
|
166
|
+
)
|
167
|
+
|
168
|
+
fully_conv_inference_args = (torch.randn(4, 3, 12, 12),)
|
169
|
+
fully_connected_inference_args = (torch.randn(10),)
|
170
|
+
self.assertTrue(
|
171
|
+
model_coverage.compare_tflite_torch(
|
172
|
+
edge_model,
|
173
|
+
fully_conv,
|
174
|
+
fully_conv_inference_args,
|
175
|
+
signature_name=fully_conv_signature_name,
|
176
|
+
)
|
177
|
+
)
|
178
|
+
self.assertTrue(
|
179
|
+
model_coverage.compare_tflite_torch(
|
180
|
+
edge_model,
|
181
|
+
fully_connected,
|
182
|
+
fully_connected_inference_args,
|
183
|
+
signature_name=fully_connected_signature_name,
|
184
|
+
)
|
185
|
+
)
|
186
|
+
|
187
|
+
|
188
|
+
if __name__ == "__main__":
|
189
|
+
googletest.main()
|
@@ -0,0 +1,96 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
"""Tests for to_channel_last_io API and module wrapper."""
|
16
|
+
|
17
|
+
import ai_edge_torch
|
18
|
+
import torch
|
19
|
+
|
20
|
+
from absl.testing import absltest as googletest
|
21
|
+
|
22
|
+
|
23
|
+
class Identity(torch.nn.Module):
|
24
|
+
|
25
|
+
def forward(self, x):
|
26
|
+
return x
|
27
|
+
|
28
|
+
|
29
|
+
class TestToChannelLastIO(googletest.TestCase):
|
30
|
+
"""Tests to_channel_last_io API and module wrapper."""
|
31
|
+
|
32
|
+
def test_no_transformations(self):
|
33
|
+
x = torch.rand(1, 3, 10, 10)
|
34
|
+
y = ai_edge_torch.to_channel_last_io(Identity())(x)
|
35
|
+
self.assertEqual(y.shape, (1, 3, 10, 10))
|
36
|
+
|
37
|
+
def test_args(self):
|
38
|
+
x = torch.rand(1, 10, 10, 3)
|
39
|
+
y = ai_edge_torch.to_channel_last_io(Identity(), args=[0])(x)
|
40
|
+
self.assertEqual(y.shape, (1, 3, 10, 10))
|
41
|
+
|
42
|
+
def test_outputs(self):
|
43
|
+
x = torch.rand(1, 3, 10, 10)
|
44
|
+
y = ai_edge_torch.to_channel_last_io(Identity(), outputs=[0])(x)
|
45
|
+
self.assertEqual(y.shape, (1, 10, 10, 3))
|
46
|
+
|
47
|
+
def test_args_outputs(self):
|
48
|
+
x = torch.rand(1, 10, 10, 3)
|
49
|
+
y = ai_edge_torch.to_channel_last_io(Identity(), args=[0], outputs=[0])(x)
|
50
|
+
self.assertEqual(y.shape, (1, 10, 10, 3))
|
51
|
+
|
52
|
+
def test_args_5d(self):
|
53
|
+
x = torch.rand(1, 10, 10, 10, 3)
|
54
|
+
y = ai_edge_torch.to_channel_last_io(Identity(), args=[0])(x)
|
55
|
+
self.assertEqual(y.shape, (1, 3, 10, 10, 10))
|
56
|
+
|
57
|
+
def test_outputs_5d(self):
|
58
|
+
x = torch.rand(1, 3, 10, 10, 10)
|
59
|
+
y = ai_edge_torch.to_channel_last_io(Identity(), outputs=[0])(x)
|
60
|
+
self.assertEqual(y.shape, (1, 10, 10, 10, 3))
|
61
|
+
|
62
|
+
def test_chained_wrappers(self):
|
63
|
+
x = torch.rand(1, 10, 10, 3)
|
64
|
+
|
65
|
+
m = Identity()
|
66
|
+
m = ai_edge_torch.to_channel_last_io(m, args=[0])
|
67
|
+
m = ai_edge_torch.to_channel_last_io(m, outputs=[0])
|
68
|
+
|
69
|
+
y = m(x)
|
70
|
+
self.assertEqual(y.shape, (1, 10, 10, 3))
|
71
|
+
|
72
|
+
def test_list_args(self):
|
73
|
+
class Add(torch.nn.Module):
|
74
|
+
|
75
|
+
def forward(self, x, y):
|
76
|
+
return x + y
|
77
|
+
|
78
|
+
x = (torch.rand(1, 10, 10, 3), torch.rand(1, 10, 10, 3))
|
79
|
+
y = ai_edge_torch.to_channel_last_io(Add(), args=[0, 1])(*x)
|
80
|
+
self.assertEqual(y.shape, (1, 3, 10, 10))
|
81
|
+
|
82
|
+
def test_list_outputs(self):
|
83
|
+
class TwoIdentity(torch.nn.Module):
|
84
|
+
|
85
|
+
def forward(self, x):
|
86
|
+
return x, x
|
87
|
+
|
88
|
+
x = torch.rand(1, 3, 10, 10)
|
89
|
+
y = ai_edge_torch.to_channel_last_io(TwoIdentity(), outputs=[0])(x)
|
90
|
+
self.assertIsInstance(y, tuple)
|
91
|
+
self.assertEqual(y[0].shape, (1, 10, 10, 3))
|
92
|
+
self.assertEqual(y[1].shape, (1, 3, 10, 10))
|
93
|
+
|
94
|
+
|
95
|
+
if __name__ == "__main__":
|
96
|
+
googletest.main()
|
@@ -0,0 +1,92 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
"""Transforms the input and output of a module to channel last layout."""
|
16
|
+
|
17
|
+
from typing import Optional
|
18
|
+
|
19
|
+
import torch
|
20
|
+
from torch import nn
|
21
|
+
|
22
|
+
|
23
|
+
class ChannelLastIOWrapper(nn.Module):
|
24
|
+
|
25
|
+
def __init__(self, wrapped, *, args=None, outputs=None):
|
26
|
+
super().__init__()
|
27
|
+
self.wrapped = wrapped
|
28
|
+
self._args = args or []
|
29
|
+
self._outputs = outputs or []
|
30
|
+
|
31
|
+
def _to_channel_last(self, x):
|
32
|
+
if not torch.is_tensor(x):
|
33
|
+
raise ValueError("Input must be a torch tensor")
|
34
|
+
if x.ndim < 3:
|
35
|
+
raise ValueError(
|
36
|
+
"Input must be a tensor with rank >= 3 in layout (N, C, ...)"
|
37
|
+
)
|
38
|
+
dims = [0, *range(2, x.ndim), 1]
|
39
|
+
return torch.permute(x, dims)
|
40
|
+
|
41
|
+
def _to_channel_first(self, x):
|
42
|
+
if not torch.is_tensor(x):
|
43
|
+
raise ValueError("Input must be a torch tensor.")
|
44
|
+
if x.ndim < 3:
|
45
|
+
raise ValueError(
|
46
|
+
"Input must be a tensor with rank >= 3 in layout (N, ..., C)"
|
47
|
+
)
|
48
|
+
dims = [0, x.ndim - 1, *range(1, x.ndim - 1)]
|
49
|
+
return torch.permute(x, dims)
|
50
|
+
|
51
|
+
def forward(self, *args, **kwargs):
|
52
|
+
args = list(args)
|
53
|
+
for i in self._args:
|
54
|
+
args[i] = self._to_channel_first(args[i])
|
55
|
+
|
56
|
+
outputs = self.wrapped(*args, **kwargs)
|
57
|
+
|
58
|
+
if not isinstance(outputs, (list, tuple)):
|
59
|
+
outputs_is_list = False
|
60
|
+
output_list = [outputs]
|
61
|
+
else:
|
62
|
+
outputs_is_list = True
|
63
|
+
output_list = list(outputs)
|
64
|
+
|
65
|
+
for i in self._outputs:
|
66
|
+
output_list[i] = self._to_channel_last(output_list[i])
|
67
|
+
|
68
|
+
if not outputs_is_list:
|
69
|
+
return output_list[0]
|
70
|
+
else:
|
71
|
+
return type(outputs)(output_list)
|
72
|
+
|
73
|
+
|
74
|
+
def to_channel_last_io(
|
75
|
+
module: nn.Module,
|
76
|
+
args: Optional[list[int]] = None,
|
77
|
+
outputs: Optional[list[int]] = None,
|
78
|
+
):
|
79
|
+
"""Wraps the module with channel first to channel last layout transformations.
|
80
|
+
|
81
|
+
Args:
|
82
|
+
args (list[int]): Transform args with indices in the list from channel first
|
83
|
+
(N, C, ...) to channel last (N, ..., C).
|
84
|
+
outputs (list[int]): Transform outputs with indices in the list from channel
|
85
|
+
first (N, C, ...) to channel last (N, ..., C).
|
86
|
+
|
87
|
+
Returns:
|
88
|
+
The wrapped nn.Module with additional layout transposes after inputs and/or
|
89
|
+
before
|
90
|
+
outputs.
|
91
|
+
"""
|
92
|
+
return ChannelLastIOWrapper(module, args=args, outputs=outputs)
|
@@ -0,0 +1,20 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
from absl import flags
|
17
|
+
|
18
|
+
|
19
|
+
def pytest_configure(config):
|
20
|
+
flags.FLAGS.mark_as_parsed()
|
@@ -0,0 +1,17 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
from .culprit import _search_model
|
17
|
+
from .culprit import find_culprits
|