ai-edge-torch-nightly 0.3.0.dev20250114__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (213) hide show
  1. ai_edge_torch/__init__.py +32 -0
  2. ai_edge_torch/_config.py +69 -0
  3. ai_edge_torch/_convert/__init__.py +14 -0
  4. ai_edge_torch/_convert/conversion.py +153 -0
  5. ai_edge_torch/_convert/conversion_utils.py +64 -0
  6. ai_edge_torch/_convert/converter.py +270 -0
  7. ai_edge_torch/_convert/fx_passes/__init__.py +23 -0
  8. ai_edge_torch/_convert/fx_passes/build_aten_composite_pass.py +288 -0
  9. ai_edge_torch/_convert/fx_passes/build_interpolate_composite_pass.py +131 -0
  10. ai_edge_torch/_convert/fx_passes/inject_mlir_debuginfo_pass.py +73 -0
  11. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/__init__.py +16 -0
  12. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_check.py +258 -0
  13. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_mark.py +50 -0
  14. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +18 -0
  15. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +68 -0
  16. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +216 -0
  17. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +449 -0
  18. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +30 -0
  19. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/pass_body.py +303 -0
  20. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/utils.py +64 -0
  21. ai_edge_torch/_convert/fx_passes/remove_non_user_outputs_pass.py +52 -0
  22. ai_edge_torch/_convert/signature.py +66 -0
  23. ai_edge_torch/_convert/test/__init__.py +14 -0
  24. ai_edge_torch/_convert/test/test_convert.py +558 -0
  25. ai_edge_torch/_convert/test/test_convert_composites.py +234 -0
  26. ai_edge_torch/_convert/test/test_convert_multisig.py +189 -0
  27. ai_edge_torch/_convert/test/test_to_channel_last_io.py +96 -0
  28. ai_edge_torch/_convert/to_channel_last_io.py +92 -0
  29. ai_edge_torch/conftest.py +20 -0
  30. ai_edge_torch/debug/__init__.py +17 -0
  31. ai_edge_torch/debug/culprit.py +496 -0
  32. ai_edge_torch/debug/test/__init__.py +14 -0
  33. ai_edge_torch/debug/test/test_culprit.py +140 -0
  34. ai_edge_torch/debug/test/test_search_model.py +51 -0
  35. ai_edge_torch/debug/utils.py +59 -0
  36. ai_edge_torch/experimental/__init__.py +14 -0
  37. ai_edge_torch/fx_pass_base.py +110 -0
  38. ai_edge_torch/generative/__init__.py +14 -0
  39. ai_edge_torch/generative/examples/__init__.py +14 -0
  40. ai_edge_torch/generative/examples/amd_llama_135m/__init__.py +14 -0
  41. ai_edge_torch/generative/examples/amd_llama_135m/amd_llama_135m.py +87 -0
  42. ai_edge_torch/generative/examples/amd_llama_135m/convert_to_tflite.py +70 -0
  43. ai_edge_torch/generative/examples/amd_llama_135m/verify.py +72 -0
  44. ai_edge_torch/generative/examples/gemma/__init__.py +14 -0
  45. ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +80 -0
  46. ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +80 -0
  47. ai_edge_torch/generative/examples/gemma/gemma1.py +107 -0
  48. ai_edge_torch/generative/examples/gemma/gemma2.py +295 -0
  49. ai_edge_torch/generative/examples/gemma/verify_gemma1.py +56 -0
  50. ai_edge_torch/generative/examples/gemma/verify_gemma2.py +43 -0
  51. ai_edge_torch/generative/examples/gemma/verify_util.py +157 -0
  52. ai_edge_torch/generative/examples/llama/__init__.py +14 -0
  53. ai_edge_torch/generative/examples/llama/convert_to_tflite.py +91 -0
  54. ai_edge_torch/generative/examples/llama/llama.py +196 -0
  55. ai_edge_torch/generative/examples/llama/verify.py +88 -0
  56. ai_edge_torch/generative/examples/moonshine/__init__.py +14 -0
  57. ai_edge_torch/generative/examples/moonshine/convert_moonshine_to_tflite.py +50 -0
  58. ai_edge_torch/generative/examples/moonshine/moonshine.py +103 -0
  59. ai_edge_torch/generative/examples/openelm/__init__.py +14 -0
  60. ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +80 -0
  61. ai_edge_torch/generative/examples/openelm/openelm.py +127 -0
  62. ai_edge_torch/generative/examples/openelm/verify.py +71 -0
  63. ai_edge_torch/generative/examples/paligemma/__init__.py +14 -0
  64. ai_edge_torch/generative/examples/paligemma/convert_to_tflite.py +95 -0
  65. ai_edge_torch/generative/examples/paligemma/decoder.py +151 -0
  66. ai_edge_torch/generative/examples/paligemma/decoder2.py +177 -0
  67. ai_edge_torch/generative/examples/paligemma/image_encoder.py +160 -0
  68. ai_edge_torch/generative/examples/paligemma/paligemma.py +179 -0
  69. ai_edge_torch/generative/examples/paligemma/verify.py +161 -0
  70. ai_edge_torch/generative/examples/paligemma/verify_decoder.py +75 -0
  71. ai_edge_torch/generative/examples/paligemma/verify_decoder2.py +72 -0
  72. ai_edge_torch/generative/examples/paligemma/verify_image_encoder.py +99 -0
  73. ai_edge_torch/generative/examples/phi/__init__.py +14 -0
  74. ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +80 -0
  75. ai_edge_torch/generative/examples/phi/convert_to_tflite.py +80 -0
  76. ai_edge_torch/generative/examples/phi/phi2.py +107 -0
  77. ai_edge_torch/generative/examples/phi/phi3.py +219 -0
  78. ai_edge_torch/generative/examples/phi/verify.py +64 -0
  79. ai_edge_torch/generative/examples/phi/verify_phi3.py +69 -0
  80. ai_edge_torch/generative/examples/qwen/__init__.py +14 -0
  81. ai_edge_torch/generative/examples/qwen/convert_to_tflite.py +93 -0
  82. ai_edge_torch/generative/examples/qwen/qwen.py +134 -0
  83. ai_edge_torch/generative/examples/qwen/verify.py +88 -0
  84. ai_edge_torch/generative/examples/smollm/__init__.py +14 -0
  85. ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +80 -0
  86. ai_edge_torch/generative/examples/smollm/convert_v2_to_tflite.py +71 -0
  87. ai_edge_torch/generative/examples/smollm/smollm.py +125 -0
  88. ai_edge_torch/generative/examples/smollm/verify.py +86 -0
  89. ai_edge_torch/generative/examples/stable_diffusion/__init__.py +14 -0
  90. ai_edge_torch/generative/examples/stable_diffusion/attention.py +108 -0
  91. ai_edge_torch/generative/examples/stable_diffusion/clip.py +185 -0
  92. ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +173 -0
  93. ai_edge_torch/generative/examples/stable_diffusion/decoder.py +398 -0
  94. ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +749 -0
  95. ai_edge_torch/generative/examples/stable_diffusion/encoder.py +119 -0
  96. ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +254 -0
  97. ai_edge_torch/generative/examples/stable_diffusion/samplers/__init__.py +19 -0
  98. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +62 -0
  99. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +66 -0
  100. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +74 -0
  101. ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +39 -0
  102. ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +111 -0
  103. ai_edge_torch/generative/examples/stable_diffusion/util.py +77 -0
  104. ai_edge_torch/generative/examples/t5/__init__.py +14 -0
  105. ai_edge_torch/generative/examples/t5/convert_to_tflite.py +138 -0
  106. ai_edge_torch/generative/examples/t5/t5.py +655 -0
  107. ai_edge_torch/generative/examples/t5/t5_attention.py +246 -0
  108. ai_edge_torch/generative/examples/test_models/__init__.py +14 -0
  109. ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
  110. ai_edge_torch/generative/examples/test_models/toy_model.py +156 -0
  111. ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +138 -0
  112. ai_edge_torch/generative/examples/tiny_llama/__init__.py +14 -0
  113. ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +80 -0
  114. ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +88 -0
  115. ai_edge_torch/generative/examples/tiny_llama/verify.py +72 -0
  116. ai_edge_torch/generative/fx_passes/__init__.py +30 -0
  117. ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +50 -0
  118. ai_edge_torch/generative/layers/__init__.py +14 -0
  119. ai_edge_torch/generative/layers/attention.py +399 -0
  120. ai_edge_torch/generative/layers/attention_utils.py +210 -0
  121. ai_edge_torch/generative/layers/builder.py +160 -0
  122. ai_edge_torch/generative/layers/feed_forward.py +120 -0
  123. ai_edge_torch/generative/layers/kv_cache.py +204 -0
  124. ai_edge_torch/generative/layers/lora.py +557 -0
  125. ai_edge_torch/generative/layers/model_config.py +238 -0
  126. ai_edge_torch/generative/layers/normalization.py +222 -0
  127. ai_edge_torch/generative/layers/rotary_position_embedding.py +94 -0
  128. ai_edge_torch/generative/layers/scaled_dot_product_attention.py +144 -0
  129. ai_edge_torch/generative/layers/unet/__init__.py +14 -0
  130. ai_edge_torch/generative/layers/unet/blocks_2d.py +806 -0
  131. ai_edge_torch/generative/layers/unet/builder.py +50 -0
  132. ai_edge_torch/generative/layers/unet/model_config.py +282 -0
  133. ai_edge_torch/generative/quantize/__init__.py +14 -0
  134. ai_edge_torch/generative/quantize/example.py +47 -0
  135. ai_edge_torch/generative/quantize/quant_attrs.py +68 -0
  136. ai_edge_torch/generative/quantize/quant_recipe.py +154 -0
  137. ai_edge_torch/generative/quantize/quant_recipe_utils.py +62 -0
  138. ai_edge_torch/generative/quantize/quant_recipes.py +56 -0
  139. ai_edge_torch/generative/quantize/supported_schemes.py +32 -0
  140. ai_edge_torch/generative/test/__init__.py +14 -0
  141. ai_edge_torch/generative/test/test_custom_dus.py +107 -0
  142. ai_edge_torch/generative/test/test_kv_cache.py +120 -0
  143. ai_edge_torch/generative/test/test_loader.py +83 -0
  144. ai_edge_torch/generative/test/test_lora.py +147 -0
  145. ai_edge_torch/generative/test/test_model_conversion.py +191 -0
  146. ai_edge_torch/generative/test/test_model_conversion_large.py +362 -0
  147. ai_edge_torch/generative/test/test_quantize.py +183 -0
  148. ai_edge_torch/generative/test/utils.py +82 -0
  149. ai_edge_torch/generative/utilities/__init__.py +15 -0
  150. ai_edge_torch/generative/utilities/converter.py +215 -0
  151. ai_edge_torch/generative/utilities/dynamic_update_slice.py +56 -0
  152. ai_edge_torch/generative/utilities/loader.py +398 -0
  153. ai_edge_torch/generative/utilities/model_builder.py +180 -0
  154. ai_edge_torch/generative/utilities/moonshine_loader.py +154 -0
  155. ai_edge_torch/generative/utilities/stable_diffusion_loader.py +1032 -0
  156. ai_edge_torch/generative/utilities/t5_loader.py +512 -0
  157. ai_edge_torch/generative/utilities/transformers_verifier.py +42 -0
  158. ai_edge_torch/generative/utilities/verifier.py +335 -0
  159. ai_edge_torch/hlfb/__init__.py +16 -0
  160. ai_edge_torch/hlfb/mark_pattern/__init__.py +153 -0
  161. ai_edge_torch/hlfb/mark_pattern/fx_utils.py +69 -0
  162. ai_edge_torch/hlfb/mark_pattern/pattern.py +288 -0
  163. ai_edge_torch/hlfb/test/__init__.py +14 -0
  164. ai_edge_torch/hlfb/test/test_mark_pattern.py +185 -0
  165. ai_edge_torch/lowertools/__init__.py +18 -0
  166. ai_edge_torch/lowertools/_shim.py +86 -0
  167. ai_edge_torch/lowertools/common_utils.py +142 -0
  168. ai_edge_torch/lowertools/odml_torch_utils.py +260 -0
  169. ai_edge_torch/lowertools/test_utils.py +62 -0
  170. ai_edge_torch/lowertools/torch_xla_utils.py +301 -0
  171. ai_edge_torch/lowertools/translate_recipe.py +163 -0
  172. ai_edge_torch/model.py +177 -0
  173. ai_edge_torch/odml_torch/__init__.py +20 -0
  174. ai_edge_torch/odml_torch/_torch_future.py +88 -0
  175. ai_edge_torch/odml_torch/_torch_library.py +19 -0
  176. ai_edge_torch/odml_torch/composite/__init__.py +16 -0
  177. ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
  178. ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
  179. ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
  180. ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
  181. ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
  182. ai_edge_torch/odml_torch/export.py +403 -0
  183. ai_edge_torch/odml_torch/export_utils.py +157 -0
  184. ai_edge_torch/odml_torch/jax_bridge/__init__.py +18 -0
  185. ai_edge_torch/odml_torch/jax_bridge/_wrap.py +180 -0
  186. ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
  187. ai_edge_torch/odml_torch/lowerings/__init__.py +27 -0
  188. ai_edge_torch/odml_torch/lowerings/_basic.py +294 -0
  189. ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
  190. ai_edge_torch/odml_torch/lowerings/_convolution.py +243 -0
  191. ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +285 -0
  192. ai_edge_torch/odml_torch/lowerings/_layer_norm.py +87 -0
  193. ai_edge_torch/odml_torch/lowerings/_quantized_decomposed.py +177 -0
  194. ai_edge_torch/odml_torch/lowerings/_rand.py +142 -0
  195. ai_edge_torch/odml_torch/lowerings/context.py +42 -0
  196. ai_edge_torch/odml_torch/lowerings/decomp.py +69 -0
  197. ai_edge_torch/odml_torch/lowerings/registry.py +65 -0
  198. ai_edge_torch/odml_torch/lowerings/utils.py +201 -0
  199. ai_edge_torch/odml_torch/passes/__init__.py +38 -0
  200. ai_edge_torch/odml_torch/tf_integration.py +156 -0
  201. ai_edge_torch/quantize/__init__.py +16 -0
  202. ai_edge_torch/quantize/pt2e_quantizer.py +466 -0
  203. ai_edge_torch/quantize/pt2e_quantizer_utils.py +1061 -0
  204. ai_edge_torch/quantize/quant_config.py +85 -0
  205. ai_edge_torch/testing/__init__.py +14 -0
  206. ai_edge_torch/testing/model_coverage/__init__.py +16 -0
  207. ai_edge_torch/testing/model_coverage/model_coverage.py +145 -0
  208. ai_edge_torch/version.py +16 -0
  209. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/LICENSE +202 -0
  210. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/METADATA +44 -0
  211. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/RECORD +213 -0
  212. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/WHEEL +5 -0
  213. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/top_level.txt +1 -0
@@ -0,0 +1,38 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ from jax._src.lib.mlir import ir
16
+ from jax._src.lib.mlir import passmanager
17
+
18
+
19
+ def run_pass(pipeline, module: ir.Module):
20
+ pm = passmanager.PassManager.parse(pipeline)
21
+ pm.run(module.operation)
22
+ return module
23
+
24
+
25
+ def canonicalize(module: ir.Module):
26
+ return run_pass("builtin.module(canonicalize)", module)
27
+
28
+
29
+ def cse(module: ir.Module):
30
+ return run_pass("builtin.module(cse)", module)
31
+
32
+
33
+ def inline(module: ir.Module):
34
+ return run_pass("builtin.module(inline)", module)
35
+
36
+
37
+ def strip_debuginfo(module: ir.Module):
38
+ return run_pass("builtin.module(strip-debuginfo)", module)
@@ -0,0 +1,156 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ """APIs to convert lowered MLIR from PyTorch to TensorFlow artifacts."""
16
+
17
+ import re
18
+
19
+ import tensorflow as tf
20
+ import torch
21
+
22
+ from tensorflow.compiler.tf2xla.python import xla as tfxla
23
+
24
+ from . import export
25
+ from . import export_utils
26
+
27
+
28
+ def torch_dtype_to_tf(dtype):
29
+ return {
30
+ torch.double: tf.float64,
31
+ torch.float32: tf.float32,
32
+ torch.half: tf.float16,
33
+ torch.long: tf.int64,
34
+ torch.int32: tf.int32,
35
+ torch.int16: tf.int16,
36
+ torch.bool: tf.bool,
37
+ }.get(dtype)
38
+
39
+
40
+ def _get_shape_with_dynamic(signature: export.VariableSignature):
41
+ return [
42
+ None if export_utils.is_torch_dynamic(s) else s for s in signature.shape
43
+ ]
44
+
45
+
46
+ def _mangle_tf_root_scope_name(name):
47
+ r"""Build the mangled name for tf.Variable.
48
+
49
+ TF has more restricted constrain on the variable names at root scope. Root
50
+ scope name constrain: [A-Za-z0-9.][A-Za-z0-9_.\\-/]* Non-root scope name
51
+ constrain: [A-Za-z0-9_.\\-/]*
52
+ https://github.com/tensorflow/tensorflow/blob/51b601fa6bb7e801c0b6ae73c25580e40a8b5745/tensorflow/python/framework/ops.py#L3301-L3302
53
+ The state_dict key doesn't have such constrain, the name need to be mangled
54
+ when a root-scoped TF variable is created.
55
+
56
+ FX Graph Node may contain characters other than [A-Za-z0-9_.\\-/], replace
57
+ offending characters with '_'.
58
+
59
+ Args:
60
+ name: the tensor name to be mangled.
61
+
62
+ Returns:
63
+ Mangled name in str.
64
+ """
65
+ if name[0] in "._\\-/":
66
+ name = "k" + name
67
+ name = re.sub(r"[^^\w\-/\\]+", "_", name)
68
+ return name
69
+
70
+
71
+ def _build_tf_state_dict(
72
+ lowered: export.MlirLowered,
73
+ ) -> dict[str, tf.Variable]:
74
+ """Build a dictionary of tf.Variable from the state_dict in lowered."""
75
+ tf_state_dict = {}
76
+ for sig in lowered.input_signature:
77
+ if sig.input_spec.is_parameter:
78
+ name = sig.input_spec.name
79
+ tf_state_dict[name] = tf.Variable(
80
+ lowered.state_dict[name].detach().numpy(),
81
+ trainable=False,
82
+ name=_mangle_tf_root_scope_name(name),
83
+ )
84
+ return tf_state_dict
85
+
86
+
87
+ def _extract_call_args(
88
+ lowered: export.MlirLowered,
89
+ args,
90
+ tf_state_dict: dict[str, tf.Variable],
91
+ ):
92
+ """Extract the flattened inputs to built tf.function."""
93
+ call_args = []
94
+ for sig in lowered.input_signature:
95
+ if sig.input_spec.is_user_input:
96
+ call_args.append(args[sig.input_spec.i])
97
+ elif sig.input_spec.is_parameter:
98
+ name = sig.input_spec.name
99
+ call_args.append(tf_state_dict[name])
100
+ return call_args
101
+
102
+
103
+ def _wrap_as_tf_func(lowered, tf_state_dict):
104
+ """Build tf.function from lowered and tf_state_dict."""
105
+
106
+ version = 6
107
+ if hasattr(tfxla, "call_module_maximum_supported_version"):
108
+ version = tfxla.call_module_maximum_supported_version()
109
+
110
+ def tf_func(*args):
111
+ t_outs = [torch_dtype_to_tf(sig.dtype) for sig in lowered.output_signature]
112
+ s_outs = [_get_shape_with_dynamic(sig) for sig in lowered.output_signature]
113
+ call_args = _extract_call_args(lowered, args, tf_state_dict)
114
+ return tfxla.call_module(
115
+ tuple(call_args),
116
+ version=version,
117
+ Tout=t_outs, # dtype information
118
+ Sout=s_outs, # shape information
119
+ function_list=[],
120
+ module=lowered.module_bytecode_vhlo,
121
+ has_token_input_output=False,
122
+ platforms=["CPU"],
123
+ )
124
+
125
+ return tf_func
126
+
127
+
128
+ def _make_input_signatures(
129
+ lowered: export.MlirLowered,
130
+ ) -> list[tf.TensorSpec]:
131
+ """Build the input signatures in tf.TensorSpec for building tf.function."""
132
+ user_input_signature = sorted(
133
+ [sig for sig in lowered.input_signature if sig.input_spec.is_user_input],
134
+ key=lambda sig: sig.input_spec.i,
135
+ )
136
+ tf_signatures = []
137
+
138
+ for sig in user_input_signature:
139
+ shape = _get_shape_with_dynamic(sig)
140
+ tf_signatures.append(
141
+ tf.TensorSpec(
142
+ shape=shape,
143
+ dtype=torch_dtype_to_tf(sig.dtype),
144
+ name=f"args_{sig.input_spec.i}",
145
+ )
146
+ )
147
+ return tf_signatures
148
+
149
+
150
+ def mlir_to_tf_function(lowered: export.MlirLowered):
151
+ """Convert the MLIR lowered to a executable tf.function."""
152
+ tf_state_dict = _build_tf_state_dict(lowered)
153
+ return tf.function(
154
+ _wrap_as_tf_func(lowered, tf_state_dict),
155
+ input_signature=_make_input_signatures(lowered),
156
+ )
@@ -0,0 +1,16 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ from .pt2e_quantizer import PT2EQuantizer
@@ -0,0 +1,466 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ from __future__ import annotations
17
+
18
+ import copy
19
+ import functools
20
+ from typing import Any, Callable, Dict, List, Optional, Set
21
+
22
+ from ai_edge_torch.quantize.pt2e_quantizer_utils import _convert_scalars_to_attrs # NOQA
23
+ from ai_edge_torch.quantize.pt2e_quantizer_utils import OP_TO_ANNOTATOR
24
+ from ai_edge_torch.quantize.pt2e_quantizer_utils import OperatorConfig
25
+ from ai_edge_torch.quantize.pt2e_quantizer_utils import OperatorPatternType
26
+ from ai_edge_torch.quantize.pt2e_quantizer_utils import propagate_annotation
27
+ from ai_edge_torch.quantize.pt2e_quantizer_utils import QuantizationConfig
28
+ import torch
29
+ from torch.ao.quantization.fake_quantize import FusedMovingAvgObsFakeQuantize
30
+ from torch.ao.quantization.observer import HistogramObserver
31
+ from torch.ao.quantization.observer import MinMaxObserver
32
+ from torch.ao.quantization.observer import MovingAverageMinMaxObserver
33
+ from torch.ao.quantization.observer import MovingAveragePerChannelMinMaxObserver # NOQA
34
+ from torch.ao.quantization.observer import PerChannelMinMaxObserver
35
+ from torch.ao.quantization.observer import PlaceholderObserver
36
+ from torch.ao.quantization.qconfig import _ObserverOrFakeQuantizeConstructor
37
+ from torch.ao.quantization.quantizer import FixedQParamsQuantizationSpec
38
+ from torch.ao.quantization.quantizer import QuantizationSpec
39
+ from torch.ao.quantization.quantizer import Quantizer
40
+ from torch.fx import Node
41
+ import torch.nn.functional as F
42
+
43
+ __all__ = [
44
+ "PT2EQuantizer",
45
+ "get_symmetric_quantization_config",
46
+ ]
47
+
48
+
49
+ def _supported_symmetric_quantized_operators() -> (
50
+ Dict[str, List[OperatorPatternType]]
51
+ ):
52
+ supported_operators: Dict[str, List[OperatorPatternType]] = {
53
+ # Both conv and linear should be able to handle relu + hardtanh fusion since
54
+ # those are clamp ops
55
+ "conv2d": [
56
+ [torch.nn.Conv2d, torch.nn.ReLU],
57
+ [torch.nn.Conv2d, F.relu],
58
+ [F.conv2d, torch.nn.ReLU],
59
+ [F.conv2d, F.relu],
60
+ ],
61
+ "linear": [[torch.nn.Linear], [F.linear]],
62
+ "add": [[torch.add]],
63
+ "max_pool2d": [[torch.nn.MaxPool2d], [F.max_pool2d]],
64
+ "adaptive_avg_pool2d": [
65
+ [torch.nn.AdaptiveAvgPool2d],
66
+ [F.adaptive_avg_pool2d],
67
+ ],
68
+ }
69
+ return copy.deepcopy(supported_operators)
70
+
71
+
72
+ def _get_supported_symmetric_config_and_operators() -> List[OperatorConfig]:
73
+ supported_config_and_operators: List[OperatorConfig] = []
74
+ for quantization_config in [
75
+ get_symmetric_quantization_config(),
76
+ get_symmetric_quantization_config(is_qat=True),
77
+ get_symmetric_quantization_config(is_per_channel=True),
78
+ get_symmetric_quantization_config(is_per_channel=True, is_qat=True),
79
+ ]:
80
+ ops = _supported_symmetric_quantized_operators()
81
+ for pattern_list in ops.values():
82
+ supported_config_and_operators.append(
83
+ OperatorConfig(quantization_config, pattern_list)
84
+ )
85
+ return copy.deepcopy(supported_config_and_operators)
86
+
87
+
88
+ @functools.lru_cache
89
+ def get_symmetric_quantization_config(
90
+ is_per_channel: bool = False,
91
+ is_qat: bool = False,
92
+ is_dynamic: bool = False,
93
+ ):
94
+ if is_qat:
95
+ if is_dynamic:
96
+ raise NotImplementedError(
97
+ "dynamic quantization for qat is not yet implemented."
98
+ )
99
+ act_observer_or_fake_quant_ctr = FusedMovingAvgObsFakeQuantize
100
+ else:
101
+ if is_dynamic:
102
+ act_observer_or_fake_quant_ctr = PlaceholderObserver # type: ignore[assignment]
103
+ else:
104
+ act_observer_or_fake_quant_ctr = HistogramObserver # type: ignore[assignment]
105
+
106
+ act_quantization_spec = QuantizationSpec(
107
+ dtype=torch.int8,
108
+ quant_min=-128,
109
+ quant_max=127,
110
+ qscheme=torch.per_tensor_affine,
111
+ is_dynamic=is_dynamic,
112
+ observer_or_fake_quant_ctr=act_observer_or_fake_quant_ctr.with_args(
113
+ eps=2**-12
114
+ ),
115
+ )
116
+ qscheme = (
117
+ torch.per_channel_symmetric
118
+ if is_per_channel
119
+ else torch.per_tensor_symmetric
120
+ )
121
+ weight_observer_or_fake_quant_ctr: _ObserverOrFakeQuantizeConstructor = (
122
+ MinMaxObserver
123
+ )
124
+ if is_qat:
125
+ weight_observer_or_fake_quant_ctr = FusedMovingAvgObsFakeQuantize
126
+ elif is_per_channel:
127
+ weight_observer_or_fake_quant_ctr = PerChannelMinMaxObserver
128
+
129
+ extra_args: Dict[str, Any] = {"eps": 2**-12}
130
+ if is_qat:
131
+ if qscheme == torch.per_tensor_symmetric:
132
+ extra_args["observer"] = MovingAverageMinMaxObserver
133
+ else:
134
+ extra_args["observer"] = MovingAveragePerChannelMinMaxObserver # type: ignore[dict-item]
135
+ weight_quantization_spec = QuantizationSpec(
136
+ dtype=torch.int8,
137
+ quant_min=-127,
138
+ quant_max=127,
139
+ qscheme=qscheme,
140
+ ch_axis=0,
141
+ is_dynamic=False,
142
+ observer_or_fake_quant_ctr=weight_observer_or_fake_quant_ctr.with_args(
143
+ **extra_args
144
+ ),
145
+ )
146
+
147
+ bias_quantization_spec = None
148
+
149
+ # Some TFLite ops (e.g. Logistic, Softmax) have fixed qparams requirements
150
+ fixed_qparams_spec = FixedQParamsQuantizationSpec(
151
+ dtype=torch.int8,
152
+ scale=1 / 256,
153
+ zero_point=-128,
154
+ quant_min=-128,
155
+ quant_max=127,
156
+ qscheme=torch.per_tensor_affine,
157
+ )
158
+
159
+ if is_dynamic:
160
+ # Only valid for TFLite downstream to have no input activation quantization
161
+ # because dynamic quantization should be legalized to TFLite DRQ kernels
162
+ # which calculate quantization parameters during runtime inside the kernels
163
+ quantization_config = QuantizationConfig(
164
+ None,
165
+ None,
166
+ weight_quantization_spec,
167
+ bias_quantization_spec,
168
+ None,
169
+ is_qat,
170
+ True,
171
+ )
172
+ else:
173
+ quantization_config = QuantizationConfig(
174
+ act_quantization_spec,
175
+ act_quantization_spec,
176
+ weight_quantization_spec,
177
+ bias_quantization_spec,
178
+ fixed_qparams_spec,
179
+ is_qat,
180
+ False,
181
+ )
182
+ return quantization_config
183
+
184
+
185
+ def _get_supported_config_and_operators() -> List[OperatorConfig]:
186
+ return _get_supported_symmetric_config_and_operators()
187
+
188
+
189
+ def _get_module_name_filter(module_name: str):
190
+ """Get the module_name_filter function for a given module name, the filter accepts
191
+
192
+ a node and checks if the node comes from a module that has certain module name
193
+
194
+ For example:
195
+ node: linear_op = call_function[...](...) # comes from a module with name
196
+ blocks.sub.linear1
197
+
198
+
199
+ >> module_name_filter = _get_module_name_filter("blocks.sub")
200
+ >> print(module_name_filter(node))
201
+ True # the node is from "blocks.sub" based on the fully qualified name
202
+ "blocks.sub.linear1"
203
+ """
204
+
205
+ def module_name_filter(n: Node) -> bool:
206
+ # example: {
207
+ # 'L__self___sub': ("L['self'].sub", <class '....Sub'>),
208
+ # 'L__self___sub_linear': ("L['self'].sub.linear", <class 'torch.nn.modules.linear.Linear'>)
209
+ # }
210
+ # get_attr nodes doesn't have nn_module_stack?
211
+ nn_module_stack = n.meta.get("nn_module_stack", {})
212
+ names = [
213
+ n[len("L__self___") :].replace("_", ".") for n in nn_module_stack.keys()
214
+ ]
215
+ return module_name in names
216
+
217
+ return module_name_filter
218
+
219
+
220
+ def _get_module_type_filter(tp: Callable):
221
+ """Get the module_type_filter function for a given module type, the filter accepts
222
+
223
+ a node and checks if the node comes from a module that has certain module type
224
+
225
+ For example:
226
+ node: linear_op = call_function[...](...) # comes from a module with type
227
+ Block -> Sub -> Linear
228
+
229
+
230
+ >> module_type_filter = _get_module_type_filter(Sub) # submodule with type
231
+ `Sub`, under the `Block` submodule
232
+ >> print(module_type_filter(node))
233
+ True # the node is from the submodule `Sub` (same for `Block` and `Linear` as
234
+ well)
235
+ """
236
+
237
+ def module_type_filter(n: Node) -> bool:
238
+ # example: {
239
+ # 'L__self___sub': ("L['self'].sub", <class '....Sub'>),
240
+ # 'L__self___sub_linear': ("L['self'].sub.linear", <class 'torch.nn.modules.linear.Linear'>)
241
+ # }
242
+ nn_module_stack = n.meta.get("nn_module_stack", {})
243
+ types = [t for _, t in nn_module_stack.values()]
244
+ return tp in types
245
+
246
+ return module_type_filter
247
+
248
+
249
+ def _get_not_module_type_or_name_filter(
250
+ tp_list: List[Callable], module_name_list: List[str]
251
+ ) -> Callable[[Node], bool]:
252
+ module_type_filters = [_get_module_type_filter(tp) for tp in tp_list]
253
+ module_name_list_filters = [
254
+ _get_module_name_filter(m) for m in module_name_list
255
+ ]
256
+
257
+ def not_module_type_or_name_filter(n: Node) -> bool:
258
+ return not any(f(n) for f in module_type_filters + module_name_list_filters)
259
+
260
+ return not_module_type_or_name_filter
261
+
262
+
263
+ class PT2EQuantizer(Quantizer):
264
+ supported_config_and_operators = _get_supported_config_and_operators()
265
+ STATIC_QAT_ONLY_OPS = [
266
+ "conv_bn_relu",
267
+ "conv_bn",
268
+ ]
269
+
270
+ # static quantization ops (both PTQ and QAT)
271
+ STATIC_OPS = [
272
+ "linear",
273
+ "addmm",
274
+ "conv_relu",
275
+ "conv",
276
+ "adaptive_avg_pool2d",
277
+ "gru_io_only",
278
+ "max_pool2d",
279
+ "add_relu",
280
+ "add",
281
+ "mul_relu",
282
+ "mul",
283
+ "cat",
284
+ "fixed_qparams",
285
+ ]
286
+
287
+ DYNAMIC_OPS = [
288
+ "linear",
289
+ "addmm",
290
+ "conv",
291
+ "conv_relu",
292
+ ]
293
+
294
+ def __init__(self):
295
+ super().__init__()
296
+ self.global_config: Optional[QuantizationConfig] = None
297
+ self.operator_type_config: Dict[
298
+ torch._ops.OpOverloadPacket, Optional[QuantizationConfig]
299
+ ] = {}
300
+ self.module_type_config: Dict[Callable, Optional[QuantizationConfig]] = {}
301
+ self.module_name_config: Dict[str, Optional[QuantizationConfig]] = {}
302
+
303
+ @classmethod
304
+ def get_supported_quantization_configs(cls) -> List[QuantizationConfig]:
305
+ op_configs: Set[QuantizationConfig] = set({})
306
+ for spec, _ in cls.supported_config_and_operators:
307
+ op_configs.add(spec)
308
+ return list(op_configs)
309
+
310
+ @classmethod
311
+ def get_supported_operator_for_quantization_config(
312
+ cls, quantization_config: Optional[QuantizationConfig]
313
+ ) -> List[OperatorPatternType]:
314
+ if quantization_config is None:
315
+ all_ops = []
316
+ for _, ops in cls.supported_config_and_operators:
317
+ all_ops.extend(ops)
318
+ return all_ops
319
+
320
+ for config, ops in cls.supported_config_and_operators:
321
+ # note: this assumes each entry in cls.supported_spec_and_operators
322
+ # corresponds to one spec, e.g. we don't have
323
+ # [(spec1, op_list1), (spec1, op_list2), (spec2, op_list3)]
324
+ # where the first and second entry have the same spec but did not
325
+ # merge the op list
326
+ if config == quantization_config:
327
+ return ops
328
+ return []
329
+
330
+ def set_global(
331
+ self, quantization_config: QuantizationConfig
332
+ ) -> PT2EQuantizer:
333
+ self.global_config = quantization_config
334
+ return self
335
+
336
+ def set_operator_type(
337
+ self,
338
+ operator_type: torch._ops.OpOverloadPacket,
339
+ quantization_config: QuantizationConfig,
340
+ ) -> PT2EQuantizer:
341
+ self.operator_type_config[operator_type] = quantization_config
342
+ return self
343
+
344
+ def set_module_type(
345
+ self, module_type: Callable, quantization_config: QuantizationConfig
346
+ ):
347
+ """Set quantization_config for a submodule with type: `module_type`, for example:
348
+
349
+ quantizer.set_module_name(Sub) or quantizer.set_module_name(nn.Linear), it
350
+ will quantize all supported operator/operator
351
+ patterns in the submodule with this module type with the given
352
+ `quantization_config`
353
+ """
354
+ self.module_type_config[module_type] = quantization_config
355
+ return self
356
+
357
+ def set_module_name(
358
+ self, module_name: str, quantization_config: Optional[QuantizationConfig]
359
+ ):
360
+ """Set quantization_config for a submodule with name: `module_name`, for example:
361
+
362
+ quantizer.set_module_name("blocks.sub"), it will quantize all supported
363
+ operator/operator
364
+ patterns in the submodule with this module name with the given
365
+ `quantization_config`
366
+ """
367
+ assert (
368
+ quantization_config is not None
369
+ ), " quantization_config == None is not supported yet"
370
+ self.module_name_config[module_name] = quantization_config
371
+ return self
372
+
373
+ def transform_for_annotation(
374
+ self, model: torch.fx.GraphModule
375
+ ) -> torch.fx.GraphModule:
376
+ """Transforms scalar values to tensor attributes"""
377
+ return _convert_scalars_to_attrs(model)
378
+
379
+ def annotate(self, model: torch.fx.GraphModule) -> torch.fx.GraphModule:
380
+ """just handling global spec for now"""
381
+ if self.global_config and not self.global_config.input_activation: # type: ignore[union-attr]
382
+ model = self._annotate_for_dynamic_quantization_config(model)
383
+ else:
384
+ model = self._annotate_for_static_quantization_config(model)
385
+ propagate_annotation(model)
386
+ return model
387
+
388
+ def _annotate_all_static_patterns(
389
+ self,
390
+ model: torch.fx.GraphModule,
391
+ quantization_config: Optional[QuantizationConfig],
392
+ filter_fn: Optional[Callable[[Node], bool]] = None,
393
+ ) -> torch.fx.GraphModule:
394
+ if quantization_config is None:
395
+ return model
396
+
397
+ if quantization_config.is_qat:
398
+ for op in self.STATIC_QAT_ONLY_OPS:
399
+ OP_TO_ANNOTATOR[op](model, quantization_config, filter_fn)
400
+ for op in self.STATIC_OPS:
401
+ OP_TO_ANNOTATOR[op](model, quantization_config, filter_fn)
402
+ return model
403
+
404
+ def _annotate_all_dynamic_patterns(
405
+ self,
406
+ model: torch.fx.GraphModule,
407
+ quantization_config: Optional[QuantizationConfig],
408
+ filter_fn: Optional[Callable[[Node], bool]] = None,
409
+ ) -> torch.fx.GraphModule:
410
+ if quantization_config is None:
411
+ return model
412
+
413
+ for op in self.DYNAMIC_OPS:
414
+ OP_TO_ANNOTATOR[op](model, quantization_config, filter_fn)
415
+ return model
416
+
417
+ def _annotate_for_static_quantization_config(
418
+ self, model: torch.fx.GraphModule
419
+ ) -> torch.fx.GraphModule:
420
+ module_name_list = list(self.module_name_config.keys())
421
+ for module_name, config in self.module_name_config.items():
422
+ self._annotate_all_static_patterns(
423
+ model, config, _get_module_name_filter(module_name)
424
+ )
425
+
426
+ tp_list = list(self.module_type_config.keys())
427
+ for module_type, config in self.module_type_config.items():
428
+ self._annotate_all_static_patterns(
429
+ model, config, _get_module_type_filter(module_type)
430
+ )
431
+
432
+ self._annotate_all_static_patterns(
433
+ model,
434
+ self.global_config,
435
+ _get_not_module_type_or_name_filter(tp_list, module_name_list),
436
+ )
437
+ return model
438
+
439
+ def _annotate_for_dynamic_quantization_config(
440
+ self, model: torch.fx.GraphModule
441
+ ) -> torch.fx.GraphModule:
442
+ module_name_list = list(self.module_name_config.keys())
443
+ for module_name, config in self.module_name_config.items():
444
+ self._annotate_all_dynamic_patterns(
445
+ model, config, _get_module_name_filter(module_name)
446
+ )
447
+
448
+ tp_list = list(self.module_type_config.keys())
449
+ for module_type, config in self.module_type_config.items():
450
+ self._annotate_all_dynamic_patterns(
451
+ model, config, _get_module_type_filter(module_type)
452
+ )
453
+
454
+ self._annotate_all_dynamic_patterns(
455
+ model,
456
+ self.global_config,
457
+ _get_not_module_type_or_name_filter(tp_list, module_name_list),
458
+ )
459
+ return model
460
+
461
+ def validate(self, model: torch.fx.GraphModule) -> None:
462
+ pass
463
+
464
+ @classmethod
465
+ def get_supported_operators(cls) -> List[OperatorConfig]:
466
+ return cls.supported_config_and_operators