ai-edge-torch-nightly 0.3.0.dev20250114__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- ai_edge_torch/__init__.py +32 -0
- ai_edge_torch/_config.py +69 -0
- ai_edge_torch/_convert/__init__.py +14 -0
- ai_edge_torch/_convert/conversion.py +153 -0
- ai_edge_torch/_convert/conversion_utils.py +64 -0
- ai_edge_torch/_convert/converter.py +270 -0
- ai_edge_torch/_convert/fx_passes/__init__.py +23 -0
- ai_edge_torch/_convert/fx_passes/build_aten_composite_pass.py +288 -0
- ai_edge_torch/_convert/fx_passes/build_interpolate_composite_pass.py +131 -0
- ai_edge_torch/_convert/fx_passes/inject_mlir_debuginfo_pass.py +73 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/__init__.py +16 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_check.py +258 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_mark.py +50 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +18 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +68 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +216 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +449 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +30 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/pass_body.py +303 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/utils.py +64 -0
- ai_edge_torch/_convert/fx_passes/remove_non_user_outputs_pass.py +52 -0
- ai_edge_torch/_convert/signature.py +66 -0
- ai_edge_torch/_convert/test/__init__.py +14 -0
- ai_edge_torch/_convert/test/test_convert.py +558 -0
- ai_edge_torch/_convert/test/test_convert_composites.py +234 -0
- ai_edge_torch/_convert/test/test_convert_multisig.py +189 -0
- ai_edge_torch/_convert/test/test_to_channel_last_io.py +96 -0
- ai_edge_torch/_convert/to_channel_last_io.py +92 -0
- ai_edge_torch/conftest.py +20 -0
- ai_edge_torch/debug/__init__.py +17 -0
- ai_edge_torch/debug/culprit.py +496 -0
- ai_edge_torch/debug/test/__init__.py +14 -0
- ai_edge_torch/debug/test/test_culprit.py +140 -0
- ai_edge_torch/debug/test/test_search_model.py +51 -0
- ai_edge_torch/debug/utils.py +59 -0
- ai_edge_torch/experimental/__init__.py +14 -0
- ai_edge_torch/fx_pass_base.py +110 -0
- ai_edge_torch/generative/__init__.py +14 -0
- ai_edge_torch/generative/examples/__init__.py +14 -0
- ai_edge_torch/generative/examples/amd_llama_135m/__init__.py +14 -0
- ai_edge_torch/generative/examples/amd_llama_135m/amd_llama_135m.py +87 -0
- ai_edge_torch/generative/examples/amd_llama_135m/convert_to_tflite.py +70 -0
- ai_edge_torch/generative/examples/amd_llama_135m/verify.py +72 -0
- ai_edge_torch/generative/examples/gemma/__init__.py +14 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/gemma/gemma1.py +107 -0
- ai_edge_torch/generative/examples/gemma/gemma2.py +295 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma1.py +56 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma2.py +43 -0
- ai_edge_torch/generative/examples/gemma/verify_util.py +157 -0
- ai_edge_torch/generative/examples/llama/__init__.py +14 -0
- ai_edge_torch/generative/examples/llama/convert_to_tflite.py +91 -0
- ai_edge_torch/generative/examples/llama/llama.py +196 -0
- ai_edge_torch/generative/examples/llama/verify.py +88 -0
- ai_edge_torch/generative/examples/moonshine/__init__.py +14 -0
- ai_edge_torch/generative/examples/moonshine/convert_moonshine_to_tflite.py +50 -0
- ai_edge_torch/generative/examples/moonshine/moonshine.py +103 -0
- ai_edge_torch/generative/examples/openelm/__init__.py +14 -0
- ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/openelm/openelm.py +127 -0
- ai_edge_torch/generative/examples/openelm/verify.py +71 -0
- ai_edge_torch/generative/examples/paligemma/__init__.py +14 -0
- ai_edge_torch/generative/examples/paligemma/convert_to_tflite.py +95 -0
- ai_edge_torch/generative/examples/paligemma/decoder.py +151 -0
- ai_edge_torch/generative/examples/paligemma/decoder2.py +177 -0
- ai_edge_torch/generative/examples/paligemma/image_encoder.py +160 -0
- ai_edge_torch/generative/examples/paligemma/paligemma.py +179 -0
- ai_edge_torch/generative/examples/paligemma/verify.py +161 -0
- ai_edge_torch/generative/examples/paligemma/verify_decoder.py +75 -0
- ai_edge_torch/generative/examples/paligemma/verify_decoder2.py +72 -0
- ai_edge_torch/generative/examples/paligemma/verify_image_encoder.py +99 -0
- ai_edge_torch/generative/examples/phi/__init__.py +14 -0
- ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/phi/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/phi/phi2.py +107 -0
- ai_edge_torch/generative/examples/phi/phi3.py +219 -0
- ai_edge_torch/generative/examples/phi/verify.py +64 -0
- ai_edge_torch/generative/examples/phi/verify_phi3.py +69 -0
- ai_edge_torch/generative/examples/qwen/__init__.py +14 -0
- ai_edge_torch/generative/examples/qwen/convert_to_tflite.py +93 -0
- ai_edge_torch/generative/examples/qwen/qwen.py +134 -0
- ai_edge_torch/generative/examples/qwen/verify.py +88 -0
- ai_edge_torch/generative/examples/smollm/__init__.py +14 -0
- ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/smollm/convert_v2_to_tflite.py +71 -0
- ai_edge_torch/generative/examples/smollm/smollm.py +125 -0
- ai_edge_torch/generative/examples/smollm/verify.py +86 -0
- ai_edge_torch/generative/examples/stable_diffusion/__init__.py +14 -0
- ai_edge_torch/generative/examples/stable_diffusion/attention.py +108 -0
- ai_edge_torch/generative/examples/stable_diffusion/clip.py +185 -0
- ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +173 -0
- ai_edge_torch/generative/examples/stable_diffusion/decoder.py +398 -0
- ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +749 -0
- ai_edge_torch/generative/examples/stable_diffusion/encoder.py +119 -0
- ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +254 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/__init__.py +19 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +62 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +66 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +74 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +39 -0
- ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +111 -0
- ai_edge_torch/generative/examples/stable_diffusion/util.py +77 -0
- ai_edge_torch/generative/examples/t5/__init__.py +14 -0
- ai_edge_torch/generative/examples/t5/convert_to_tflite.py +138 -0
- ai_edge_torch/generative/examples/t5/t5.py +655 -0
- ai_edge_torch/generative/examples/t5/t5_attention.py +246 -0
- ai_edge_torch/generative/examples/test_models/__init__.py +14 -0
- ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
- ai_edge_torch/generative/examples/test_models/toy_model.py +156 -0
- ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +138 -0
- ai_edge_torch/generative/examples/tiny_llama/__init__.py +14 -0
- ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +88 -0
- ai_edge_torch/generative/examples/tiny_llama/verify.py +72 -0
- ai_edge_torch/generative/fx_passes/__init__.py +30 -0
- ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +50 -0
- ai_edge_torch/generative/layers/__init__.py +14 -0
- ai_edge_torch/generative/layers/attention.py +399 -0
- ai_edge_torch/generative/layers/attention_utils.py +210 -0
- ai_edge_torch/generative/layers/builder.py +160 -0
- ai_edge_torch/generative/layers/feed_forward.py +120 -0
- ai_edge_torch/generative/layers/kv_cache.py +204 -0
- ai_edge_torch/generative/layers/lora.py +557 -0
- ai_edge_torch/generative/layers/model_config.py +238 -0
- ai_edge_torch/generative/layers/normalization.py +222 -0
- ai_edge_torch/generative/layers/rotary_position_embedding.py +94 -0
- ai_edge_torch/generative/layers/scaled_dot_product_attention.py +144 -0
- ai_edge_torch/generative/layers/unet/__init__.py +14 -0
- ai_edge_torch/generative/layers/unet/blocks_2d.py +806 -0
- ai_edge_torch/generative/layers/unet/builder.py +50 -0
- ai_edge_torch/generative/layers/unet/model_config.py +282 -0
- ai_edge_torch/generative/quantize/__init__.py +14 -0
- ai_edge_torch/generative/quantize/example.py +47 -0
- ai_edge_torch/generative/quantize/quant_attrs.py +68 -0
- ai_edge_torch/generative/quantize/quant_recipe.py +154 -0
- ai_edge_torch/generative/quantize/quant_recipe_utils.py +62 -0
- ai_edge_torch/generative/quantize/quant_recipes.py +56 -0
- ai_edge_torch/generative/quantize/supported_schemes.py +32 -0
- ai_edge_torch/generative/test/__init__.py +14 -0
- ai_edge_torch/generative/test/test_custom_dus.py +107 -0
- ai_edge_torch/generative/test/test_kv_cache.py +120 -0
- ai_edge_torch/generative/test/test_loader.py +83 -0
- ai_edge_torch/generative/test/test_lora.py +147 -0
- ai_edge_torch/generative/test/test_model_conversion.py +191 -0
- ai_edge_torch/generative/test/test_model_conversion_large.py +362 -0
- ai_edge_torch/generative/test/test_quantize.py +183 -0
- ai_edge_torch/generative/test/utils.py +82 -0
- ai_edge_torch/generative/utilities/__init__.py +15 -0
- ai_edge_torch/generative/utilities/converter.py +215 -0
- ai_edge_torch/generative/utilities/dynamic_update_slice.py +56 -0
- ai_edge_torch/generative/utilities/loader.py +398 -0
- ai_edge_torch/generative/utilities/model_builder.py +180 -0
- ai_edge_torch/generative/utilities/moonshine_loader.py +154 -0
- ai_edge_torch/generative/utilities/stable_diffusion_loader.py +1032 -0
- ai_edge_torch/generative/utilities/t5_loader.py +512 -0
- ai_edge_torch/generative/utilities/transformers_verifier.py +42 -0
- ai_edge_torch/generative/utilities/verifier.py +335 -0
- ai_edge_torch/hlfb/__init__.py +16 -0
- ai_edge_torch/hlfb/mark_pattern/__init__.py +153 -0
- ai_edge_torch/hlfb/mark_pattern/fx_utils.py +69 -0
- ai_edge_torch/hlfb/mark_pattern/pattern.py +288 -0
- ai_edge_torch/hlfb/test/__init__.py +14 -0
- ai_edge_torch/hlfb/test/test_mark_pattern.py +185 -0
- ai_edge_torch/lowertools/__init__.py +18 -0
- ai_edge_torch/lowertools/_shim.py +86 -0
- ai_edge_torch/lowertools/common_utils.py +142 -0
- ai_edge_torch/lowertools/odml_torch_utils.py +260 -0
- ai_edge_torch/lowertools/test_utils.py +62 -0
- ai_edge_torch/lowertools/torch_xla_utils.py +301 -0
- ai_edge_torch/lowertools/translate_recipe.py +163 -0
- ai_edge_torch/model.py +177 -0
- ai_edge_torch/odml_torch/__init__.py +20 -0
- ai_edge_torch/odml_torch/_torch_future.py +88 -0
- ai_edge_torch/odml_torch/_torch_library.py +19 -0
- ai_edge_torch/odml_torch/composite/__init__.py +16 -0
- ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
- ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
- ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
- ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
- ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
- ai_edge_torch/odml_torch/export.py +403 -0
- ai_edge_torch/odml_torch/export_utils.py +157 -0
- ai_edge_torch/odml_torch/jax_bridge/__init__.py +18 -0
- ai_edge_torch/odml_torch/jax_bridge/_wrap.py +180 -0
- ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
- ai_edge_torch/odml_torch/lowerings/__init__.py +27 -0
- ai_edge_torch/odml_torch/lowerings/_basic.py +294 -0
- ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
- ai_edge_torch/odml_torch/lowerings/_convolution.py +243 -0
- ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +285 -0
- ai_edge_torch/odml_torch/lowerings/_layer_norm.py +87 -0
- ai_edge_torch/odml_torch/lowerings/_quantized_decomposed.py +177 -0
- ai_edge_torch/odml_torch/lowerings/_rand.py +142 -0
- ai_edge_torch/odml_torch/lowerings/context.py +42 -0
- ai_edge_torch/odml_torch/lowerings/decomp.py +69 -0
- ai_edge_torch/odml_torch/lowerings/registry.py +65 -0
- ai_edge_torch/odml_torch/lowerings/utils.py +201 -0
- ai_edge_torch/odml_torch/passes/__init__.py +38 -0
- ai_edge_torch/odml_torch/tf_integration.py +156 -0
- ai_edge_torch/quantize/__init__.py +16 -0
- ai_edge_torch/quantize/pt2e_quantizer.py +466 -0
- ai_edge_torch/quantize/pt2e_quantizer_utils.py +1061 -0
- ai_edge_torch/quantize/quant_config.py +85 -0
- ai_edge_torch/testing/__init__.py +14 -0
- ai_edge_torch/testing/model_coverage/__init__.py +16 -0
- ai_edge_torch/testing/model_coverage/model_coverage.py +145 -0
- ai_edge_torch/version.py +16 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/LICENSE +202 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/METADATA +44 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/RECORD +213 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/WHEEL +5 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/top_level.txt +1 -0
@@ -0,0 +1,749 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
import ai_edge_torch.generative.layers.builder as layers_builder
|
17
|
+
import ai_edge_torch.generative.layers.model_config as layers_cfg
|
18
|
+
from ai_edge_torch.generative.layers.unet import blocks_2d
|
19
|
+
import ai_edge_torch.generative.layers.unet.model_config as unet_cfg
|
20
|
+
from ai_edge_torch.generative.utilities import stable_diffusion_loader
|
21
|
+
import torch
|
22
|
+
from torch import nn
|
23
|
+
|
24
|
+
_down_encoder_blocks_tensor_names = [
|
25
|
+
stable_diffusion_loader.DownEncoderBlockTensorNames(
|
26
|
+
residual_block_tensor_names=[
|
27
|
+
stable_diffusion_loader.ResidualBlockTensorNames(
|
28
|
+
norm_1=f"model.diffusion_model.input_blocks.{i*3+j+1}.0.in_layers.0",
|
29
|
+
conv_1=f"model.diffusion_model.input_blocks.{i*3+j+1}.0.in_layers.2",
|
30
|
+
norm_2=f"model.diffusion_model.input_blocks.{i*3+j+1}.0.out_layers.0",
|
31
|
+
conv_2=f"model.diffusion_model.input_blocks.{i*3+j+1}.0.out_layers.3",
|
32
|
+
time_embedding=f"model.diffusion_model.input_blocks.{i*3+j+1}.0.emb_layers.1",
|
33
|
+
residual_layer=f"model.diffusion_model.input_blocks.{i*3+j+1}.0.skip_connection"
|
34
|
+
if (i * 3 + j + 1) in [4, 7]
|
35
|
+
else None,
|
36
|
+
)
|
37
|
+
for j in range(2)
|
38
|
+
],
|
39
|
+
transformer_block_tensor_names=[
|
40
|
+
stable_diffusion_loader.TransformerBlockTensorNames(
|
41
|
+
pre_conv_norm=(
|
42
|
+
f"model.diffusion_model.input_blocks.{i*3+j+1}.1.norm"
|
43
|
+
),
|
44
|
+
conv_in=(
|
45
|
+
f"model.diffusion_model.input_blocks.{i*3+j+1}.1.proj_in"
|
46
|
+
),
|
47
|
+
conv_out=(
|
48
|
+
f"model.diffusion_model.input_blocks.{i*3+j+1}.1.proj_out"
|
49
|
+
),
|
50
|
+
self_attention=stable_diffusion_loader.AttentionBlockTensorNames(
|
51
|
+
norm=f"model.diffusion_model.input_blocks.{i*3+j+1}.1.transformer_blocks.0.norm1",
|
52
|
+
q_proj=f"model.diffusion_model.input_blocks.{i*3+j+1}.1.transformer_blocks.0.attn1.to_q",
|
53
|
+
k_proj=f"model.diffusion_model.input_blocks.{i*3+j+1}.1.transformer_blocks.0.attn1.to_k",
|
54
|
+
v_proj=f"model.diffusion_model.input_blocks.{i*3+j+1}.1.transformer_blocks.0.attn1.to_v",
|
55
|
+
output_proj=f"model.diffusion_model.input_blocks.{i*3+j+1}.1.transformer_blocks.0.attn1.to_out.0",
|
56
|
+
),
|
57
|
+
cross_attention=stable_diffusion_loader.CrossAttentionBlockTensorNames(
|
58
|
+
norm=f"model.diffusion_model.input_blocks.{i*3+j+1}.1.transformer_blocks.0.norm2",
|
59
|
+
q_proj=f"model.diffusion_model.input_blocks.{i*3+j+1}.1.transformer_blocks.0.attn2.to_q",
|
60
|
+
k_proj=f"model.diffusion_model.input_blocks.{i*3+j+1}.1.transformer_blocks.0.attn2.to_k",
|
61
|
+
v_proj=f"model.diffusion_model.input_blocks.{i*3+j+1}.1.transformer_blocks.0.attn2.to_v",
|
62
|
+
output_proj=f"model.diffusion_model.input_blocks.{i*3+j+1}.1.transformer_blocks.0.attn2.to_out.0",
|
63
|
+
),
|
64
|
+
feed_forward=stable_diffusion_loader.FeedForwardBlockTensorNames(
|
65
|
+
norm=f"model.diffusion_model.input_blocks.{i*3+j+1}.1.transformer_blocks.0.norm3",
|
66
|
+
ge_glu=f"model.diffusion_model.input_blocks.{i*3+j+1}.1.transformer_blocks.0.ff.net.0.proj",
|
67
|
+
w2=f"model.diffusion_model.input_blocks.{i*3+j+1}.1.transformer_blocks.0.ff.net.2",
|
68
|
+
),
|
69
|
+
)
|
70
|
+
for j in range(2)
|
71
|
+
]
|
72
|
+
if i < 3
|
73
|
+
else None,
|
74
|
+
downsample_conv=f"model.diffusion_model.input_blocks.{i*3+3}.0.op"
|
75
|
+
if i < 3
|
76
|
+
else None,
|
77
|
+
)
|
78
|
+
for i in range(4)
|
79
|
+
]
|
80
|
+
|
81
|
+
_mid_block_tensor_names = stable_diffusion_loader.MidBlockTensorNames(
|
82
|
+
residual_block_tensor_names=[
|
83
|
+
stable_diffusion_loader.ResidualBlockTensorNames(
|
84
|
+
norm_1=f"model.diffusion_model.middle_block.{i}.in_layers.0",
|
85
|
+
conv_1=f"model.diffusion_model.middle_block.{i}.in_layers.2",
|
86
|
+
norm_2=f"model.diffusion_model.middle_block.{i}.out_layers.0",
|
87
|
+
conv_2=f"model.diffusion_model.middle_block.{i}.out_layers.3",
|
88
|
+
time_embedding=(
|
89
|
+
f"model.diffusion_model.middle_block.{i}.emb_layers.1"
|
90
|
+
),
|
91
|
+
)
|
92
|
+
for i in [0, 2]
|
93
|
+
],
|
94
|
+
transformer_block_tensor_names=[
|
95
|
+
stable_diffusion_loader.TransformerBlockTensorNames(
|
96
|
+
pre_conv_norm=f"model.diffusion_model.middle_block.{i}.norm",
|
97
|
+
conv_in=f"model.diffusion_model.middle_block.{i}.proj_in",
|
98
|
+
conv_out=f"model.diffusion_model.middle_block.{i}.proj_out",
|
99
|
+
self_attention=stable_diffusion_loader.AttentionBlockTensorNames(
|
100
|
+
norm=f"model.diffusion_model.middle_block.{i}.transformer_blocks.0.norm1",
|
101
|
+
q_proj=f"model.diffusion_model.middle_block.{i}.transformer_blocks.0.attn1.to_q",
|
102
|
+
k_proj=f"model.diffusion_model.middle_block.{i}.transformer_blocks.0.attn1.to_k",
|
103
|
+
v_proj=f"model.diffusion_model.middle_block.{i}.transformer_blocks.0.attn1.to_v",
|
104
|
+
output_proj=f"model.diffusion_model.middle_block.{i}.transformer_blocks.0.attn1.to_out.0",
|
105
|
+
),
|
106
|
+
cross_attention=stable_diffusion_loader.CrossAttentionBlockTensorNames(
|
107
|
+
norm=f"model.diffusion_model.middle_block.{i}.transformer_blocks.0.norm2",
|
108
|
+
q_proj=f"model.diffusion_model.middle_block.{i}.transformer_blocks.0.attn2.to_q",
|
109
|
+
k_proj=f"model.diffusion_model.middle_block.{i}.transformer_blocks.0.attn2.to_k",
|
110
|
+
v_proj=f"model.diffusion_model.middle_block.{i}.transformer_blocks.0.attn2.to_v",
|
111
|
+
output_proj=f"model.diffusion_model.middle_block.{i}.transformer_blocks.0.attn2.to_out.0",
|
112
|
+
),
|
113
|
+
feed_forward=stable_diffusion_loader.FeedForwardBlockTensorNames(
|
114
|
+
norm=f"model.diffusion_model.middle_block.{i}.transformer_blocks.0.norm3",
|
115
|
+
ge_glu=f"model.diffusion_model.middle_block.{i}.transformer_blocks.0.ff.net.0.proj",
|
116
|
+
w2=f"model.diffusion_model.middle_block.{i}.transformer_blocks.0.ff.net.2",
|
117
|
+
),
|
118
|
+
)
|
119
|
+
for i in [1]
|
120
|
+
],
|
121
|
+
)
|
122
|
+
|
123
|
+
_up_decoder_blocks_tensor_names = [
|
124
|
+
stable_diffusion_loader.SkipUpDecoderBlockTensorNames(
|
125
|
+
residual_block_tensor_names=[
|
126
|
+
stable_diffusion_loader.ResidualBlockTensorNames(
|
127
|
+
norm_1=(
|
128
|
+
f"model.diffusion_model.output_blocks.{i*3+j}.0.in_layers.0"
|
129
|
+
),
|
130
|
+
conv_1=(
|
131
|
+
f"model.diffusion_model.output_blocks.{i*3+j}.0.in_layers.2"
|
132
|
+
),
|
133
|
+
norm_2=f"model.diffusion_model.output_blocks.{i*3+j}.0.out_layers.0",
|
134
|
+
conv_2=f"model.diffusion_model.output_blocks.{i*3+j}.0.out_layers.3",
|
135
|
+
time_embedding=f"model.diffusion_model.output_blocks.{i*3+j}.0.emb_layers.1",
|
136
|
+
residual_layer=f"model.diffusion_model.output_blocks.{i*3+j}.0.skip_connection",
|
137
|
+
)
|
138
|
+
for j in range(3)
|
139
|
+
],
|
140
|
+
transformer_block_tensor_names=[
|
141
|
+
stable_diffusion_loader.TransformerBlockTensorNames(
|
142
|
+
pre_conv_norm=(
|
143
|
+
f"model.diffusion_model.output_blocks.{i*3+j}.1.norm"
|
144
|
+
),
|
145
|
+
conv_in=(
|
146
|
+
f"model.diffusion_model.output_blocks.{i*3+j}.1.proj_in"
|
147
|
+
),
|
148
|
+
conv_out=(
|
149
|
+
f"model.diffusion_model.output_blocks.{i*3+j}.1.proj_out"
|
150
|
+
),
|
151
|
+
self_attention=stable_diffusion_loader.AttentionBlockTensorNames(
|
152
|
+
norm=f"model.diffusion_model.output_blocks.{i*3+j}.1.transformer_blocks.0.norm1",
|
153
|
+
q_proj=f"model.diffusion_model.output_blocks.{i*3+j}.1.transformer_blocks.0.attn1.to_q",
|
154
|
+
k_proj=f"model.diffusion_model.output_blocks.{i*3+j}.1.transformer_blocks.0.attn1.to_k",
|
155
|
+
v_proj=f"model.diffusion_model.output_blocks.{i*3+j}.1.transformer_blocks.0.attn1.to_v",
|
156
|
+
output_proj=f"model.diffusion_model.output_blocks.{i*3+j}.1.transformer_blocks.0.attn1.to_out.0",
|
157
|
+
),
|
158
|
+
cross_attention=stable_diffusion_loader.CrossAttentionBlockTensorNames(
|
159
|
+
norm=f"model.diffusion_model.output_blocks.{i*3+j}.1.transformer_blocks.0.norm2",
|
160
|
+
q_proj=f"model.diffusion_model.output_blocks.{i*3+j}.1.transformer_blocks.0.attn2.to_q",
|
161
|
+
k_proj=f"model.diffusion_model.output_blocks.{i*3+j}.1.transformer_blocks.0.attn2.to_k",
|
162
|
+
v_proj=f"model.diffusion_model.output_blocks.{i*3+j}.1.transformer_blocks.0.attn2.to_v",
|
163
|
+
output_proj=f"model.diffusion_model.output_blocks.{i*3+j}.1.transformer_blocks.0.attn2.to_out.0",
|
164
|
+
),
|
165
|
+
feed_forward=stable_diffusion_loader.FeedForwardBlockTensorNames(
|
166
|
+
norm=f"model.diffusion_model.output_blocks.{i*3+j}.1.transformer_blocks.0.norm3",
|
167
|
+
ge_glu=f"model.diffusion_model.output_blocks.{i*3+j}.1.transformer_blocks.0.ff.net.0.proj",
|
168
|
+
w2=f"model.diffusion_model.output_blocks.{i*3+j}.1.transformer_blocks.0.ff.net.2",
|
169
|
+
),
|
170
|
+
)
|
171
|
+
for j in range(3)
|
172
|
+
]
|
173
|
+
if i > 0
|
174
|
+
else None,
|
175
|
+
upsample_conv=f"model.diffusion_model.output_blocks.{i*3+2}.2.conv"
|
176
|
+
if 0 < i < 3
|
177
|
+
else (
|
178
|
+
f"model.diffusion_model.output_blocks.2.1.conv" if i == 0 else None
|
179
|
+
),
|
180
|
+
)
|
181
|
+
for i in range(4)
|
182
|
+
]
|
183
|
+
|
184
|
+
TENSOR_NAMES = stable_diffusion_loader.DiffusionModelLoader.TensorNames(
|
185
|
+
time_embedding=stable_diffusion_loader.TimeEmbeddingTensorNames(
|
186
|
+
w1="model.diffusion_model.time_embed.0",
|
187
|
+
w2="model.diffusion_model.time_embed.2",
|
188
|
+
),
|
189
|
+
conv_in="model.diffusion_model.input_blocks.0.0",
|
190
|
+
conv_out="model.diffusion_model.out.2",
|
191
|
+
final_norm="model.diffusion_model.out.0",
|
192
|
+
down_encoder_blocks_tensor_names=_down_encoder_blocks_tensor_names,
|
193
|
+
mid_block_tensor_names=_mid_block_tensor_names,
|
194
|
+
up_decoder_blocks_tensor_names=_up_decoder_blocks_tensor_names,
|
195
|
+
)
|
196
|
+
|
197
|
+
|
198
|
+
def build_attention_config(
|
199
|
+
num_heads,
|
200
|
+
dim,
|
201
|
+
num_query_groups,
|
202
|
+
rotary_base=0,
|
203
|
+
rotary_percentage=0.0,
|
204
|
+
qkv_transpose_before_split=True,
|
205
|
+
qkv_use_bias=False,
|
206
|
+
output_proj_use_bias=True,
|
207
|
+
enable_kv_cache=False,
|
208
|
+
qkv_fused_interleaved=False,
|
209
|
+
):
|
210
|
+
|
211
|
+
return layers_cfg.AttentionConfig(
|
212
|
+
num_heads=num_heads,
|
213
|
+
head_dim=dim // num_heads,
|
214
|
+
num_query_groups=num_query_groups,
|
215
|
+
rotary_base=rotary_base,
|
216
|
+
rotary_percentage=rotary_percentage,
|
217
|
+
qkv_transpose_before_split=qkv_transpose_before_split,
|
218
|
+
qkv_use_bias=qkv_use_bias,
|
219
|
+
output_proj_use_bias=output_proj_use_bias,
|
220
|
+
enable_kv_cache=enable_kv_cache,
|
221
|
+
qkv_fused_interleaved=qkv_fused_interleaved,
|
222
|
+
)
|
223
|
+
|
224
|
+
|
225
|
+
class TimeEmbedding(nn.Module):
|
226
|
+
|
227
|
+
def __init__(self, in_dim, out_dim):
|
228
|
+
super().__init__()
|
229
|
+
self.w1 = nn.Linear(in_dim, out_dim)
|
230
|
+
self.w2 = nn.Linear(out_dim, out_dim)
|
231
|
+
self.act = layers_builder.get_activation(
|
232
|
+
layers_cfg.ActivationConfig(layers_cfg.ActivationType.SILU)
|
233
|
+
)
|
234
|
+
|
235
|
+
def forward(self, x: torch.Tensor):
|
236
|
+
return self.w2(self.act(self.w1(x)))
|
237
|
+
|
238
|
+
|
239
|
+
class Diffusion(nn.Module):
|
240
|
+
"""The Diffusion model used in Stable Diffusion.
|
241
|
+
|
242
|
+
For details, see https://arxiv.org/abs/2103.00020
|
243
|
+
|
244
|
+
Sturcture of the Diffusion model:
|
245
|
+
|
246
|
+
latents text context time embed
|
247
|
+
│ │ │
|
248
|
+
│ │ │
|
249
|
+
┌─────────▼─────────┐ │ ┌─────────▼─────────┐
|
250
|
+
│ ConvIn │ │ │ Time Embedding │
|
251
|
+
└─────────┬─────────┘ │ └─────────┬─────────┘
|
252
|
+
│ │ │
|
253
|
+
┌─────────▼─────────┐ │ │
|
254
|
+
┌──────┤ DownEncoder2D │ ◄─────┼────────────┤
|
255
|
+
│ └─────────┬─────────┘ x 4 │ │
|
256
|
+
│ │ │ │
|
257
|
+
│ ┌─────────▼─────────┐ │ │
|
258
|
+
skip connection │ MidBlock2D │ ◄─────┼────────────┤
|
259
|
+
│ └─────────┬─────────┘ │ │
|
260
|
+
│ │ │ │
|
261
|
+
│ ┌─────────▼─────────┐ │ │
|
262
|
+
└──────► SkipUpDecoder2D │ ◄─────┴────────────┘
|
263
|
+
└─────────┬─────────┘ x 4
|
264
|
+
│
|
265
|
+
┌─────────▼─────────┐
|
266
|
+
│ FinalNorm │
|
267
|
+
└─────────┬─────────┘
|
268
|
+
│
|
269
|
+
┌─────────▼─────────┐
|
270
|
+
│ Activation │
|
271
|
+
└─────────┬─────────┘
|
272
|
+
│
|
273
|
+
┌─────────▼─────────┐
|
274
|
+
│ ConvOut │
|
275
|
+
└─────────┬─────────┘
|
276
|
+
│
|
277
|
+
▼
|
278
|
+
output image
|
279
|
+
"""
|
280
|
+
|
281
|
+
def __init__(self, config: unet_cfg.DiffusionModelConfig):
|
282
|
+
super().__init__()
|
283
|
+
|
284
|
+
self.config = config
|
285
|
+
block_out_channels = config.block_out_channels
|
286
|
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
287
|
+
|
288
|
+
time_embedding_blocks_dim = config.time_embedding_blocks_dim
|
289
|
+
self.time_embedding = TimeEmbedding(
|
290
|
+
config.time_embedding_dim, config.time_embedding_blocks_dim
|
291
|
+
)
|
292
|
+
|
293
|
+
self.conv_in = nn.Conv2d(
|
294
|
+
config.in_channels, block_out_channels[0], kernel_size=3, padding=1
|
295
|
+
)
|
296
|
+
|
297
|
+
# Down encoders.
|
298
|
+
down_encoders = []
|
299
|
+
output_channel = block_out_channels[0]
|
300
|
+
for i, block_out_channel in enumerate(block_out_channels):
|
301
|
+
input_channel = output_channel
|
302
|
+
output_channel = block_out_channel
|
303
|
+
not_final_block = i < len(block_out_channels) - 1
|
304
|
+
if not_final_block:
|
305
|
+
down_encoders.append(
|
306
|
+
blocks_2d.DownEncoderBlock2D(
|
307
|
+
unet_cfg.DownEncoderBlock2DConfig(
|
308
|
+
in_channels=input_channel,
|
309
|
+
out_channels=output_channel,
|
310
|
+
normalization_config=config.residual_norm_config,
|
311
|
+
activation_config=layers_cfg.ActivationConfig(
|
312
|
+
config.residual_activation_type
|
313
|
+
),
|
314
|
+
num_layers=config.layers_per_block,
|
315
|
+
padding=config.downsample_padding,
|
316
|
+
time_embedding_channels=time_embedding_blocks_dim,
|
317
|
+
add_downsample=True,
|
318
|
+
sampling_config=unet_cfg.DownSamplingConfig(
|
319
|
+
mode=unet_cfg.SamplingType.CONVOLUTION,
|
320
|
+
in_channels=output_channel,
|
321
|
+
out_channels=output_channel,
|
322
|
+
kernel_size=3,
|
323
|
+
stride=2,
|
324
|
+
padding=config.downsample_padding,
|
325
|
+
),
|
326
|
+
transformer_block_config=unet_cfg.TransformerBlock2DConfig(
|
327
|
+
attention_block_config=unet_cfg.AttentionBlock2DConfig(
|
328
|
+
dim=output_channel,
|
329
|
+
attention_batch_size=config.transformer_batch_size,
|
330
|
+
normalization_config=config.transformer_norm_config,
|
331
|
+
attention_config=build_attention_config(
|
332
|
+
num_heads=config.transformer_num_attention_heads,
|
333
|
+
dim=output_channel,
|
334
|
+
num_query_groups=config.transformer_num_attention_heads,
|
335
|
+
),
|
336
|
+
enable_hlfb=config.enable_hlfb,
|
337
|
+
),
|
338
|
+
cross_attention_block_config=unet_cfg.CrossAttentionBlock2DConfig(
|
339
|
+
query_dim=output_channel,
|
340
|
+
cross_dim=config.transformer_cross_attention_dim,
|
341
|
+
hidden_dim=output_channel,
|
342
|
+
output_dim=output_channel,
|
343
|
+
attention_batch_size=config.transformer_batch_size,
|
344
|
+
normalization_config=config.transformer_norm_config,
|
345
|
+
attention_config=build_attention_config(
|
346
|
+
num_heads=config.transformer_num_attention_heads,
|
347
|
+
dim=output_channel,
|
348
|
+
num_query_groups=config.transformer_num_attention_heads,
|
349
|
+
),
|
350
|
+
enable_hlfb=config.enable_hlfb,
|
351
|
+
),
|
352
|
+
pre_conv_normalization_config=config.transformer_pre_conv_norm_config,
|
353
|
+
feed_forward_block_config=unet_cfg.FeedForwardBlock2DConfig(
|
354
|
+
dim=output_channel,
|
355
|
+
hidden_dim=output_channel * 4,
|
356
|
+
normalization_config=config.transformer_norm_config,
|
357
|
+
activation_config=layers_cfg.ActivationConfig(
|
358
|
+
type=config.transformer_ff_activation_type,
|
359
|
+
dim_in=output_channel,
|
360
|
+
dim_out=output_channel * 4,
|
361
|
+
),
|
362
|
+
use_bias=True,
|
363
|
+
),
|
364
|
+
),
|
365
|
+
)
|
366
|
+
)
|
367
|
+
)
|
368
|
+
else:
|
369
|
+
down_encoders.append(
|
370
|
+
blocks_2d.DownEncoderBlock2D(
|
371
|
+
unet_cfg.DownEncoderBlock2DConfig(
|
372
|
+
in_channels=input_channel,
|
373
|
+
out_channels=output_channel,
|
374
|
+
normalization_config=config.residual_norm_config,
|
375
|
+
activation_config=layers_cfg.ActivationConfig(
|
376
|
+
config.residual_activation_type
|
377
|
+
),
|
378
|
+
num_layers=config.layers_per_block,
|
379
|
+
padding=config.downsample_padding,
|
380
|
+
time_embedding_channels=time_embedding_blocks_dim,
|
381
|
+
add_downsample=False,
|
382
|
+
)
|
383
|
+
)
|
384
|
+
)
|
385
|
+
self.down_encoders = nn.ModuleList(down_encoders)
|
386
|
+
|
387
|
+
# Mid block.
|
388
|
+
mid_block_channels = block_out_channels[-1]
|
389
|
+
self.mid_block = blocks_2d.MidBlock2D(
|
390
|
+
unet_cfg.MidBlock2DConfig(
|
391
|
+
in_channels=block_out_channels[-1],
|
392
|
+
normalization_config=config.residual_norm_config,
|
393
|
+
activation_config=layers_cfg.ActivationConfig(
|
394
|
+
config.residual_activation_type
|
395
|
+
),
|
396
|
+
num_layers=config.mid_block_layers,
|
397
|
+
time_embedding_channels=config.time_embedding_blocks_dim,
|
398
|
+
transformer_block_config=unet_cfg.TransformerBlock2DConfig(
|
399
|
+
attention_block_config=unet_cfg.AttentionBlock2DConfig(
|
400
|
+
dim=mid_block_channels,
|
401
|
+
attention_batch_size=config.transformer_batch_size,
|
402
|
+
normalization_config=config.transformer_norm_config,
|
403
|
+
attention_config=build_attention_config(
|
404
|
+
num_heads=config.transformer_num_attention_heads,
|
405
|
+
dim=mid_block_channels,
|
406
|
+
num_query_groups=config.transformer_num_attention_heads,
|
407
|
+
),
|
408
|
+
enable_hlfb=config.enable_hlfb,
|
409
|
+
),
|
410
|
+
cross_attention_block_config=unet_cfg.CrossAttentionBlock2DConfig(
|
411
|
+
query_dim=mid_block_channels,
|
412
|
+
cross_dim=config.transformer_cross_attention_dim,
|
413
|
+
hidden_dim=mid_block_channels,
|
414
|
+
output_dim=mid_block_channels,
|
415
|
+
attention_batch_size=config.transformer_batch_size,
|
416
|
+
normalization_config=config.transformer_norm_config,
|
417
|
+
attention_config=build_attention_config(
|
418
|
+
num_heads=config.transformer_num_attention_heads,
|
419
|
+
dim=mid_block_channels,
|
420
|
+
num_query_groups=config.transformer_num_attention_heads,
|
421
|
+
),
|
422
|
+
enable_hlfb=config.enable_hlfb,
|
423
|
+
),
|
424
|
+
pre_conv_normalization_config=config.transformer_pre_conv_norm_config,
|
425
|
+
feed_forward_block_config=unet_cfg.FeedForwardBlock2DConfig(
|
426
|
+
dim=mid_block_channels,
|
427
|
+
hidden_dim=mid_block_channels * 4,
|
428
|
+
normalization_config=config.transformer_norm_config,
|
429
|
+
activation_config=layers_cfg.ActivationConfig(
|
430
|
+
type=config.transformer_ff_activation_type,
|
431
|
+
dim_in=mid_block_channels,
|
432
|
+
dim_out=mid_block_channels * 4,
|
433
|
+
),
|
434
|
+
use_bias=True,
|
435
|
+
),
|
436
|
+
),
|
437
|
+
)
|
438
|
+
)
|
439
|
+
|
440
|
+
# Up decoders.
|
441
|
+
up_decoders = []
|
442
|
+
up_decoder_layers_per_block = config.layers_per_block + 1
|
443
|
+
output_channel = reversed_block_out_channels[0]
|
444
|
+
for i, block_out_channel in enumerate(reversed_block_out_channels):
|
445
|
+
prev_out_channel = output_channel
|
446
|
+
output_channel = block_out_channel
|
447
|
+
input_channel = reversed_block_out_channels[
|
448
|
+
min(i + 1, len(reversed_block_out_channels) - 1)
|
449
|
+
]
|
450
|
+
not_final_block = i < len(reversed_block_out_channels) - 1
|
451
|
+
not_first_block = i != 0
|
452
|
+
if not_first_block:
|
453
|
+
up_decoders.append(
|
454
|
+
blocks_2d.SkipUpDecoderBlock2D(
|
455
|
+
unet_cfg.SkipUpDecoderBlock2DConfig(
|
456
|
+
in_channels=input_channel,
|
457
|
+
out_channels=output_channel,
|
458
|
+
prev_out_channels=prev_out_channel,
|
459
|
+
normalization_config=config.residual_norm_config,
|
460
|
+
activation_config=layers_cfg.ActivationConfig(
|
461
|
+
config.residual_activation_type
|
462
|
+
),
|
463
|
+
num_layers=up_decoder_layers_per_block,
|
464
|
+
time_embedding_channels=time_embedding_blocks_dim,
|
465
|
+
add_upsample=not_final_block,
|
466
|
+
upsample_conv=True,
|
467
|
+
sampling_config=unet_cfg.UpSamplingConfig(
|
468
|
+
mode=unet_cfg.SamplingType.NEAREST,
|
469
|
+
scale_factor=2,
|
470
|
+
),
|
471
|
+
transformer_block_config=unet_cfg.TransformerBlock2DConfig(
|
472
|
+
attention_block_config=unet_cfg.AttentionBlock2DConfig(
|
473
|
+
dim=output_channel,
|
474
|
+
attention_batch_size=config.transformer_batch_size,
|
475
|
+
normalization_config=config.transformer_norm_config,
|
476
|
+
attention_config=build_attention_config(
|
477
|
+
num_heads=config.transformer_num_attention_heads,
|
478
|
+
dim=output_channel,
|
479
|
+
num_query_groups=config.transformer_num_attention_heads,
|
480
|
+
),
|
481
|
+
enable_hlfb=config.enable_hlfb,
|
482
|
+
),
|
483
|
+
cross_attention_block_config=unet_cfg.CrossAttentionBlock2DConfig(
|
484
|
+
query_dim=output_channel,
|
485
|
+
cross_dim=config.transformer_cross_attention_dim,
|
486
|
+
hidden_dim=output_channel,
|
487
|
+
output_dim=output_channel,
|
488
|
+
attention_batch_size=config.transformer_batch_size,
|
489
|
+
normalization_config=config.transformer_norm_config,
|
490
|
+
attention_config=build_attention_config(
|
491
|
+
num_heads=config.transformer_num_attention_heads,
|
492
|
+
dim=output_channel,
|
493
|
+
num_query_groups=config.transformer_num_attention_heads,
|
494
|
+
),
|
495
|
+
enable_hlfb=config.enable_hlfb,
|
496
|
+
),
|
497
|
+
pre_conv_normalization_config=config.transformer_pre_conv_norm_config,
|
498
|
+
feed_forward_block_config=unet_cfg.FeedForwardBlock2DConfig(
|
499
|
+
dim=output_channel,
|
500
|
+
hidden_dim=output_channel * 4,
|
501
|
+
normalization_config=config.transformer_norm_config,
|
502
|
+
activation_config=layers_cfg.ActivationConfig(
|
503
|
+
type=config.transformer_ff_activation_type,
|
504
|
+
dim_in=output_channel,
|
505
|
+
dim_out=output_channel * 4,
|
506
|
+
),
|
507
|
+
use_bias=True,
|
508
|
+
),
|
509
|
+
),
|
510
|
+
)
|
511
|
+
)
|
512
|
+
)
|
513
|
+
else:
|
514
|
+
up_decoders.append(
|
515
|
+
blocks_2d.SkipUpDecoderBlock2D(
|
516
|
+
unet_cfg.SkipUpDecoderBlock2DConfig(
|
517
|
+
in_channels=input_channel,
|
518
|
+
out_channels=output_channel,
|
519
|
+
prev_out_channels=prev_out_channel,
|
520
|
+
normalization_config=config.residual_norm_config,
|
521
|
+
activation_config=layers_cfg.ActivationConfig(
|
522
|
+
config.residual_activation_type
|
523
|
+
),
|
524
|
+
num_layers=up_decoder_layers_per_block,
|
525
|
+
time_embedding_channels=time_embedding_blocks_dim,
|
526
|
+
add_upsample=not_final_block,
|
527
|
+
upsample_conv=True,
|
528
|
+
sampling_config=unet_cfg.UpSamplingConfig(
|
529
|
+
mode=unet_cfg.SamplingType.NEAREST, scale_factor=2
|
530
|
+
),
|
531
|
+
)
|
532
|
+
)
|
533
|
+
)
|
534
|
+
self.up_decoders = nn.ModuleList(up_decoders)
|
535
|
+
|
536
|
+
self.final_norm = layers_builder.build_norm(
|
537
|
+
reversed_block_out_channels[-1], config.final_norm_config
|
538
|
+
)
|
539
|
+
self.final_act = layers_builder.get_activation(
|
540
|
+
layers_cfg.ActivationConfig(config.final_activation_type)
|
541
|
+
)
|
542
|
+
self.conv_out = nn.Conv2d(
|
543
|
+
reversed_block_out_channels[-1],
|
544
|
+
config.out_channels,
|
545
|
+
kernel_size=3,
|
546
|
+
padding=1,
|
547
|
+
)
|
548
|
+
|
549
|
+
@torch.inference_mode
|
550
|
+
def forward(
|
551
|
+
self, latents: torch.Tensor, context: torch.Tensor, time_emb: torch.Tensor
|
552
|
+
) -> torch.Tensor:
|
553
|
+
"""Forward function of diffusion model.
|
554
|
+
|
555
|
+
Args:
|
556
|
+
latents (torch.Tensor): latents space tensor.
|
557
|
+
context (torch.Tensor): context tensor from CLIP text encoder.
|
558
|
+
time_emb (torch.Tensor): the time embedding tensor.
|
559
|
+
|
560
|
+
Returns:
|
561
|
+
output latents from diffusion model.
|
562
|
+
"""
|
563
|
+
time_emb = self.time_embedding(time_emb)
|
564
|
+
x = self.conv_in(latents)
|
565
|
+
skip_connection_tensors = [x]
|
566
|
+
for encoder in self.down_encoders:
|
567
|
+
x, hidden_states = encoder(
|
568
|
+
x, time_emb, context, output_hidden_states=True
|
569
|
+
)
|
570
|
+
skip_connection_tensors.extend(hidden_states)
|
571
|
+
x = self.mid_block(x, time_emb, context)
|
572
|
+
for decoder in self.up_decoders:
|
573
|
+
encoder_tensors = [
|
574
|
+
skip_connection_tensors.pop()
|
575
|
+
for i in range(self.config.layers_per_block + 1)
|
576
|
+
]
|
577
|
+
x = decoder(x, encoder_tensors, time_emb, context)
|
578
|
+
x = self.final_norm(x)
|
579
|
+
x = self.final_act(x)
|
580
|
+
x = self.conv_out(x)
|
581
|
+
return x
|
582
|
+
|
583
|
+
|
584
|
+
def get_model_config(
|
585
|
+
batch_size: int, device_type: str = "cpu"
|
586
|
+
) -> unet_cfg.DiffusionModelConfig:
|
587
|
+
"""Get configs for the Diffusion model of Stable Diffusion v1.5.
|
588
|
+
|
589
|
+
Args:
|
590
|
+
batch_size (int): the batch size of input.
|
591
|
+
device_type (str): the device type of the model. Default to "cpu".
|
592
|
+
|
593
|
+
Returns:
|
594
|
+
The configuration of diffusion model of Stable Diffusion v1.5.
|
595
|
+
"""
|
596
|
+
in_channels = 4
|
597
|
+
out_channels = 4
|
598
|
+
block_out_channels = [320, 640, 1280, 1280]
|
599
|
+
layers_per_block = 2
|
600
|
+
downsample_padding = 1
|
601
|
+
|
602
|
+
# For now, only turns on StableHLO composite ops on GPU backend for better
|
603
|
+
# performance. CPU should also switch to it once the support is done.
|
604
|
+
enable_hlfb = True if device_type == "gpu" else False
|
605
|
+
|
606
|
+
# Residual configs.
|
607
|
+
residual_norm_config = layers_cfg.NormalizationConfig(
|
608
|
+
layers_cfg.NormalizationType.GROUP_NORM,
|
609
|
+
group_num=32,
|
610
|
+
enable_hlfb=enable_hlfb,
|
611
|
+
)
|
612
|
+
residual_activation_type = layers_cfg.ActivationType.SILU
|
613
|
+
|
614
|
+
# Transformer configs.
|
615
|
+
transformer_num_attention_heads = 8
|
616
|
+
transformer_batch_size = batch_size
|
617
|
+
transformer_cross_attention_dim = 768 # Embedding from CLIP model
|
618
|
+
transformer_pre_conv_norm_config = layers_cfg.NormalizationConfig(
|
619
|
+
layers_cfg.NormalizationType.GROUP_NORM,
|
620
|
+
epsilon=1e-6,
|
621
|
+
group_num=32,
|
622
|
+
enable_hlfb=enable_hlfb,
|
623
|
+
)
|
624
|
+
transformer_norm_config = layers_cfg.NormalizationConfig(
|
625
|
+
layers_cfg.NormalizationType.LAYER_NORM,
|
626
|
+
enable_hlfb=enable_hlfb,
|
627
|
+
)
|
628
|
+
transformer_ff_activation_type = layers_cfg.ActivationType.GE_GLU
|
629
|
+
|
630
|
+
# Time embedding configs.
|
631
|
+
time_embedding_dim = 320
|
632
|
+
time_embedding_blocks_dim = 1280
|
633
|
+
|
634
|
+
# Mid block configs.
|
635
|
+
mid_block_layers = 1
|
636
|
+
|
637
|
+
# Finaly layer configs.
|
638
|
+
final_norm_config = layers_cfg.NormalizationConfig(
|
639
|
+
layers_cfg.NormalizationType.GROUP_NORM,
|
640
|
+
group_num=32,
|
641
|
+
enable_hlfb=enable_hlfb,
|
642
|
+
)
|
643
|
+
final_activation_type = layers_cfg.ActivationType.SILU
|
644
|
+
|
645
|
+
return unet_cfg.DiffusionModelConfig(
|
646
|
+
in_channels=in_channels,
|
647
|
+
out_channels=out_channels,
|
648
|
+
block_out_channels=block_out_channels,
|
649
|
+
layers_per_block=layers_per_block,
|
650
|
+
downsample_padding=downsample_padding,
|
651
|
+
residual_norm_config=residual_norm_config,
|
652
|
+
residual_activation_type=residual_activation_type,
|
653
|
+
transformer_batch_size=transformer_batch_size,
|
654
|
+
transformer_num_attention_heads=transformer_num_attention_heads,
|
655
|
+
transformer_cross_attention_dim=transformer_cross_attention_dim,
|
656
|
+
transformer_pre_conv_norm_config=transformer_pre_conv_norm_config,
|
657
|
+
transformer_norm_config=transformer_norm_config,
|
658
|
+
transformer_ff_activation_type=transformer_ff_activation_type,
|
659
|
+
mid_block_layers=mid_block_layers,
|
660
|
+
time_embedding_dim=time_embedding_dim,
|
661
|
+
time_embedding_blocks_dim=time_embedding_blocks_dim,
|
662
|
+
final_norm_config=final_norm_config,
|
663
|
+
final_activation_type=final_activation_type,
|
664
|
+
enable_hlfb=enable_hlfb,
|
665
|
+
)
|
666
|
+
|
667
|
+
|
668
|
+
def get_fake_model_config(
|
669
|
+
batch_size: int, device_type: str = "cpu"
|
670
|
+
) -> unet_cfg.DiffusionModelConfig:
|
671
|
+
"""Get fake configs for the Diffusion model of Stable Diffusion v1.5 for testing.
|
672
|
+
|
673
|
+
Args:
|
674
|
+
batch_size (int): the batch size of input.
|
675
|
+
device_type (str): the device type of the model. Default to "cpu".
|
676
|
+
|
677
|
+
Returns:
|
678
|
+
The configuration of diffusion model of Stable Diffusion v1.5.
|
679
|
+
"""
|
680
|
+
in_channels = 4
|
681
|
+
out_channels = 4
|
682
|
+
block_out_channels = [2, 4, 8, 8]
|
683
|
+
layers_per_block = 1
|
684
|
+
downsample_padding = 1
|
685
|
+
|
686
|
+
# For now, only turns on StableHLO composite ops on GPU backend for better
|
687
|
+
# performance. CPU should also switch to it once the support is done.
|
688
|
+
enable_hlfb = True if device_type == "gpu" else False
|
689
|
+
|
690
|
+
# Residual configs.
|
691
|
+
residual_norm_config = layers_cfg.NormalizationConfig(
|
692
|
+
layers_cfg.NormalizationType.GROUP_NORM,
|
693
|
+
group_num=2,
|
694
|
+
enable_hlfb=enable_hlfb,
|
695
|
+
)
|
696
|
+
residual_activation_type = layers_cfg.ActivationType.SILU
|
697
|
+
|
698
|
+
# Transformer configs.
|
699
|
+
transformer_num_attention_heads = 1
|
700
|
+
transformer_batch_size = batch_size
|
701
|
+
transformer_cross_attention_dim = 4 # Embedding from CLIP model
|
702
|
+
transformer_pre_conv_norm_config = layers_cfg.NormalizationConfig(
|
703
|
+
layers_cfg.NormalizationType.GROUP_NORM,
|
704
|
+
epsilon=1e-6,
|
705
|
+
group_num=2,
|
706
|
+
enable_hlfb=enable_hlfb,
|
707
|
+
)
|
708
|
+
transformer_norm_config = layers_cfg.NormalizationConfig(
|
709
|
+
layers_cfg.NormalizationType.LAYER_NORM,
|
710
|
+
enable_hlfb=enable_hlfb,
|
711
|
+
)
|
712
|
+
transformer_ff_activation_type = layers_cfg.ActivationType.GE_GLU
|
713
|
+
|
714
|
+
# Time embedding configs.
|
715
|
+
time_embedding_dim = 2
|
716
|
+
time_embedding_blocks_dim = 4
|
717
|
+
|
718
|
+
# Mid block configs.
|
719
|
+
mid_block_layers = 1
|
720
|
+
|
721
|
+
# Finaly layer configs.
|
722
|
+
final_norm_config = layers_cfg.NormalizationConfig(
|
723
|
+
layers_cfg.NormalizationType.GROUP_NORM,
|
724
|
+
group_num=2,
|
725
|
+
enable_hlfb=enable_hlfb,
|
726
|
+
)
|
727
|
+
final_activation_type = layers_cfg.ActivationType.SILU
|
728
|
+
|
729
|
+
return unet_cfg.DiffusionModelConfig(
|
730
|
+
in_channels=in_channels,
|
731
|
+
out_channels=out_channels,
|
732
|
+
block_out_channels=block_out_channels,
|
733
|
+
layers_per_block=layers_per_block,
|
734
|
+
downsample_padding=downsample_padding,
|
735
|
+
residual_norm_config=residual_norm_config,
|
736
|
+
residual_activation_type=residual_activation_type,
|
737
|
+
transformer_batch_size=transformer_batch_size,
|
738
|
+
transformer_num_attention_heads=transformer_num_attention_heads,
|
739
|
+
transformer_cross_attention_dim=transformer_cross_attention_dim,
|
740
|
+
transformer_pre_conv_norm_config=transformer_pre_conv_norm_config,
|
741
|
+
transformer_norm_config=transformer_norm_config,
|
742
|
+
transformer_ff_activation_type=transformer_ff_activation_type,
|
743
|
+
mid_block_layers=mid_block_layers,
|
744
|
+
time_embedding_dim=time_embedding_dim,
|
745
|
+
time_embedding_blocks_dim=time_embedding_blocks_dim,
|
746
|
+
final_norm_config=final_norm_config,
|
747
|
+
final_activation_type=final_activation_type,
|
748
|
+
enable_hlfb=enable_hlfb,
|
749
|
+
)
|