ai-edge-torch-nightly 0.3.0.dev20250114__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (213) hide show
  1. ai_edge_torch/__init__.py +32 -0
  2. ai_edge_torch/_config.py +69 -0
  3. ai_edge_torch/_convert/__init__.py +14 -0
  4. ai_edge_torch/_convert/conversion.py +153 -0
  5. ai_edge_torch/_convert/conversion_utils.py +64 -0
  6. ai_edge_torch/_convert/converter.py +270 -0
  7. ai_edge_torch/_convert/fx_passes/__init__.py +23 -0
  8. ai_edge_torch/_convert/fx_passes/build_aten_composite_pass.py +288 -0
  9. ai_edge_torch/_convert/fx_passes/build_interpolate_composite_pass.py +131 -0
  10. ai_edge_torch/_convert/fx_passes/inject_mlir_debuginfo_pass.py +73 -0
  11. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/__init__.py +16 -0
  12. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_check.py +258 -0
  13. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_mark.py +50 -0
  14. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +18 -0
  15. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +68 -0
  16. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +216 -0
  17. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +449 -0
  18. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +30 -0
  19. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/pass_body.py +303 -0
  20. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/utils.py +64 -0
  21. ai_edge_torch/_convert/fx_passes/remove_non_user_outputs_pass.py +52 -0
  22. ai_edge_torch/_convert/signature.py +66 -0
  23. ai_edge_torch/_convert/test/__init__.py +14 -0
  24. ai_edge_torch/_convert/test/test_convert.py +558 -0
  25. ai_edge_torch/_convert/test/test_convert_composites.py +234 -0
  26. ai_edge_torch/_convert/test/test_convert_multisig.py +189 -0
  27. ai_edge_torch/_convert/test/test_to_channel_last_io.py +96 -0
  28. ai_edge_torch/_convert/to_channel_last_io.py +92 -0
  29. ai_edge_torch/conftest.py +20 -0
  30. ai_edge_torch/debug/__init__.py +17 -0
  31. ai_edge_torch/debug/culprit.py +496 -0
  32. ai_edge_torch/debug/test/__init__.py +14 -0
  33. ai_edge_torch/debug/test/test_culprit.py +140 -0
  34. ai_edge_torch/debug/test/test_search_model.py +51 -0
  35. ai_edge_torch/debug/utils.py +59 -0
  36. ai_edge_torch/experimental/__init__.py +14 -0
  37. ai_edge_torch/fx_pass_base.py +110 -0
  38. ai_edge_torch/generative/__init__.py +14 -0
  39. ai_edge_torch/generative/examples/__init__.py +14 -0
  40. ai_edge_torch/generative/examples/amd_llama_135m/__init__.py +14 -0
  41. ai_edge_torch/generative/examples/amd_llama_135m/amd_llama_135m.py +87 -0
  42. ai_edge_torch/generative/examples/amd_llama_135m/convert_to_tflite.py +70 -0
  43. ai_edge_torch/generative/examples/amd_llama_135m/verify.py +72 -0
  44. ai_edge_torch/generative/examples/gemma/__init__.py +14 -0
  45. ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +80 -0
  46. ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +80 -0
  47. ai_edge_torch/generative/examples/gemma/gemma1.py +107 -0
  48. ai_edge_torch/generative/examples/gemma/gemma2.py +295 -0
  49. ai_edge_torch/generative/examples/gemma/verify_gemma1.py +56 -0
  50. ai_edge_torch/generative/examples/gemma/verify_gemma2.py +43 -0
  51. ai_edge_torch/generative/examples/gemma/verify_util.py +157 -0
  52. ai_edge_torch/generative/examples/llama/__init__.py +14 -0
  53. ai_edge_torch/generative/examples/llama/convert_to_tflite.py +91 -0
  54. ai_edge_torch/generative/examples/llama/llama.py +196 -0
  55. ai_edge_torch/generative/examples/llama/verify.py +88 -0
  56. ai_edge_torch/generative/examples/moonshine/__init__.py +14 -0
  57. ai_edge_torch/generative/examples/moonshine/convert_moonshine_to_tflite.py +50 -0
  58. ai_edge_torch/generative/examples/moonshine/moonshine.py +103 -0
  59. ai_edge_torch/generative/examples/openelm/__init__.py +14 -0
  60. ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +80 -0
  61. ai_edge_torch/generative/examples/openelm/openelm.py +127 -0
  62. ai_edge_torch/generative/examples/openelm/verify.py +71 -0
  63. ai_edge_torch/generative/examples/paligemma/__init__.py +14 -0
  64. ai_edge_torch/generative/examples/paligemma/convert_to_tflite.py +95 -0
  65. ai_edge_torch/generative/examples/paligemma/decoder.py +151 -0
  66. ai_edge_torch/generative/examples/paligemma/decoder2.py +177 -0
  67. ai_edge_torch/generative/examples/paligemma/image_encoder.py +160 -0
  68. ai_edge_torch/generative/examples/paligemma/paligemma.py +179 -0
  69. ai_edge_torch/generative/examples/paligemma/verify.py +161 -0
  70. ai_edge_torch/generative/examples/paligemma/verify_decoder.py +75 -0
  71. ai_edge_torch/generative/examples/paligemma/verify_decoder2.py +72 -0
  72. ai_edge_torch/generative/examples/paligemma/verify_image_encoder.py +99 -0
  73. ai_edge_torch/generative/examples/phi/__init__.py +14 -0
  74. ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +80 -0
  75. ai_edge_torch/generative/examples/phi/convert_to_tflite.py +80 -0
  76. ai_edge_torch/generative/examples/phi/phi2.py +107 -0
  77. ai_edge_torch/generative/examples/phi/phi3.py +219 -0
  78. ai_edge_torch/generative/examples/phi/verify.py +64 -0
  79. ai_edge_torch/generative/examples/phi/verify_phi3.py +69 -0
  80. ai_edge_torch/generative/examples/qwen/__init__.py +14 -0
  81. ai_edge_torch/generative/examples/qwen/convert_to_tflite.py +93 -0
  82. ai_edge_torch/generative/examples/qwen/qwen.py +134 -0
  83. ai_edge_torch/generative/examples/qwen/verify.py +88 -0
  84. ai_edge_torch/generative/examples/smollm/__init__.py +14 -0
  85. ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +80 -0
  86. ai_edge_torch/generative/examples/smollm/convert_v2_to_tflite.py +71 -0
  87. ai_edge_torch/generative/examples/smollm/smollm.py +125 -0
  88. ai_edge_torch/generative/examples/smollm/verify.py +86 -0
  89. ai_edge_torch/generative/examples/stable_diffusion/__init__.py +14 -0
  90. ai_edge_torch/generative/examples/stable_diffusion/attention.py +108 -0
  91. ai_edge_torch/generative/examples/stable_diffusion/clip.py +185 -0
  92. ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +173 -0
  93. ai_edge_torch/generative/examples/stable_diffusion/decoder.py +398 -0
  94. ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +749 -0
  95. ai_edge_torch/generative/examples/stable_diffusion/encoder.py +119 -0
  96. ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +254 -0
  97. ai_edge_torch/generative/examples/stable_diffusion/samplers/__init__.py +19 -0
  98. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +62 -0
  99. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +66 -0
  100. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +74 -0
  101. ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +39 -0
  102. ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +111 -0
  103. ai_edge_torch/generative/examples/stable_diffusion/util.py +77 -0
  104. ai_edge_torch/generative/examples/t5/__init__.py +14 -0
  105. ai_edge_torch/generative/examples/t5/convert_to_tflite.py +138 -0
  106. ai_edge_torch/generative/examples/t5/t5.py +655 -0
  107. ai_edge_torch/generative/examples/t5/t5_attention.py +246 -0
  108. ai_edge_torch/generative/examples/test_models/__init__.py +14 -0
  109. ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
  110. ai_edge_torch/generative/examples/test_models/toy_model.py +156 -0
  111. ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +138 -0
  112. ai_edge_torch/generative/examples/tiny_llama/__init__.py +14 -0
  113. ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +80 -0
  114. ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +88 -0
  115. ai_edge_torch/generative/examples/tiny_llama/verify.py +72 -0
  116. ai_edge_torch/generative/fx_passes/__init__.py +30 -0
  117. ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +50 -0
  118. ai_edge_torch/generative/layers/__init__.py +14 -0
  119. ai_edge_torch/generative/layers/attention.py +399 -0
  120. ai_edge_torch/generative/layers/attention_utils.py +210 -0
  121. ai_edge_torch/generative/layers/builder.py +160 -0
  122. ai_edge_torch/generative/layers/feed_forward.py +120 -0
  123. ai_edge_torch/generative/layers/kv_cache.py +204 -0
  124. ai_edge_torch/generative/layers/lora.py +557 -0
  125. ai_edge_torch/generative/layers/model_config.py +238 -0
  126. ai_edge_torch/generative/layers/normalization.py +222 -0
  127. ai_edge_torch/generative/layers/rotary_position_embedding.py +94 -0
  128. ai_edge_torch/generative/layers/scaled_dot_product_attention.py +144 -0
  129. ai_edge_torch/generative/layers/unet/__init__.py +14 -0
  130. ai_edge_torch/generative/layers/unet/blocks_2d.py +806 -0
  131. ai_edge_torch/generative/layers/unet/builder.py +50 -0
  132. ai_edge_torch/generative/layers/unet/model_config.py +282 -0
  133. ai_edge_torch/generative/quantize/__init__.py +14 -0
  134. ai_edge_torch/generative/quantize/example.py +47 -0
  135. ai_edge_torch/generative/quantize/quant_attrs.py +68 -0
  136. ai_edge_torch/generative/quantize/quant_recipe.py +154 -0
  137. ai_edge_torch/generative/quantize/quant_recipe_utils.py +62 -0
  138. ai_edge_torch/generative/quantize/quant_recipes.py +56 -0
  139. ai_edge_torch/generative/quantize/supported_schemes.py +32 -0
  140. ai_edge_torch/generative/test/__init__.py +14 -0
  141. ai_edge_torch/generative/test/test_custom_dus.py +107 -0
  142. ai_edge_torch/generative/test/test_kv_cache.py +120 -0
  143. ai_edge_torch/generative/test/test_loader.py +83 -0
  144. ai_edge_torch/generative/test/test_lora.py +147 -0
  145. ai_edge_torch/generative/test/test_model_conversion.py +191 -0
  146. ai_edge_torch/generative/test/test_model_conversion_large.py +362 -0
  147. ai_edge_torch/generative/test/test_quantize.py +183 -0
  148. ai_edge_torch/generative/test/utils.py +82 -0
  149. ai_edge_torch/generative/utilities/__init__.py +15 -0
  150. ai_edge_torch/generative/utilities/converter.py +215 -0
  151. ai_edge_torch/generative/utilities/dynamic_update_slice.py +56 -0
  152. ai_edge_torch/generative/utilities/loader.py +398 -0
  153. ai_edge_torch/generative/utilities/model_builder.py +180 -0
  154. ai_edge_torch/generative/utilities/moonshine_loader.py +154 -0
  155. ai_edge_torch/generative/utilities/stable_diffusion_loader.py +1032 -0
  156. ai_edge_torch/generative/utilities/t5_loader.py +512 -0
  157. ai_edge_torch/generative/utilities/transformers_verifier.py +42 -0
  158. ai_edge_torch/generative/utilities/verifier.py +335 -0
  159. ai_edge_torch/hlfb/__init__.py +16 -0
  160. ai_edge_torch/hlfb/mark_pattern/__init__.py +153 -0
  161. ai_edge_torch/hlfb/mark_pattern/fx_utils.py +69 -0
  162. ai_edge_torch/hlfb/mark_pattern/pattern.py +288 -0
  163. ai_edge_torch/hlfb/test/__init__.py +14 -0
  164. ai_edge_torch/hlfb/test/test_mark_pattern.py +185 -0
  165. ai_edge_torch/lowertools/__init__.py +18 -0
  166. ai_edge_torch/lowertools/_shim.py +86 -0
  167. ai_edge_torch/lowertools/common_utils.py +142 -0
  168. ai_edge_torch/lowertools/odml_torch_utils.py +260 -0
  169. ai_edge_torch/lowertools/test_utils.py +62 -0
  170. ai_edge_torch/lowertools/torch_xla_utils.py +301 -0
  171. ai_edge_torch/lowertools/translate_recipe.py +163 -0
  172. ai_edge_torch/model.py +177 -0
  173. ai_edge_torch/odml_torch/__init__.py +20 -0
  174. ai_edge_torch/odml_torch/_torch_future.py +88 -0
  175. ai_edge_torch/odml_torch/_torch_library.py +19 -0
  176. ai_edge_torch/odml_torch/composite/__init__.py +16 -0
  177. ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
  178. ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
  179. ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
  180. ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
  181. ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
  182. ai_edge_torch/odml_torch/export.py +403 -0
  183. ai_edge_torch/odml_torch/export_utils.py +157 -0
  184. ai_edge_torch/odml_torch/jax_bridge/__init__.py +18 -0
  185. ai_edge_torch/odml_torch/jax_bridge/_wrap.py +180 -0
  186. ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
  187. ai_edge_torch/odml_torch/lowerings/__init__.py +27 -0
  188. ai_edge_torch/odml_torch/lowerings/_basic.py +294 -0
  189. ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
  190. ai_edge_torch/odml_torch/lowerings/_convolution.py +243 -0
  191. ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +285 -0
  192. ai_edge_torch/odml_torch/lowerings/_layer_norm.py +87 -0
  193. ai_edge_torch/odml_torch/lowerings/_quantized_decomposed.py +177 -0
  194. ai_edge_torch/odml_torch/lowerings/_rand.py +142 -0
  195. ai_edge_torch/odml_torch/lowerings/context.py +42 -0
  196. ai_edge_torch/odml_torch/lowerings/decomp.py +69 -0
  197. ai_edge_torch/odml_torch/lowerings/registry.py +65 -0
  198. ai_edge_torch/odml_torch/lowerings/utils.py +201 -0
  199. ai_edge_torch/odml_torch/passes/__init__.py +38 -0
  200. ai_edge_torch/odml_torch/tf_integration.py +156 -0
  201. ai_edge_torch/quantize/__init__.py +16 -0
  202. ai_edge_torch/quantize/pt2e_quantizer.py +466 -0
  203. ai_edge_torch/quantize/pt2e_quantizer_utils.py +1061 -0
  204. ai_edge_torch/quantize/quant_config.py +85 -0
  205. ai_edge_torch/testing/__init__.py +14 -0
  206. ai_edge_torch/testing/model_coverage/__init__.py +16 -0
  207. ai_edge_torch/testing/model_coverage/model_coverage.py +145 -0
  208. ai_edge_torch/version.py +16 -0
  209. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/LICENSE +202 -0
  210. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/METADATA +44 -0
  211. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/RECORD +213 -0
  212. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/WHEEL +5 -0
  213. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/top_level.txt +1 -0
@@ -0,0 +1,107 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ """Example of building a Gemma1 model."""
17
+
18
+ import ai_edge_torch.generative.layers.model_config as cfg
19
+ from ai_edge_torch.generative.utilities import model_builder
20
+ import ai_edge_torch.generative.utilities.loader as loading_utils
21
+ from torch import nn
22
+
23
+ TENSOR_NAMES = loading_utils.ModelLoader.TensorNames(
24
+ ff_up_proj="model.layers.{}.mlp.up_proj",
25
+ ff_down_proj="model.layers.{}.mlp.down_proj",
26
+ ff_gate_proj="model.layers.{}.mlp.gate_proj",
27
+ attn_fused_qkv_proj="model.layers.{}.self_attn.qkv_proj",
28
+ attn_output_proj="model.layers.{}.self_attn.o_proj",
29
+ pre_attn_norm="model.layers.{}.input_layernorm",
30
+ post_attn_norm="model.layers.{}.post_attention_layernorm",
31
+ embedding="embedder",
32
+ final_norm="model.norm",
33
+ lm_head=None,
34
+ )
35
+
36
+
37
+ class Gemma1(model_builder.DecoderOnlyModel):
38
+ """A Gemma1 model built from the Edge Generative API layers."""
39
+ pass
40
+
41
+
42
+ def get_model_config_2b(kv_cache_max_len: int = 1024) -> cfg.ModelConfig:
43
+ """Returns the model config for a Gemma 2B model.
44
+
45
+ Args:
46
+ kv_cache_max_len (int): The maximum sequence length of the KV cache. Default
47
+ is 1024.
48
+
49
+ Returns:
50
+ The model config for a Gemma 2B model.
51
+ """
52
+ attn_config = cfg.AttentionConfig(
53
+ num_heads=8,
54
+ head_dim=256,
55
+ num_query_groups=1,
56
+ rotary_base=10000,
57
+ rotary_percentage=1.0,
58
+ )
59
+ ff_config = cfg.FeedForwardConfig(
60
+ type=cfg.FeedForwardType.GATED,
61
+ activation=cfg.ActivationConfig(cfg.ActivationType.GELU_TANH),
62
+ intermediate_size=16384,
63
+ )
64
+ norm_config = cfg.NormalizationConfig(
65
+ type=cfg.NormalizationType.RMS_NORM,
66
+ epsilon=1e-6,
67
+ zero_centered=True,
68
+ )
69
+ block_config = cfg.TransformerBlockConfig(
70
+ attn_config=attn_config,
71
+ ff_config=ff_config,
72
+ pre_attention_norm_config=norm_config,
73
+ post_attention_norm_config=norm_config,
74
+ )
75
+ embedding_dim = 2048
76
+ config = cfg.ModelConfig(
77
+ vocab_size=256000,
78
+ num_layers=18,
79
+ max_seq_len=8192,
80
+ embedding_dim=embedding_dim,
81
+ embedding_scale=embedding_dim**0.5,
82
+ kv_cache_max_len=kv_cache_max_len,
83
+ block_configs=block_config,
84
+ final_norm_config=norm_config,
85
+ lm_head_use_bias=False,
86
+ enable_hlfb=True,
87
+ )
88
+ return config
89
+
90
+
91
+ def get_fake_model_config(kv_cache_max_len: int = 128) -> cfg.ModelConfig:
92
+ config = get_model_config_2b(kv_cache_max_len)
93
+ # Gemma has only one block config.
94
+ config.block_config(0).ff_config.intermediate_size = 128
95
+ config.vocab_size = 128
96
+ config.num_layers = 2
97
+ config.max_seq_len = 2 * kv_cache_max_len
98
+ return config
99
+
100
+
101
+ def build_2b_model(checkpoint_path: str, **kwargs) -> nn.Module:
102
+ return model_builder.build_decoder_only_model(
103
+ checkpoint_path=checkpoint_path,
104
+ config=get_model_config_2b(**kwargs),
105
+ tensor_names=TENSOR_NAMES,
106
+ model_class=Gemma1,
107
+ )
@@ -0,0 +1,295 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ """Example of building a Gemma2 model."""
17
+
18
+ from typing import List, Optional, Tuple
19
+
20
+ from ai_edge_torch.generative.layers import attention
21
+ from ai_edge_torch.generative.layers import builder
22
+ from ai_edge_torch.generative.layers import kv_cache as kv_utils
23
+ import ai_edge_torch.generative.layers.attention_utils as attn_utils
24
+ import ai_edge_torch.generative.layers.model_config as cfg
25
+ import ai_edge_torch.generative.layers.rotary_position_embedding as rotary_pos_emb
26
+ from ai_edge_torch.generative.utilities import model_builder
27
+ import ai_edge_torch.generative.utilities.loader as loading_utils
28
+ import torch
29
+ from torch import nn
30
+
31
+ TENSOR_NAMES = loading_utils.ModelLoader.TensorNames(
32
+ ff_up_proj="model.layers.{}.mlp.up_proj",
33
+ ff_down_proj="model.layers.{}.mlp.down_proj",
34
+ ff_gate_proj="model.layers.{}.mlp.gate_proj",
35
+ attn_fused_qkv_proj="model.layers.{}.self_attn.qkv_proj",
36
+ attn_output_proj="model.layers.{}.self_attn.o_proj",
37
+ pre_attn_norm="model.layers.{}.input_layernorm",
38
+ post_attn_norm="model.layers.{}.post_attention_layernorm",
39
+ pre_ff_norm="model.layers.{}.pre_feedforward_layernorm",
40
+ post_ff_norm="model.layers.{}.post_feedforward_layernorm",
41
+ embedding="embedder",
42
+ final_norm="model.norm",
43
+ lm_head=None,
44
+ )
45
+
46
+
47
+ class Gemma2Block(attention.TransformerBlock):
48
+
49
+ def forward(
50
+ self,
51
+ x: torch.Tensor,
52
+ rope: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
53
+ mask: Optional[torch.Tensor] = None,
54
+ input_pos: Optional[torch.Tensor] = None,
55
+ kv_cache: kv_utils.KVCacheEntry = None,
56
+ ) -> Tuple[torch.Tensor, Optional[kv_utils.KVCacheEntry]]:
57
+ """Forward function of the Gemma2Block.
58
+
59
+ Exactly the same as TransformerBlock but we call the post-attention norm
60
+ immediately after attention and not after the residual pointwise addition.
61
+
62
+ Args:
63
+ x (torch.Tensor): the input tensor.
64
+ rope (Tuple[torch.Tensor, torch.Tensor]): the input rope tensor.
65
+ mask (torch.Tensor): the optional mask tensor.
66
+ input_pos (torch.Tensor): the optional input position tensor.
67
+ kv_cache (KVCacheEntry): the optional kv cache entry.
68
+
69
+ Returns:
70
+ output activation from this transformer block, and updated kv cache (if
71
+ passed in).
72
+ """
73
+
74
+ x_norm = self.pre_atten_norm(x)
75
+ attn_out, kv = self.atten_func(x_norm, rope, mask, input_pos, kv_cache)
76
+ attn_out_norm = self.post_atten_norm(attn_out)
77
+ x = x + attn_out_norm
78
+ output = x + self.ff(x)
79
+ return output, kv
80
+
81
+
82
+ class Gemma2(nn.Module):
83
+ """A Gemma2 model built from the Edge Generative API layers."""
84
+
85
+ def __init__(self, config: cfg.ModelConfig):
86
+ super().__init__()
87
+
88
+ # Construct model layers.
89
+ self.tok_embedding = nn.Embedding(
90
+ config.vocab_size, config.embedding_dim, padding_idx=0
91
+ )
92
+ self.lm_head = nn.Linear(
93
+ config.embedding_dim,
94
+ config.vocab_size,
95
+ bias=config.lm_head_use_bias,
96
+ )
97
+ # Gemma2 re-uses the embedding as the head projection layer.
98
+ self.lm_head.weight.data = self.tok_embedding.weight.data
99
+ self.transformer_blocks = nn.ModuleList(
100
+ Gemma2Block(config.block_config(idx), config)
101
+ for idx in range(config.num_layers)
102
+ )
103
+ self.final_norm = builder.build_norm(
104
+ config.embedding_dim,
105
+ config.final_norm_config,
106
+ )
107
+ self.mask_cache = attn_utils.build_causal_mask_cache(
108
+ size=config.kv_cache_max,
109
+ )
110
+ # Gemma2 has same hyper parameters for each layer except for attention
111
+ # types. Use the first layer.
112
+ attn_config = config.block_config(0).attn_config
113
+ self.sliding_window_mask_cache = attn_utils.build_sliding_window_mask_cache(
114
+ size=config.kv_cache_max,
115
+ window_size=attn_config.sliding_window_size,
116
+ )
117
+ self.config = config
118
+
119
+ def get_attention_mask(
120
+ self, attn_type: cfg.AttentionType, input_pos: torch.Tensor
121
+ ) -> torch.Tensor:
122
+ if attn_type == cfg.AttentionType.LOCAL_SLIDING:
123
+ return self.sliding_window_mask_cache.index_select(2, input_pos)
124
+ return self.mask_cache.index_select(2, input_pos)
125
+
126
+ @torch.inference_mode
127
+ def forward(
128
+ self,
129
+ tokens: torch.Tensor,
130
+ input_pos: torch.Tensor,
131
+ kv_cache: kv_utils.KVCache,
132
+ mask: Optional[torch.Tensor] = None,
133
+ export_config: Optional[model_builder.ExportConfig] = None,
134
+ ) -> dict[torch.Tensor, kv_utils.KVCache]:
135
+ _, seq_len = tokens.size()
136
+ assert self.config.max_seq_len >= seq_len, (
137
+ f"Cannot forward sequence of length {seq_len}, max seq length is only"
138
+ f" {self.config.max_seq_len}"
139
+ )
140
+
141
+ # token embeddings of shape (b, t, n_embd)
142
+ input_embeds = self.tok_embedding(tokens)
143
+ # RoPE parameters are the same for all blocks. Use the first layer.
144
+ attn_config = self.config.block_config(0).attn_config
145
+ n_elem = int(attn_config.rotary_percentage * attn_config.head_dim)
146
+ rope = rotary_pos_emb.build_rope(input_pos, n_elem, attn_config.rotary_base)
147
+ mask = [
148
+ self.get_attention_mask(
149
+ self.config.block_config(i).attn_config.attn_type, input_pos
150
+ )
151
+ for i in range(self.config.num_layers)
152
+ ]
153
+
154
+ return self._forward_with_embeds(
155
+ input_embeds, rope, mask, input_pos, kv_cache, export_config
156
+ )
157
+
158
+ def _forward_with_embeds(
159
+ self,
160
+ input_embeds: torch.Tensor,
161
+ rope: Tuple[torch.Tensor, torch.Tensor],
162
+ mask: List[torch.Tensor],
163
+ input_pos: torch.Tensor,
164
+ kv_cache: kv_utils.KVCache,
165
+ export_config: Optional[model_builder.ExportConfig] = None,
166
+ ) -> dict[torch.Tensor, kv_utils.KVCache]:
167
+ """Forwards the model with input embeddings."""
168
+ assert len(self.transformer_blocks) == len(kv_cache.caches), (
169
+ "The number of transformer blocks and the number of KV cache entries"
170
+ " must be the same."
171
+ )
172
+
173
+ if self.config.embedding_scale is not None:
174
+ input_embeds = input_embeds * self.config.embedding_scale
175
+ x = input_embeds
176
+ updated_kv_entries = []
177
+ mask_input = mask is not None
178
+ for i, block in enumerate(self.transformer_blocks):
179
+ mask = (
180
+ mask
181
+ if mask_input
182
+ else self.get_attention_mask(
183
+ block.config.attn_config.attn_type, input_pos
184
+ )
185
+ )
186
+ kv_entry = kv_cache.caches[i] if kv_cache else None
187
+ x, kv_entry = block(x, rope, mask[i], input_pos, kv_entry)
188
+ if kv_entry:
189
+ updated_kv_entries.append(kv_entry)
190
+ updated_kv_cache = kv_utils.KVCache(tuple(updated_kv_entries))
191
+
192
+ if export_config is not None:
193
+ if (
194
+ torch.numel(input_pos) > 1
195
+ and not export_config.output_logits_on_prefill
196
+ ):
197
+ return {"kv_cache": updated_kv_cache}
198
+
199
+ x = self.final_norm(x)
200
+ res = self.lm_head(x) # (b, t, vocab_size)
201
+ if self.config.final_logit_softcap is not None:
202
+ res = res / self.config.final_logit_softcap
203
+ res = torch.tanh(res)
204
+ res = res * self.config.final_logit_softcap
205
+
206
+ return {"logits": res, "kv_cache": updated_kv_cache}
207
+
208
+
209
+ def get_model_config_2b(kv_cache_max_len: int = 1024) -> cfg.ModelConfig:
210
+ """Returns the model config for a Gemma2 2B model.
211
+
212
+ Args:
213
+ kv_cache_max_len (int): The maximum sequence length of the KV cache. Default
214
+ is 1024.
215
+
216
+ Returns:
217
+ The model config for a Gemma 2B model.
218
+ """
219
+ norm_config = cfg.NormalizationConfig(
220
+ type=cfg.NormalizationType.RMS_NORM,
221
+ epsilon=1e-6,
222
+ zero_centered=True,
223
+ )
224
+ ff_config = cfg.FeedForwardConfig(
225
+ type=cfg.FeedForwardType.GATED,
226
+ activation=cfg.ActivationConfig(cfg.ActivationType.GELU_TANH),
227
+ intermediate_size=9216,
228
+ pre_ff_norm_config=norm_config,
229
+ post_ff_norm_config=norm_config,
230
+ )
231
+
232
+ def get_block_config(idx: int) -> cfg.TransformerBlockConfig:
233
+ attn_config = cfg.AttentionConfig(
234
+ num_heads=8,
235
+ head_dim=256,
236
+ num_query_groups=4,
237
+ rotary_base=10000,
238
+ rotary_percentage=1.0,
239
+ qkv_transpose_before_split=True,
240
+ logit_softcap=50.0,
241
+ sliding_window_size=4096,
242
+ attn_type=(
243
+ cfg.AttentionType.GLOBAL
244
+ if idx % 2 == 0
245
+ else cfg.AttentionType.LOCAL_SLIDING
246
+ ),
247
+ )
248
+ return cfg.TransformerBlockConfig(
249
+ attn_config=attn_config,
250
+ ff_config=ff_config,
251
+ pre_attention_norm_config=norm_config,
252
+ post_attention_norm_config=norm_config,
253
+ )
254
+
255
+ num_layers = 26
256
+ embedding_dim = 2304
257
+ config = cfg.ModelConfig(
258
+ vocab_size=256000,
259
+ num_layers=num_layers,
260
+ max_seq_len=8192,
261
+ embedding_dim=embedding_dim,
262
+ embedding_scale=embedding_dim**0.5,
263
+ kv_cache_max_len=kv_cache_max_len,
264
+ block_configs=[get_block_config(i) for i in range(num_layers)],
265
+ final_norm_config=norm_config,
266
+ lm_head_use_bias=False,
267
+ enable_hlfb=True,
268
+ final_logit_softcap=30.0,
269
+ )
270
+ return config
271
+
272
+
273
+ def get_fake_model_config(kv_cache_max_len: int = 128) -> cfg.ModelConfig:
274
+ config = get_model_config_2b(kv_cache_max_len)
275
+ config.vocab_size = 128
276
+ config.num_layers = 2
277
+ config.max_seq_len = 2 * kv_cache_max_len
278
+ config.embedding_dim = 128
279
+ config.embedding_scale = config.embedding_dim**0.5
280
+ config.block_configs = config.block_configs[: config.num_layers]
281
+ for block_config in config.block_configs:
282
+ block_config.attn_config.num_heads = 4
283
+ block_config.attn_config.head_dim = 64
284
+ block_config.attn_config.sliding_window_size = 64
285
+ block_config.ff_config.intermediate_size = 128
286
+ return config
287
+
288
+
289
+ def build_2b_model(checkpoint_path: str, **kwargs) -> nn.Module:
290
+ return model_builder.build_decoder_only_model(
291
+ checkpoint_path=checkpoint_path,
292
+ config=get_model_config_2b(**kwargs),
293
+ tensor_names=TENSOR_NAMES,
294
+ model_class=Gemma2,
295
+ )
@@ -0,0 +1,56 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ """Verifies the reauthored Gemma1 model."""
17
+
18
+ import logging
19
+ from absl import app
20
+ from absl import flags
21
+ from ai_edge_torch.generative.examples.gemma import gemma1
22
+ from ai_edge_torch.generative.examples.gemma import verify_util
23
+ import kagglehub
24
+
25
+
26
+ _PROMPTS = flags.DEFINE_multi_string(
27
+ "prompts",
28
+ "What is the meaning of life?",
29
+ "The input prompts to generate answers.",
30
+ )
31
+ _MAX_NEW_TOKENS = flags.DEFINE_integer(
32
+ "max_new_tokens",
33
+ 30,
34
+ "The maximum size of the generated tokens.",
35
+ )
36
+
37
+
38
+ def main(_):
39
+ checkpoint = kagglehub.model_download("google/gemma/pyTorch/2b-it")
40
+
41
+ logging.info("Building the reauthored model from: %s", checkpoint)
42
+ reauthored_model = gemma1.build_2b_model(checkpoint)
43
+
44
+ verify_util.verify_reauthored_gemma_model(
45
+ checkpoint=checkpoint,
46
+ variant="2b",
47
+ reauthored_model=reauthored_model,
48
+ weight_filename="gemma-2b-it.ckpt",
49
+ generate_prompts=_PROMPTS.value,
50
+ forward_input_ids=[[1, 2, 3, 4]],
51
+ max_new_tokens=_MAX_NEW_TOKENS.value,
52
+ )
53
+
54
+
55
+ if __name__ == "__main__":
56
+ app.run(main)
@@ -0,0 +1,43 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ """Verifies the reauthored Gemma2 model."""
17
+
18
+ from absl import app
19
+ from absl import flags
20
+ from ai_edge_torch.generative.examples.gemma import verify_util
21
+ import kagglehub
22
+
23
+
24
+ _PROMPTS = flags.DEFINE_multi_string(
25
+ "prompts",
26
+ "What is the meaning of life?",
27
+ "The input prompts to generate answers.",
28
+ )
29
+ _MAX_NEW_TOKENS = flags.DEFINE_integer(
30
+ "max_new_tokens",
31
+ 30,
32
+ "The maximum size of the generated tokens.",
33
+ )
34
+
35
+
36
+ def main(_):
37
+ checkpoint = kagglehub.model_download("google/gemma-2/pyTorch/gemma-2-2b-it")
38
+
39
+ verify_util.verify_gemma2(checkpoint, _PROMPTS.value, _MAX_NEW_TOKENS.value)
40
+
41
+
42
+ if __name__ == "__main__":
43
+ app.run(main)
@@ -0,0 +1,157 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ """Utility functions to verify the reauthored Gemma model."""
17
+
18
+ import logging
19
+ import os
20
+ from typing import List, Tuple
21
+
22
+ from ai_edge_torch.generative.examples.gemma import gemma2
23
+ import ai_edge_torch.generative.layers.attention_utils as attn_utils
24
+ from ai_edge_torch.generative.utilities import verifier
25
+ from gemma import config as gemma_config
26
+ from gemma import model as gemma_model
27
+ import torch
28
+
29
+
30
+ class GemmaWrapper(verifier.ModelWrapper):
31
+ """Gemma model wrapper for verification.
32
+
33
+ Verifier calls model.forward() with maxium sequence length (1024) expecting
34
+ the output is logits while Gemma gets the input tokens with the actual length
35
+ and returns logits in a tuple.
36
+
37
+ Verifier runs tokenizer before model.generate() while Gemma runs the tokenizer
38
+ inside model.generate().
39
+ """
40
+
41
+ def _get_actual_input_len(self, tokens: torch.Tensor) -> int:
42
+ for i in range(tokens.shape[1]):
43
+ if tokens[0, i] == 0:
44
+ return i
45
+ return tokens.shape[1]
46
+
47
+ def _get_kv_caches(
48
+ self, max_seq_len: int
49
+ ) -> List[Tuple[torch.Tensor, torch.Tensor]]:
50
+ config = self.model.config
51
+ cache_size = (1, max_seq_len, config.num_key_value_heads, config.head_dim)
52
+ cache = torch.zeros(cache_size)
53
+ return [
54
+ (cache.clone(), cache.clone()) for _ in range(config.num_hidden_layers)
55
+ ]
56
+
57
+ def forward(self, tokens: torch.Tensor) -> torch.Tensor:
58
+ """Forwards the model after reducing input tokens to the actual length."""
59
+ actual_input_len = self._get_actual_input_len(tokens)
60
+ input_pos = torch.arange(0, actual_input_len, dtype=torch.long)
61
+ mask_cache = attn_utils.build_causal_mask_cache(tokens.shape[1])
62
+ _, logits = self.model.forward(
63
+ input_token_ids=tokens[0, :actual_input_len].unsqueeze(0),
64
+ input_positions=input_pos,
65
+ kv_write_indices=None,
66
+ kv_caches=self._get_kv_caches(tokens.shape[1]),
67
+ mask=mask_cache.index_select(2, input_pos),
68
+ output_positions=input_pos,
69
+ temperatures=None,
70
+ top_ps=torch.tensor([1.0], dtype=torch.float),
71
+ top_ks=torch.tensor([1], dtype=torch.long),
72
+ )
73
+ return logits
74
+
75
+ def generate(
76
+ self, tokens: torch.Tensor, max_new_tokens: int
77
+ ) -> torch.IntTensor:
78
+ """Generates the response after decoding the tokens into a string."""
79
+ prompts = self.model.tokenizer.decode(tokens[0].tolist())
80
+ response = self.model.generate(
81
+ prompts, device="cpu", output_len=max_new_tokens, top_k=1
82
+ )
83
+ return torch.tensor([self.model.tokenizer.encode(prompts + response)])
84
+
85
+
86
+ class GemmaTokenizerWrapper(verifier.TokenizerWrapper):
87
+ """Tokenizer wrapper for verification.
88
+
89
+ Verifier expects the tokenizer to handle tokens in torch.Tensor while Gemma
90
+ tokenizer expects tokens in a list.
91
+ """
92
+
93
+ def encode(self, text: str, **_) -> torch.Tensor:
94
+ """Adds one more dimension to the output of the tokenizer."""
95
+ return torch.tensor([self.tokenizer.encode(text)])
96
+
97
+ def decode(self, tokens: torch.Tensor) -> str:
98
+ """Decodes the token sequence after converting to a list."""
99
+ return self.tokenizer.decode(tokens.tolist())
100
+
101
+
102
+ def verify_reauthored_gemma_model(
103
+ checkpoint: str,
104
+ variant: str,
105
+ reauthored_model: torch.nn.Module,
106
+ generate_prompts: List[str],
107
+ forward_input_ids: List[List[int]],
108
+ weight_filename: str = "model.ckpt",
109
+ tokenizer_filename: str = "tokenizer.model",
110
+ max_new_tokens: int = 20,
111
+ rtol: float = 1e-05,
112
+ atol: float = 1e-05,
113
+ ) -> bool:
114
+ """Verifies the reauthored Gemma model against the original model.
115
+
116
+ Returns True if the verification passes, False otherwise.
117
+ """
118
+ config = gemma_config.get_model_config(variant)
119
+ config.tokenizer = os.path.join(checkpoint, tokenizer_filename)
120
+ # Use float32 to be compatible with the reauthored model.
121
+ config.dtype = torch.float32
122
+
123
+ logging.info("Loading the original model from: %s", checkpoint)
124
+ original_model = gemma_model.GemmaForCausalLM(config).eval()
125
+ original_model.load_weights(os.path.join(checkpoint, weight_filename))
126
+
127
+ return verifier.verify_reauthored_model(
128
+ original_model=GemmaWrapper(original_model),
129
+ reauthored_model=verifier.ReauthoredModelWrapper(reauthored_model),
130
+ tokenizer=GemmaTokenizerWrapper(original_model.tokenizer),
131
+ generate_prompts=generate_prompts,
132
+ max_new_tokens=max_new_tokens,
133
+ forward_input_ids=forward_input_ids,
134
+ rtol=rtol,
135
+ atol=atol,
136
+ )
137
+
138
+
139
+ def verify_gemma2(
140
+ gemma2_model_path: str, prompts: List[str], max_new_tokens: int
141
+ ) -> bool:
142
+ """Verifies the reauthored Gemma2 model.
143
+
144
+ Return True if the verification passes, False otherwise.
145
+ """
146
+ logging.info("Building the reauthored model from: %s", gemma2_model_path)
147
+ reauthored_model = gemma2.build_2b_model(gemma2_model_path)
148
+
149
+ return verify_reauthored_gemma_model(
150
+ checkpoint=gemma2_model_path,
151
+ variant="2b-v2",
152
+ reauthored_model=reauthored_model,
153
+ generate_prompts=prompts,
154
+ forward_input_ids=[[2, 651, 9456, 576, 573, 3520, 3858, 603, 235248]],
155
+ max_new_tokens=max_new_tokens,
156
+ atol=1e-04,
157
+ )
@@ -0,0 +1,14 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================