ai-edge-torch-nightly 0.3.0.dev20250114__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- ai_edge_torch/__init__.py +32 -0
- ai_edge_torch/_config.py +69 -0
- ai_edge_torch/_convert/__init__.py +14 -0
- ai_edge_torch/_convert/conversion.py +153 -0
- ai_edge_torch/_convert/conversion_utils.py +64 -0
- ai_edge_torch/_convert/converter.py +270 -0
- ai_edge_torch/_convert/fx_passes/__init__.py +23 -0
- ai_edge_torch/_convert/fx_passes/build_aten_composite_pass.py +288 -0
- ai_edge_torch/_convert/fx_passes/build_interpolate_composite_pass.py +131 -0
- ai_edge_torch/_convert/fx_passes/inject_mlir_debuginfo_pass.py +73 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/__init__.py +16 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_check.py +258 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_mark.py +50 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +18 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +68 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +216 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +449 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +30 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/pass_body.py +303 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/utils.py +64 -0
- ai_edge_torch/_convert/fx_passes/remove_non_user_outputs_pass.py +52 -0
- ai_edge_torch/_convert/signature.py +66 -0
- ai_edge_torch/_convert/test/__init__.py +14 -0
- ai_edge_torch/_convert/test/test_convert.py +558 -0
- ai_edge_torch/_convert/test/test_convert_composites.py +234 -0
- ai_edge_torch/_convert/test/test_convert_multisig.py +189 -0
- ai_edge_torch/_convert/test/test_to_channel_last_io.py +96 -0
- ai_edge_torch/_convert/to_channel_last_io.py +92 -0
- ai_edge_torch/conftest.py +20 -0
- ai_edge_torch/debug/__init__.py +17 -0
- ai_edge_torch/debug/culprit.py +496 -0
- ai_edge_torch/debug/test/__init__.py +14 -0
- ai_edge_torch/debug/test/test_culprit.py +140 -0
- ai_edge_torch/debug/test/test_search_model.py +51 -0
- ai_edge_torch/debug/utils.py +59 -0
- ai_edge_torch/experimental/__init__.py +14 -0
- ai_edge_torch/fx_pass_base.py +110 -0
- ai_edge_torch/generative/__init__.py +14 -0
- ai_edge_torch/generative/examples/__init__.py +14 -0
- ai_edge_torch/generative/examples/amd_llama_135m/__init__.py +14 -0
- ai_edge_torch/generative/examples/amd_llama_135m/amd_llama_135m.py +87 -0
- ai_edge_torch/generative/examples/amd_llama_135m/convert_to_tflite.py +70 -0
- ai_edge_torch/generative/examples/amd_llama_135m/verify.py +72 -0
- ai_edge_torch/generative/examples/gemma/__init__.py +14 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/gemma/gemma1.py +107 -0
- ai_edge_torch/generative/examples/gemma/gemma2.py +295 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma1.py +56 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma2.py +43 -0
- ai_edge_torch/generative/examples/gemma/verify_util.py +157 -0
- ai_edge_torch/generative/examples/llama/__init__.py +14 -0
- ai_edge_torch/generative/examples/llama/convert_to_tflite.py +91 -0
- ai_edge_torch/generative/examples/llama/llama.py +196 -0
- ai_edge_torch/generative/examples/llama/verify.py +88 -0
- ai_edge_torch/generative/examples/moonshine/__init__.py +14 -0
- ai_edge_torch/generative/examples/moonshine/convert_moonshine_to_tflite.py +50 -0
- ai_edge_torch/generative/examples/moonshine/moonshine.py +103 -0
- ai_edge_torch/generative/examples/openelm/__init__.py +14 -0
- ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/openelm/openelm.py +127 -0
- ai_edge_torch/generative/examples/openelm/verify.py +71 -0
- ai_edge_torch/generative/examples/paligemma/__init__.py +14 -0
- ai_edge_torch/generative/examples/paligemma/convert_to_tflite.py +95 -0
- ai_edge_torch/generative/examples/paligemma/decoder.py +151 -0
- ai_edge_torch/generative/examples/paligemma/decoder2.py +177 -0
- ai_edge_torch/generative/examples/paligemma/image_encoder.py +160 -0
- ai_edge_torch/generative/examples/paligemma/paligemma.py +179 -0
- ai_edge_torch/generative/examples/paligemma/verify.py +161 -0
- ai_edge_torch/generative/examples/paligemma/verify_decoder.py +75 -0
- ai_edge_torch/generative/examples/paligemma/verify_decoder2.py +72 -0
- ai_edge_torch/generative/examples/paligemma/verify_image_encoder.py +99 -0
- ai_edge_torch/generative/examples/phi/__init__.py +14 -0
- ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/phi/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/phi/phi2.py +107 -0
- ai_edge_torch/generative/examples/phi/phi3.py +219 -0
- ai_edge_torch/generative/examples/phi/verify.py +64 -0
- ai_edge_torch/generative/examples/phi/verify_phi3.py +69 -0
- ai_edge_torch/generative/examples/qwen/__init__.py +14 -0
- ai_edge_torch/generative/examples/qwen/convert_to_tflite.py +93 -0
- ai_edge_torch/generative/examples/qwen/qwen.py +134 -0
- ai_edge_torch/generative/examples/qwen/verify.py +88 -0
- ai_edge_torch/generative/examples/smollm/__init__.py +14 -0
- ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/smollm/convert_v2_to_tflite.py +71 -0
- ai_edge_torch/generative/examples/smollm/smollm.py +125 -0
- ai_edge_torch/generative/examples/smollm/verify.py +86 -0
- ai_edge_torch/generative/examples/stable_diffusion/__init__.py +14 -0
- ai_edge_torch/generative/examples/stable_diffusion/attention.py +108 -0
- ai_edge_torch/generative/examples/stable_diffusion/clip.py +185 -0
- ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +173 -0
- ai_edge_torch/generative/examples/stable_diffusion/decoder.py +398 -0
- ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +749 -0
- ai_edge_torch/generative/examples/stable_diffusion/encoder.py +119 -0
- ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +254 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/__init__.py +19 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +62 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +66 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +74 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +39 -0
- ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +111 -0
- ai_edge_torch/generative/examples/stable_diffusion/util.py +77 -0
- ai_edge_torch/generative/examples/t5/__init__.py +14 -0
- ai_edge_torch/generative/examples/t5/convert_to_tflite.py +138 -0
- ai_edge_torch/generative/examples/t5/t5.py +655 -0
- ai_edge_torch/generative/examples/t5/t5_attention.py +246 -0
- ai_edge_torch/generative/examples/test_models/__init__.py +14 -0
- ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
- ai_edge_torch/generative/examples/test_models/toy_model.py +156 -0
- ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +138 -0
- ai_edge_torch/generative/examples/tiny_llama/__init__.py +14 -0
- ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +88 -0
- ai_edge_torch/generative/examples/tiny_llama/verify.py +72 -0
- ai_edge_torch/generative/fx_passes/__init__.py +30 -0
- ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +50 -0
- ai_edge_torch/generative/layers/__init__.py +14 -0
- ai_edge_torch/generative/layers/attention.py +399 -0
- ai_edge_torch/generative/layers/attention_utils.py +210 -0
- ai_edge_torch/generative/layers/builder.py +160 -0
- ai_edge_torch/generative/layers/feed_forward.py +120 -0
- ai_edge_torch/generative/layers/kv_cache.py +204 -0
- ai_edge_torch/generative/layers/lora.py +557 -0
- ai_edge_torch/generative/layers/model_config.py +238 -0
- ai_edge_torch/generative/layers/normalization.py +222 -0
- ai_edge_torch/generative/layers/rotary_position_embedding.py +94 -0
- ai_edge_torch/generative/layers/scaled_dot_product_attention.py +144 -0
- ai_edge_torch/generative/layers/unet/__init__.py +14 -0
- ai_edge_torch/generative/layers/unet/blocks_2d.py +806 -0
- ai_edge_torch/generative/layers/unet/builder.py +50 -0
- ai_edge_torch/generative/layers/unet/model_config.py +282 -0
- ai_edge_torch/generative/quantize/__init__.py +14 -0
- ai_edge_torch/generative/quantize/example.py +47 -0
- ai_edge_torch/generative/quantize/quant_attrs.py +68 -0
- ai_edge_torch/generative/quantize/quant_recipe.py +154 -0
- ai_edge_torch/generative/quantize/quant_recipe_utils.py +62 -0
- ai_edge_torch/generative/quantize/quant_recipes.py +56 -0
- ai_edge_torch/generative/quantize/supported_schemes.py +32 -0
- ai_edge_torch/generative/test/__init__.py +14 -0
- ai_edge_torch/generative/test/test_custom_dus.py +107 -0
- ai_edge_torch/generative/test/test_kv_cache.py +120 -0
- ai_edge_torch/generative/test/test_loader.py +83 -0
- ai_edge_torch/generative/test/test_lora.py +147 -0
- ai_edge_torch/generative/test/test_model_conversion.py +191 -0
- ai_edge_torch/generative/test/test_model_conversion_large.py +362 -0
- ai_edge_torch/generative/test/test_quantize.py +183 -0
- ai_edge_torch/generative/test/utils.py +82 -0
- ai_edge_torch/generative/utilities/__init__.py +15 -0
- ai_edge_torch/generative/utilities/converter.py +215 -0
- ai_edge_torch/generative/utilities/dynamic_update_slice.py +56 -0
- ai_edge_torch/generative/utilities/loader.py +398 -0
- ai_edge_torch/generative/utilities/model_builder.py +180 -0
- ai_edge_torch/generative/utilities/moonshine_loader.py +154 -0
- ai_edge_torch/generative/utilities/stable_diffusion_loader.py +1032 -0
- ai_edge_torch/generative/utilities/t5_loader.py +512 -0
- ai_edge_torch/generative/utilities/transformers_verifier.py +42 -0
- ai_edge_torch/generative/utilities/verifier.py +335 -0
- ai_edge_torch/hlfb/__init__.py +16 -0
- ai_edge_torch/hlfb/mark_pattern/__init__.py +153 -0
- ai_edge_torch/hlfb/mark_pattern/fx_utils.py +69 -0
- ai_edge_torch/hlfb/mark_pattern/pattern.py +288 -0
- ai_edge_torch/hlfb/test/__init__.py +14 -0
- ai_edge_torch/hlfb/test/test_mark_pattern.py +185 -0
- ai_edge_torch/lowertools/__init__.py +18 -0
- ai_edge_torch/lowertools/_shim.py +86 -0
- ai_edge_torch/lowertools/common_utils.py +142 -0
- ai_edge_torch/lowertools/odml_torch_utils.py +260 -0
- ai_edge_torch/lowertools/test_utils.py +62 -0
- ai_edge_torch/lowertools/torch_xla_utils.py +301 -0
- ai_edge_torch/lowertools/translate_recipe.py +163 -0
- ai_edge_torch/model.py +177 -0
- ai_edge_torch/odml_torch/__init__.py +20 -0
- ai_edge_torch/odml_torch/_torch_future.py +88 -0
- ai_edge_torch/odml_torch/_torch_library.py +19 -0
- ai_edge_torch/odml_torch/composite/__init__.py +16 -0
- ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
- ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
- ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
- ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
- ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
- ai_edge_torch/odml_torch/export.py +403 -0
- ai_edge_torch/odml_torch/export_utils.py +157 -0
- ai_edge_torch/odml_torch/jax_bridge/__init__.py +18 -0
- ai_edge_torch/odml_torch/jax_bridge/_wrap.py +180 -0
- ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
- ai_edge_torch/odml_torch/lowerings/__init__.py +27 -0
- ai_edge_torch/odml_torch/lowerings/_basic.py +294 -0
- ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
- ai_edge_torch/odml_torch/lowerings/_convolution.py +243 -0
- ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +285 -0
- ai_edge_torch/odml_torch/lowerings/_layer_norm.py +87 -0
- ai_edge_torch/odml_torch/lowerings/_quantized_decomposed.py +177 -0
- ai_edge_torch/odml_torch/lowerings/_rand.py +142 -0
- ai_edge_torch/odml_torch/lowerings/context.py +42 -0
- ai_edge_torch/odml_torch/lowerings/decomp.py +69 -0
- ai_edge_torch/odml_torch/lowerings/registry.py +65 -0
- ai_edge_torch/odml_torch/lowerings/utils.py +201 -0
- ai_edge_torch/odml_torch/passes/__init__.py +38 -0
- ai_edge_torch/odml_torch/tf_integration.py +156 -0
- ai_edge_torch/quantize/__init__.py +16 -0
- ai_edge_torch/quantize/pt2e_quantizer.py +466 -0
- ai_edge_torch/quantize/pt2e_quantizer_utils.py +1061 -0
- ai_edge_torch/quantize/quant_config.py +85 -0
- ai_edge_torch/testing/__init__.py +14 -0
- ai_edge_torch/testing/model_coverage/__init__.py +16 -0
- ai_edge_torch/testing/model_coverage/model_coverage.py +145 -0
- ai_edge_torch/version.py +16 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/LICENSE +202 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/METADATA +44 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/RECORD +213 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/WHEEL +5 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/top_level.txt +1 -0
@@ -0,0 +1,107 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Example of building a Gemma1 model."""
|
17
|
+
|
18
|
+
import ai_edge_torch.generative.layers.model_config as cfg
|
19
|
+
from ai_edge_torch.generative.utilities import model_builder
|
20
|
+
import ai_edge_torch.generative.utilities.loader as loading_utils
|
21
|
+
from torch import nn
|
22
|
+
|
23
|
+
TENSOR_NAMES = loading_utils.ModelLoader.TensorNames(
|
24
|
+
ff_up_proj="model.layers.{}.mlp.up_proj",
|
25
|
+
ff_down_proj="model.layers.{}.mlp.down_proj",
|
26
|
+
ff_gate_proj="model.layers.{}.mlp.gate_proj",
|
27
|
+
attn_fused_qkv_proj="model.layers.{}.self_attn.qkv_proj",
|
28
|
+
attn_output_proj="model.layers.{}.self_attn.o_proj",
|
29
|
+
pre_attn_norm="model.layers.{}.input_layernorm",
|
30
|
+
post_attn_norm="model.layers.{}.post_attention_layernorm",
|
31
|
+
embedding="embedder",
|
32
|
+
final_norm="model.norm",
|
33
|
+
lm_head=None,
|
34
|
+
)
|
35
|
+
|
36
|
+
|
37
|
+
class Gemma1(model_builder.DecoderOnlyModel):
|
38
|
+
"""A Gemma1 model built from the Edge Generative API layers."""
|
39
|
+
pass
|
40
|
+
|
41
|
+
|
42
|
+
def get_model_config_2b(kv_cache_max_len: int = 1024) -> cfg.ModelConfig:
|
43
|
+
"""Returns the model config for a Gemma 2B model.
|
44
|
+
|
45
|
+
Args:
|
46
|
+
kv_cache_max_len (int): The maximum sequence length of the KV cache. Default
|
47
|
+
is 1024.
|
48
|
+
|
49
|
+
Returns:
|
50
|
+
The model config for a Gemma 2B model.
|
51
|
+
"""
|
52
|
+
attn_config = cfg.AttentionConfig(
|
53
|
+
num_heads=8,
|
54
|
+
head_dim=256,
|
55
|
+
num_query_groups=1,
|
56
|
+
rotary_base=10000,
|
57
|
+
rotary_percentage=1.0,
|
58
|
+
)
|
59
|
+
ff_config = cfg.FeedForwardConfig(
|
60
|
+
type=cfg.FeedForwardType.GATED,
|
61
|
+
activation=cfg.ActivationConfig(cfg.ActivationType.GELU_TANH),
|
62
|
+
intermediate_size=16384,
|
63
|
+
)
|
64
|
+
norm_config = cfg.NormalizationConfig(
|
65
|
+
type=cfg.NormalizationType.RMS_NORM,
|
66
|
+
epsilon=1e-6,
|
67
|
+
zero_centered=True,
|
68
|
+
)
|
69
|
+
block_config = cfg.TransformerBlockConfig(
|
70
|
+
attn_config=attn_config,
|
71
|
+
ff_config=ff_config,
|
72
|
+
pre_attention_norm_config=norm_config,
|
73
|
+
post_attention_norm_config=norm_config,
|
74
|
+
)
|
75
|
+
embedding_dim = 2048
|
76
|
+
config = cfg.ModelConfig(
|
77
|
+
vocab_size=256000,
|
78
|
+
num_layers=18,
|
79
|
+
max_seq_len=8192,
|
80
|
+
embedding_dim=embedding_dim,
|
81
|
+
embedding_scale=embedding_dim**0.5,
|
82
|
+
kv_cache_max_len=kv_cache_max_len,
|
83
|
+
block_configs=block_config,
|
84
|
+
final_norm_config=norm_config,
|
85
|
+
lm_head_use_bias=False,
|
86
|
+
enable_hlfb=True,
|
87
|
+
)
|
88
|
+
return config
|
89
|
+
|
90
|
+
|
91
|
+
def get_fake_model_config(kv_cache_max_len: int = 128) -> cfg.ModelConfig:
|
92
|
+
config = get_model_config_2b(kv_cache_max_len)
|
93
|
+
# Gemma has only one block config.
|
94
|
+
config.block_config(0).ff_config.intermediate_size = 128
|
95
|
+
config.vocab_size = 128
|
96
|
+
config.num_layers = 2
|
97
|
+
config.max_seq_len = 2 * kv_cache_max_len
|
98
|
+
return config
|
99
|
+
|
100
|
+
|
101
|
+
def build_2b_model(checkpoint_path: str, **kwargs) -> nn.Module:
|
102
|
+
return model_builder.build_decoder_only_model(
|
103
|
+
checkpoint_path=checkpoint_path,
|
104
|
+
config=get_model_config_2b(**kwargs),
|
105
|
+
tensor_names=TENSOR_NAMES,
|
106
|
+
model_class=Gemma1,
|
107
|
+
)
|
@@ -0,0 +1,295 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Example of building a Gemma2 model."""
|
17
|
+
|
18
|
+
from typing import List, Optional, Tuple
|
19
|
+
|
20
|
+
from ai_edge_torch.generative.layers import attention
|
21
|
+
from ai_edge_torch.generative.layers import builder
|
22
|
+
from ai_edge_torch.generative.layers import kv_cache as kv_utils
|
23
|
+
import ai_edge_torch.generative.layers.attention_utils as attn_utils
|
24
|
+
import ai_edge_torch.generative.layers.model_config as cfg
|
25
|
+
import ai_edge_torch.generative.layers.rotary_position_embedding as rotary_pos_emb
|
26
|
+
from ai_edge_torch.generative.utilities import model_builder
|
27
|
+
import ai_edge_torch.generative.utilities.loader as loading_utils
|
28
|
+
import torch
|
29
|
+
from torch import nn
|
30
|
+
|
31
|
+
TENSOR_NAMES = loading_utils.ModelLoader.TensorNames(
|
32
|
+
ff_up_proj="model.layers.{}.mlp.up_proj",
|
33
|
+
ff_down_proj="model.layers.{}.mlp.down_proj",
|
34
|
+
ff_gate_proj="model.layers.{}.mlp.gate_proj",
|
35
|
+
attn_fused_qkv_proj="model.layers.{}.self_attn.qkv_proj",
|
36
|
+
attn_output_proj="model.layers.{}.self_attn.o_proj",
|
37
|
+
pre_attn_norm="model.layers.{}.input_layernorm",
|
38
|
+
post_attn_norm="model.layers.{}.post_attention_layernorm",
|
39
|
+
pre_ff_norm="model.layers.{}.pre_feedforward_layernorm",
|
40
|
+
post_ff_norm="model.layers.{}.post_feedforward_layernorm",
|
41
|
+
embedding="embedder",
|
42
|
+
final_norm="model.norm",
|
43
|
+
lm_head=None,
|
44
|
+
)
|
45
|
+
|
46
|
+
|
47
|
+
class Gemma2Block(attention.TransformerBlock):
|
48
|
+
|
49
|
+
def forward(
|
50
|
+
self,
|
51
|
+
x: torch.Tensor,
|
52
|
+
rope: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
53
|
+
mask: Optional[torch.Tensor] = None,
|
54
|
+
input_pos: Optional[torch.Tensor] = None,
|
55
|
+
kv_cache: kv_utils.KVCacheEntry = None,
|
56
|
+
) -> Tuple[torch.Tensor, Optional[kv_utils.KVCacheEntry]]:
|
57
|
+
"""Forward function of the Gemma2Block.
|
58
|
+
|
59
|
+
Exactly the same as TransformerBlock but we call the post-attention norm
|
60
|
+
immediately after attention and not after the residual pointwise addition.
|
61
|
+
|
62
|
+
Args:
|
63
|
+
x (torch.Tensor): the input tensor.
|
64
|
+
rope (Tuple[torch.Tensor, torch.Tensor]): the input rope tensor.
|
65
|
+
mask (torch.Tensor): the optional mask tensor.
|
66
|
+
input_pos (torch.Tensor): the optional input position tensor.
|
67
|
+
kv_cache (KVCacheEntry): the optional kv cache entry.
|
68
|
+
|
69
|
+
Returns:
|
70
|
+
output activation from this transformer block, and updated kv cache (if
|
71
|
+
passed in).
|
72
|
+
"""
|
73
|
+
|
74
|
+
x_norm = self.pre_atten_norm(x)
|
75
|
+
attn_out, kv = self.atten_func(x_norm, rope, mask, input_pos, kv_cache)
|
76
|
+
attn_out_norm = self.post_atten_norm(attn_out)
|
77
|
+
x = x + attn_out_norm
|
78
|
+
output = x + self.ff(x)
|
79
|
+
return output, kv
|
80
|
+
|
81
|
+
|
82
|
+
class Gemma2(nn.Module):
|
83
|
+
"""A Gemma2 model built from the Edge Generative API layers."""
|
84
|
+
|
85
|
+
def __init__(self, config: cfg.ModelConfig):
|
86
|
+
super().__init__()
|
87
|
+
|
88
|
+
# Construct model layers.
|
89
|
+
self.tok_embedding = nn.Embedding(
|
90
|
+
config.vocab_size, config.embedding_dim, padding_idx=0
|
91
|
+
)
|
92
|
+
self.lm_head = nn.Linear(
|
93
|
+
config.embedding_dim,
|
94
|
+
config.vocab_size,
|
95
|
+
bias=config.lm_head_use_bias,
|
96
|
+
)
|
97
|
+
# Gemma2 re-uses the embedding as the head projection layer.
|
98
|
+
self.lm_head.weight.data = self.tok_embedding.weight.data
|
99
|
+
self.transformer_blocks = nn.ModuleList(
|
100
|
+
Gemma2Block(config.block_config(idx), config)
|
101
|
+
for idx in range(config.num_layers)
|
102
|
+
)
|
103
|
+
self.final_norm = builder.build_norm(
|
104
|
+
config.embedding_dim,
|
105
|
+
config.final_norm_config,
|
106
|
+
)
|
107
|
+
self.mask_cache = attn_utils.build_causal_mask_cache(
|
108
|
+
size=config.kv_cache_max,
|
109
|
+
)
|
110
|
+
# Gemma2 has same hyper parameters for each layer except for attention
|
111
|
+
# types. Use the first layer.
|
112
|
+
attn_config = config.block_config(0).attn_config
|
113
|
+
self.sliding_window_mask_cache = attn_utils.build_sliding_window_mask_cache(
|
114
|
+
size=config.kv_cache_max,
|
115
|
+
window_size=attn_config.sliding_window_size,
|
116
|
+
)
|
117
|
+
self.config = config
|
118
|
+
|
119
|
+
def get_attention_mask(
|
120
|
+
self, attn_type: cfg.AttentionType, input_pos: torch.Tensor
|
121
|
+
) -> torch.Tensor:
|
122
|
+
if attn_type == cfg.AttentionType.LOCAL_SLIDING:
|
123
|
+
return self.sliding_window_mask_cache.index_select(2, input_pos)
|
124
|
+
return self.mask_cache.index_select(2, input_pos)
|
125
|
+
|
126
|
+
@torch.inference_mode
|
127
|
+
def forward(
|
128
|
+
self,
|
129
|
+
tokens: torch.Tensor,
|
130
|
+
input_pos: torch.Tensor,
|
131
|
+
kv_cache: kv_utils.KVCache,
|
132
|
+
mask: Optional[torch.Tensor] = None,
|
133
|
+
export_config: Optional[model_builder.ExportConfig] = None,
|
134
|
+
) -> dict[torch.Tensor, kv_utils.KVCache]:
|
135
|
+
_, seq_len = tokens.size()
|
136
|
+
assert self.config.max_seq_len >= seq_len, (
|
137
|
+
f"Cannot forward sequence of length {seq_len}, max seq length is only"
|
138
|
+
f" {self.config.max_seq_len}"
|
139
|
+
)
|
140
|
+
|
141
|
+
# token embeddings of shape (b, t, n_embd)
|
142
|
+
input_embeds = self.tok_embedding(tokens)
|
143
|
+
# RoPE parameters are the same for all blocks. Use the first layer.
|
144
|
+
attn_config = self.config.block_config(0).attn_config
|
145
|
+
n_elem = int(attn_config.rotary_percentage * attn_config.head_dim)
|
146
|
+
rope = rotary_pos_emb.build_rope(input_pos, n_elem, attn_config.rotary_base)
|
147
|
+
mask = [
|
148
|
+
self.get_attention_mask(
|
149
|
+
self.config.block_config(i).attn_config.attn_type, input_pos
|
150
|
+
)
|
151
|
+
for i in range(self.config.num_layers)
|
152
|
+
]
|
153
|
+
|
154
|
+
return self._forward_with_embeds(
|
155
|
+
input_embeds, rope, mask, input_pos, kv_cache, export_config
|
156
|
+
)
|
157
|
+
|
158
|
+
def _forward_with_embeds(
|
159
|
+
self,
|
160
|
+
input_embeds: torch.Tensor,
|
161
|
+
rope: Tuple[torch.Tensor, torch.Tensor],
|
162
|
+
mask: List[torch.Tensor],
|
163
|
+
input_pos: torch.Tensor,
|
164
|
+
kv_cache: kv_utils.KVCache,
|
165
|
+
export_config: Optional[model_builder.ExportConfig] = None,
|
166
|
+
) -> dict[torch.Tensor, kv_utils.KVCache]:
|
167
|
+
"""Forwards the model with input embeddings."""
|
168
|
+
assert len(self.transformer_blocks) == len(kv_cache.caches), (
|
169
|
+
"The number of transformer blocks and the number of KV cache entries"
|
170
|
+
" must be the same."
|
171
|
+
)
|
172
|
+
|
173
|
+
if self.config.embedding_scale is not None:
|
174
|
+
input_embeds = input_embeds * self.config.embedding_scale
|
175
|
+
x = input_embeds
|
176
|
+
updated_kv_entries = []
|
177
|
+
mask_input = mask is not None
|
178
|
+
for i, block in enumerate(self.transformer_blocks):
|
179
|
+
mask = (
|
180
|
+
mask
|
181
|
+
if mask_input
|
182
|
+
else self.get_attention_mask(
|
183
|
+
block.config.attn_config.attn_type, input_pos
|
184
|
+
)
|
185
|
+
)
|
186
|
+
kv_entry = kv_cache.caches[i] if kv_cache else None
|
187
|
+
x, kv_entry = block(x, rope, mask[i], input_pos, kv_entry)
|
188
|
+
if kv_entry:
|
189
|
+
updated_kv_entries.append(kv_entry)
|
190
|
+
updated_kv_cache = kv_utils.KVCache(tuple(updated_kv_entries))
|
191
|
+
|
192
|
+
if export_config is not None:
|
193
|
+
if (
|
194
|
+
torch.numel(input_pos) > 1
|
195
|
+
and not export_config.output_logits_on_prefill
|
196
|
+
):
|
197
|
+
return {"kv_cache": updated_kv_cache}
|
198
|
+
|
199
|
+
x = self.final_norm(x)
|
200
|
+
res = self.lm_head(x) # (b, t, vocab_size)
|
201
|
+
if self.config.final_logit_softcap is not None:
|
202
|
+
res = res / self.config.final_logit_softcap
|
203
|
+
res = torch.tanh(res)
|
204
|
+
res = res * self.config.final_logit_softcap
|
205
|
+
|
206
|
+
return {"logits": res, "kv_cache": updated_kv_cache}
|
207
|
+
|
208
|
+
|
209
|
+
def get_model_config_2b(kv_cache_max_len: int = 1024) -> cfg.ModelConfig:
|
210
|
+
"""Returns the model config for a Gemma2 2B model.
|
211
|
+
|
212
|
+
Args:
|
213
|
+
kv_cache_max_len (int): The maximum sequence length of the KV cache. Default
|
214
|
+
is 1024.
|
215
|
+
|
216
|
+
Returns:
|
217
|
+
The model config for a Gemma 2B model.
|
218
|
+
"""
|
219
|
+
norm_config = cfg.NormalizationConfig(
|
220
|
+
type=cfg.NormalizationType.RMS_NORM,
|
221
|
+
epsilon=1e-6,
|
222
|
+
zero_centered=True,
|
223
|
+
)
|
224
|
+
ff_config = cfg.FeedForwardConfig(
|
225
|
+
type=cfg.FeedForwardType.GATED,
|
226
|
+
activation=cfg.ActivationConfig(cfg.ActivationType.GELU_TANH),
|
227
|
+
intermediate_size=9216,
|
228
|
+
pre_ff_norm_config=norm_config,
|
229
|
+
post_ff_norm_config=norm_config,
|
230
|
+
)
|
231
|
+
|
232
|
+
def get_block_config(idx: int) -> cfg.TransformerBlockConfig:
|
233
|
+
attn_config = cfg.AttentionConfig(
|
234
|
+
num_heads=8,
|
235
|
+
head_dim=256,
|
236
|
+
num_query_groups=4,
|
237
|
+
rotary_base=10000,
|
238
|
+
rotary_percentage=1.0,
|
239
|
+
qkv_transpose_before_split=True,
|
240
|
+
logit_softcap=50.0,
|
241
|
+
sliding_window_size=4096,
|
242
|
+
attn_type=(
|
243
|
+
cfg.AttentionType.GLOBAL
|
244
|
+
if idx % 2 == 0
|
245
|
+
else cfg.AttentionType.LOCAL_SLIDING
|
246
|
+
),
|
247
|
+
)
|
248
|
+
return cfg.TransformerBlockConfig(
|
249
|
+
attn_config=attn_config,
|
250
|
+
ff_config=ff_config,
|
251
|
+
pre_attention_norm_config=norm_config,
|
252
|
+
post_attention_norm_config=norm_config,
|
253
|
+
)
|
254
|
+
|
255
|
+
num_layers = 26
|
256
|
+
embedding_dim = 2304
|
257
|
+
config = cfg.ModelConfig(
|
258
|
+
vocab_size=256000,
|
259
|
+
num_layers=num_layers,
|
260
|
+
max_seq_len=8192,
|
261
|
+
embedding_dim=embedding_dim,
|
262
|
+
embedding_scale=embedding_dim**0.5,
|
263
|
+
kv_cache_max_len=kv_cache_max_len,
|
264
|
+
block_configs=[get_block_config(i) for i in range(num_layers)],
|
265
|
+
final_norm_config=norm_config,
|
266
|
+
lm_head_use_bias=False,
|
267
|
+
enable_hlfb=True,
|
268
|
+
final_logit_softcap=30.0,
|
269
|
+
)
|
270
|
+
return config
|
271
|
+
|
272
|
+
|
273
|
+
def get_fake_model_config(kv_cache_max_len: int = 128) -> cfg.ModelConfig:
|
274
|
+
config = get_model_config_2b(kv_cache_max_len)
|
275
|
+
config.vocab_size = 128
|
276
|
+
config.num_layers = 2
|
277
|
+
config.max_seq_len = 2 * kv_cache_max_len
|
278
|
+
config.embedding_dim = 128
|
279
|
+
config.embedding_scale = config.embedding_dim**0.5
|
280
|
+
config.block_configs = config.block_configs[: config.num_layers]
|
281
|
+
for block_config in config.block_configs:
|
282
|
+
block_config.attn_config.num_heads = 4
|
283
|
+
block_config.attn_config.head_dim = 64
|
284
|
+
block_config.attn_config.sliding_window_size = 64
|
285
|
+
block_config.ff_config.intermediate_size = 128
|
286
|
+
return config
|
287
|
+
|
288
|
+
|
289
|
+
def build_2b_model(checkpoint_path: str, **kwargs) -> nn.Module:
|
290
|
+
return model_builder.build_decoder_only_model(
|
291
|
+
checkpoint_path=checkpoint_path,
|
292
|
+
config=get_model_config_2b(**kwargs),
|
293
|
+
tensor_names=TENSOR_NAMES,
|
294
|
+
model_class=Gemma2,
|
295
|
+
)
|
@@ -0,0 +1,56 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Verifies the reauthored Gemma1 model."""
|
17
|
+
|
18
|
+
import logging
|
19
|
+
from absl import app
|
20
|
+
from absl import flags
|
21
|
+
from ai_edge_torch.generative.examples.gemma import gemma1
|
22
|
+
from ai_edge_torch.generative.examples.gemma import verify_util
|
23
|
+
import kagglehub
|
24
|
+
|
25
|
+
|
26
|
+
_PROMPTS = flags.DEFINE_multi_string(
|
27
|
+
"prompts",
|
28
|
+
"What is the meaning of life?",
|
29
|
+
"The input prompts to generate answers.",
|
30
|
+
)
|
31
|
+
_MAX_NEW_TOKENS = flags.DEFINE_integer(
|
32
|
+
"max_new_tokens",
|
33
|
+
30,
|
34
|
+
"The maximum size of the generated tokens.",
|
35
|
+
)
|
36
|
+
|
37
|
+
|
38
|
+
def main(_):
|
39
|
+
checkpoint = kagglehub.model_download("google/gemma/pyTorch/2b-it")
|
40
|
+
|
41
|
+
logging.info("Building the reauthored model from: %s", checkpoint)
|
42
|
+
reauthored_model = gemma1.build_2b_model(checkpoint)
|
43
|
+
|
44
|
+
verify_util.verify_reauthored_gemma_model(
|
45
|
+
checkpoint=checkpoint,
|
46
|
+
variant="2b",
|
47
|
+
reauthored_model=reauthored_model,
|
48
|
+
weight_filename="gemma-2b-it.ckpt",
|
49
|
+
generate_prompts=_PROMPTS.value,
|
50
|
+
forward_input_ids=[[1, 2, 3, 4]],
|
51
|
+
max_new_tokens=_MAX_NEW_TOKENS.value,
|
52
|
+
)
|
53
|
+
|
54
|
+
|
55
|
+
if __name__ == "__main__":
|
56
|
+
app.run(main)
|
@@ -0,0 +1,43 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Verifies the reauthored Gemma2 model."""
|
17
|
+
|
18
|
+
from absl import app
|
19
|
+
from absl import flags
|
20
|
+
from ai_edge_torch.generative.examples.gemma import verify_util
|
21
|
+
import kagglehub
|
22
|
+
|
23
|
+
|
24
|
+
_PROMPTS = flags.DEFINE_multi_string(
|
25
|
+
"prompts",
|
26
|
+
"What is the meaning of life?",
|
27
|
+
"The input prompts to generate answers.",
|
28
|
+
)
|
29
|
+
_MAX_NEW_TOKENS = flags.DEFINE_integer(
|
30
|
+
"max_new_tokens",
|
31
|
+
30,
|
32
|
+
"The maximum size of the generated tokens.",
|
33
|
+
)
|
34
|
+
|
35
|
+
|
36
|
+
def main(_):
|
37
|
+
checkpoint = kagglehub.model_download("google/gemma-2/pyTorch/gemma-2-2b-it")
|
38
|
+
|
39
|
+
verify_util.verify_gemma2(checkpoint, _PROMPTS.value, _MAX_NEW_TOKENS.value)
|
40
|
+
|
41
|
+
|
42
|
+
if __name__ == "__main__":
|
43
|
+
app.run(main)
|
@@ -0,0 +1,157 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Utility functions to verify the reauthored Gemma model."""
|
17
|
+
|
18
|
+
import logging
|
19
|
+
import os
|
20
|
+
from typing import List, Tuple
|
21
|
+
|
22
|
+
from ai_edge_torch.generative.examples.gemma import gemma2
|
23
|
+
import ai_edge_torch.generative.layers.attention_utils as attn_utils
|
24
|
+
from ai_edge_torch.generative.utilities import verifier
|
25
|
+
from gemma import config as gemma_config
|
26
|
+
from gemma import model as gemma_model
|
27
|
+
import torch
|
28
|
+
|
29
|
+
|
30
|
+
class GemmaWrapper(verifier.ModelWrapper):
|
31
|
+
"""Gemma model wrapper for verification.
|
32
|
+
|
33
|
+
Verifier calls model.forward() with maxium sequence length (1024) expecting
|
34
|
+
the output is logits while Gemma gets the input tokens with the actual length
|
35
|
+
and returns logits in a tuple.
|
36
|
+
|
37
|
+
Verifier runs tokenizer before model.generate() while Gemma runs the tokenizer
|
38
|
+
inside model.generate().
|
39
|
+
"""
|
40
|
+
|
41
|
+
def _get_actual_input_len(self, tokens: torch.Tensor) -> int:
|
42
|
+
for i in range(tokens.shape[1]):
|
43
|
+
if tokens[0, i] == 0:
|
44
|
+
return i
|
45
|
+
return tokens.shape[1]
|
46
|
+
|
47
|
+
def _get_kv_caches(
|
48
|
+
self, max_seq_len: int
|
49
|
+
) -> List[Tuple[torch.Tensor, torch.Tensor]]:
|
50
|
+
config = self.model.config
|
51
|
+
cache_size = (1, max_seq_len, config.num_key_value_heads, config.head_dim)
|
52
|
+
cache = torch.zeros(cache_size)
|
53
|
+
return [
|
54
|
+
(cache.clone(), cache.clone()) for _ in range(config.num_hidden_layers)
|
55
|
+
]
|
56
|
+
|
57
|
+
def forward(self, tokens: torch.Tensor) -> torch.Tensor:
|
58
|
+
"""Forwards the model after reducing input tokens to the actual length."""
|
59
|
+
actual_input_len = self._get_actual_input_len(tokens)
|
60
|
+
input_pos = torch.arange(0, actual_input_len, dtype=torch.long)
|
61
|
+
mask_cache = attn_utils.build_causal_mask_cache(tokens.shape[1])
|
62
|
+
_, logits = self.model.forward(
|
63
|
+
input_token_ids=tokens[0, :actual_input_len].unsqueeze(0),
|
64
|
+
input_positions=input_pos,
|
65
|
+
kv_write_indices=None,
|
66
|
+
kv_caches=self._get_kv_caches(tokens.shape[1]),
|
67
|
+
mask=mask_cache.index_select(2, input_pos),
|
68
|
+
output_positions=input_pos,
|
69
|
+
temperatures=None,
|
70
|
+
top_ps=torch.tensor([1.0], dtype=torch.float),
|
71
|
+
top_ks=torch.tensor([1], dtype=torch.long),
|
72
|
+
)
|
73
|
+
return logits
|
74
|
+
|
75
|
+
def generate(
|
76
|
+
self, tokens: torch.Tensor, max_new_tokens: int
|
77
|
+
) -> torch.IntTensor:
|
78
|
+
"""Generates the response after decoding the tokens into a string."""
|
79
|
+
prompts = self.model.tokenizer.decode(tokens[0].tolist())
|
80
|
+
response = self.model.generate(
|
81
|
+
prompts, device="cpu", output_len=max_new_tokens, top_k=1
|
82
|
+
)
|
83
|
+
return torch.tensor([self.model.tokenizer.encode(prompts + response)])
|
84
|
+
|
85
|
+
|
86
|
+
class GemmaTokenizerWrapper(verifier.TokenizerWrapper):
|
87
|
+
"""Tokenizer wrapper for verification.
|
88
|
+
|
89
|
+
Verifier expects the tokenizer to handle tokens in torch.Tensor while Gemma
|
90
|
+
tokenizer expects tokens in a list.
|
91
|
+
"""
|
92
|
+
|
93
|
+
def encode(self, text: str, **_) -> torch.Tensor:
|
94
|
+
"""Adds one more dimension to the output of the tokenizer."""
|
95
|
+
return torch.tensor([self.tokenizer.encode(text)])
|
96
|
+
|
97
|
+
def decode(self, tokens: torch.Tensor) -> str:
|
98
|
+
"""Decodes the token sequence after converting to a list."""
|
99
|
+
return self.tokenizer.decode(tokens.tolist())
|
100
|
+
|
101
|
+
|
102
|
+
def verify_reauthored_gemma_model(
|
103
|
+
checkpoint: str,
|
104
|
+
variant: str,
|
105
|
+
reauthored_model: torch.nn.Module,
|
106
|
+
generate_prompts: List[str],
|
107
|
+
forward_input_ids: List[List[int]],
|
108
|
+
weight_filename: str = "model.ckpt",
|
109
|
+
tokenizer_filename: str = "tokenizer.model",
|
110
|
+
max_new_tokens: int = 20,
|
111
|
+
rtol: float = 1e-05,
|
112
|
+
atol: float = 1e-05,
|
113
|
+
) -> bool:
|
114
|
+
"""Verifies the reauthored Gemma model against the original model.
|
115
|
+
|
116
|
+
Returns True if the verification passes, False otherwise.
|
117
|
+
"""
|
118
|
+
config = gemma_config.get_model_config(variant)
|
119
|
+
config.tokenizer = os.path.join(checkpoint, tokenizer_filename)
|
120
|
+
# Use float32 to be compatible with the reauthored model.
|
121
|
+
config.dtype = torch.float32
|
122
|
+
|
123
|
+
logging.info("Loading the original model from: %s", checkpoint)
|
124
|
+
original_model = gemma_model.GemmaForCausalLM(config).eval()
|
125
|
+
original_model.load_weights(os.path.join(checkpoint, weight_filename))
|
126
|
+
|
127
|
+
return verifier.verify_reauthored_model(
|
128
|
+
original_model=GemmaWrapper(original_model),
|
129
|
+
reauthored_model=verifier.ReauthoredModelWrapper(reauthored_model),
|
130
|
+
tokenizer=GemmaTokenizerWrapper(original_model.tokenizer),
|
131
|
+
generate_prompts=generate_prompts,
|
132
|
+
max_new_tokens=max_new_tokens,
|
133
|
+
forward_input_ids=forward_input_ids,
|
134
|
+
rtol=rtol,
|
135
|
+
atol=atol,
|
136
|
+
)
|
137
|
+
|
138
|
+
|
139
|
+
def verify_gemma2(
|
140
|
+
gemma2_model_path: str, prompts: List[str], max_new_tokens: int
|
141
|
+
) -> bool:
|
142
|
+
"""Verifies the reauthored Gemma2 model.
|
143
|
+
|
144
|
+
Return True if the verification passes, False otherwise.
|
145
|
+
"""
|
146
|
+
logging.info("Building the reauthored model from: %s", gemma2_model_path)
|
147
|
+
reauthored_model = gemma2.build_2b_model(gemma2_model_path)
|
148
|
+
|
149
|
+
return verify_reauthored_gemma_model(
|
150
|
+
checkpoint=gemma2_model_path,
|
151
|
+
variant="2b-v2",
|
152
|
+
reauthored_model=reauthored_model,
|
153
|
+
generate_prompts=prompts,
|
154
|
+
forward_input_ids=[[2, 651, 9456, 576, 573, 3520, 3858, 603, 235248]],
|
155
|
+
max_new_tokens=max_new_tokens,
|
156
|
+
atol=1e-04,
|
157
|
+
)
|
@@ -0,0 +1,14 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|