ai-edge-torch-nightly 0.3.0.dev20250114__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- ai_edge_torch/__init__.py +32 -0
- ai_edge_torch/_config.py +69 -0
- ai_edge_torch/_convert/__init__.py +14 -0
- ai_edge_torch/_convert/conversion.py +153 -0
- ai_edge_torch/_convert/conversion_utils.py +64 -0
- ai_edge_torch/_convert/converter.py +270 -0
- ai_edge_torch/_convert/fx_passes/__init__.py +23 -0
- ai_edge_torch/_convert/fx_passes/build_aten_composite_pass.py +288 -0
- ai_edge_torch/_convert/fx_passes/build_interpolate_composite_pass.py +131 -0
- ai_edge_torch/_convert/fx_passes/inject_mlir_debuginfo_pass.py +73 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/__init__.py +16 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_check.py +258 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_mark.py +50 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +18 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +68 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +216 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +449 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +30 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/pass_body.py +303 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/utils.py +64 -0
- ai_edge_torch/_convert/fx_passes/remove_non_user_outputs_pass.py +52 -0
- ai_edge_torch/_convert/signature.py +66 -0
- ai_edge_torch/_convert/test/__init__.py +14 -0
- ai_edge_torch/_convert/test/test_convert.py +558 -0
- ai_edge_torch/_convert/test/test_convert_composites.py +234 -0
- ai_edge_torch/_convert/test/test_convert_multisig.py +189 -0
- ai_edge_torch/_convert/test/test_to_channel_last_io.py +96 -0
- ai_edge_torch/_convert/to_channel_last_io.py +92 -0
- ai_edge_torch/conftest.py +20 -0
- ai_edge_torch/debug/__init__.py +17 -0
- ai_edge_torch/debug/culprit.py +496 -0
- ai_edge_torch/debug/test/__init__.py +14 -0
- ai_edge_torch/debug/test/test_culprit.py +140 -0
- ai_edge_torch/debug/test/test_search_model.py +51 -0
- ai_edge_torch/debug/utils.py +59 -0
- ai_edge_torch/experimental/__init__.py +14 -0
- ai_edge_torch/fx_pass_base.py +110 -0
- ai_edge_torch/generative/__init__.py +14 -0
- ai_edge_torch/generative/examples/__init__.py +14 -0
- ai_edge_torch/generative/examples/amd_llama_135m/__init__.py +14 -0
- ai_edge_torch/generative/examples/amd_llama_135m/amd_llama_135m.py +87 -0
- ai_edge_torch/generative/examples/amd_llama_135m/convert_to_tflite.py +70 -0
- ai_edge_torch/generative/examples/amd_llama_135m/verify.py +72 -0
- ai_edge_torch/generative/examples/gemma/__init__.py +14 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/gemma/gemma1.py +107 -0
- ai_edge_torch/generative/examples/gemma/gemma2.py +295 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma1.py +56 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma2.py +43 -0
- ai_edge_torch/generative/examples/gemma/verify_util.py +157 -0
- ai_edge_torch/generative/examples/llama/__init__.py +14 -0
- ai_edge_torch/generative/examples/llama/convert_to_tflite.py +91 -0
- ai_edge_torch/generative/examples/llama/llama.py +196 -0
- ai_edge_torch/generative/examples/llama/verify.py +88 -0
- ai_edge_torch/generative/examples/moonshine/__init__.py +14 -0
- ai_edge_torch/generative/examples/moonshine/convert_moonshine_to_tflite.py +50 -0
- ai_edge_torch/generative/examples/moonshine/moonshine.py +103 -0
- ai_edge_torch/generative/examples/openelm/__init__.py +14 -0
- ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/openelm/openelm.py +127 -0
- ai_edge_torch/generative/examples/openelm/verify.py +71 -0
- ai_edge_torch/generative/examples/paligemma/__init__.py +14 -0
- ai_edge_torch/generative/examples/paligemma/convert_to_tflite.py +95 -0
- ai_edge_torch/generative/examples/paligemma/decoder.py +151 -0
- ai_edge_torch/generative/examples/paligemma/decoder2.py +177 -0
- ai_edge_torch/generative/examples/paligemma/image_encoder.py +160 -0
- ai_edge_torch/generative/examples/paligemma/paligemma.py +179 -0
- ai_edge_torch/generative/examples/paligemma/verify.py +161 -0
- ai_edge_torch/generative/examples/paligemma/verify_decoder.py +75 -0
- ai_edge_torch/generative/examples/paligemma/verify_decoder2.py +72 -0
- ai_edge_torch/generative/examples/paligemma/verify_image_encoder.py +99 -0
- ai_edge_torch/generative/examples/phi/__init__.py +14 -0
- ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/phi/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/phi/phi2.py +107 -0
- ai_edge_torch/generative/examples/phi/phi3.py +219 -0
- ai_edge_torch/generative/examples/phi/verify.py +64 -0
- ai_edge_torch/generative/examples/phi/verify_phi3.py +69 -0
- ai_edge_torch/generative/examples/qwen/__init__.py +14 -0
- ai_edge_torch/generative/examples/qwen/convert_to_tflite.py +93 -0
- ai_edge_torch/generative/examples/qwen/qwen.py +134 -0
- ai_edge_torch/generative/examples/qwen/verify.py +88 -0
- ai_edge_torch/generative/examples/smollm/__init__.py +14 -0
- ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/smollm/convert_v2_to_tflite.py +71 -0
- ai_edge_torch/generative/examples/smollm/smollm.py +125 -0
- ai_edge_torch/generative/examples/smollm/verify.py +86 -0
- ai_edge_torch/generative/examples/stable_diffusion/__init__.py +14 -0
- ai_edge_torch/generative/examples/stable_diffusion/attention.py +108 -0
- ai_edge_torch/generative/examples/stable_diffusion/clip.py +185 -0
- ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +173 -0
- ai_edge_torch/generative/examples/stable_diffusion/decoder.py +398 -0
- ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +749 -0
- ai_edge_torch/generative/examples/stable_diffusion/encoder.py +119 -0
- ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +254 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/__init__.py +19 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +62 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +66 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +74 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +39 -0
- ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +111 -0
- ai_edge_torch/generative/examples/stable_diffusion/util.py +77 -0
- ai_edge_torch/generative/examples/t5/__init__.py +14 -0
- ai_edge_torch/generative/examples/t5/convert_to_tflite.py +138 -0
- ai_edge_torch/generative/examples/t5/t5.py +655 -0
- ai_edge_torch/generative/examples/t5/t5_attention.py +246 -0
- ai_edge_torch/generative/examples/test_models/__init__.py +14 -0
- ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
- ai_edge_torch/generative/examples/test_models/toy_model.py +156 -0
- ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +138 -0
- ai_edge_torch/generative/examples/tiny_llama/__init__.py +14 -0
- ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +88 -0
- ai_edge_torch/generative/examples/tiny_llama/verify.py +72 -0
- ai_edge_torch/generative/fx_passes/__init__.py +30 -0
- ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +50 -0
- ai_edge_torch/generative/layers/__init__.py +14 -0
- ai_edge_torch/generative/layers/attention.py +399 -0
- ai_edge_torch/generative/layers/attention_utils.py +210 -0
- ai_edge_torch/generative/layers/builder.py +160 -0
- ai_edge_torch/generative/layers/feed_forward.py +120 -0
- ai_edge_torch/generative/layers/kv_cache.py +204 -0
- ai_edge_torch/generative/layers/lora.py +557 -0
- ai_edge_torch/generative/layers/model_config.py +238 -0
- ai_edge_torch/generative/layers/normalization.py +222 -0
- ai_edge_torch/generative/layers/rotary_position_embedding.py +94 -0
- ai_edge_torch/generative/layers/scaled_dot_product_attention.py +144 -0
- ai_edge_torch/generative/layers/unet/__init__.py +14 -0
- ai_edge_torch/generative/layers/unet/blocks_2d.py +806 -0
- ai_edge_torch/generative/layers/unet/builder.py +50 -0
- ai_edge_torch/generative/layers/unet/model_config.py +282 -0
- ai_edge_torch/generative/quantize/__init__.py +14 -0
- ai_edge_torch/generative/quantize/example.py +47 -0
- ai_edge_torch/generative/quantize/quant_attrs.py +68 -0
- ai_edge_torch/generative/quantize/quant_recipe.py +154 -0
- ai_edge_torch/generative/quantize/quant_recipe_utils.py +62 -0
- ai_edge_torch/generative/quantize/quant_recipes.py +56 -0
- ai_edge_torch/generative/quantize/supported_schemes.py +32 -0
- ai_edge_torch/generative/test/__init__.py +14 -0
- ai_edge_torch/generative/test/test_custom_dus.py +107 -0
- ai_edge_torch/generative/test/test_kv_cache.py +120 -0
- ai_edge_torch/generative/test/test_loader.py +83 -0
- ai_edge_torch/generative/test/test_lora.py +147 -0
- ai_edge_torch/generative/test/test_model_conversion.py +191 -0
- ai_edge_torch/generative/test/test_model_conversion_large.py +362 -0
- ai_edge_torch/generative/test/test_quantize.py +183 -0
- ai_edge_torch/generative/test/utils.py +82 -0
- ai_edge_torch/generative/utilities/__init__.py +15 -0
- ai_edge_torch/generative/utilities/converter.py +215 -0
- ai_edge_torch/generative/utilities/dynamic_update_slice.py +56 -0
- ai_edge_torch/generative/utilities/loader.py +398 -0
- ai_edge_torch/generative/utilities/model_builder.py +180 -0
- ai_edge_torch/generative/utilities/moonshine_loader.py +154 -0
- ai_edge_torch/generative/utilities/stable_diffusion_loader.py +1032 -0
- ai_edge_torch/generative/utilities/t5_loader.py +512 -0
- ai_edge_torch/generative/utilities/transformers_verifier.py +42 -0
- ai_edge_torch/generative/utilities/verifier.py +335 -0
- ai_edge_torch/hlfb/__init__.py +16 -0
- ai_edge_torch/hlfb/mark_pattern/__init__.py +153 -0
- ai_edge_torch/hlfb/mark_pattern/fx_utils.py +69 -0
- ai_edge_torch/hlfb/mark_pattern/pattern.py +288 -0
- ai_edge_torch/hlfb/test/__init__.py +14 -0
- ai_edge_torch/hlfb/test/test_mark_pattern.py +185 -0
- ai_edge_torch/lowertools/__init__.py +18 -0
- ai_edge_torch/lowertools/_shim.py +86 -0
- ai_edge_torch/lowertools/common_utils.py +142 -0
- ai_edge_torch/lowertools/odml_torch_utils.py +260 -0
- ai_edge_torch/lowertools/test_utils.py +62 -0
- ai_edge_torch/lowertools/torch_xla_utils.py +301 -0
- ai_edge_torch/lowertools/translate_recipe.py +163 -0
- ai_edge_torch/model.py +177 -0
- ai_edge_torch/odml_torch/__init__.py +20 -0
- ai_edge_torch/odml_torch/_torch_future.py +88 -0
- ai_edge_torch/odml_torch/_torch_library.py +19 -0
- ai_edge_torch/odml_torch/composite/__init__.py +16 -0
- ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
- ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
- ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
- ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
- ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
- ai_edge_torch/odml_torch/export.py +403 -0
- ai_edge_torch/odml_torch/export_utils.py +157 -0
- ai_edge_torch/odml_torch/jax_bridge/__init__.py +18 -0
- ai_edge_torch/odml_torch/jax_bridge/_wrap.py +180 -0
- ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
- ai_edge_torch/odml_torch/lowerings/__init__.py +27 -0
- ai_edge_torch/odml_torch/lowerings/_basic.py +294 -0
- ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
- ai_edge_torch/odml_torch/lowerings/_convolution.py +243 -0
- ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +285 -0
- ai_edge_torch/odml_torch/lowerings/_layer_norm.py +87 -0
- ai_edge_torch/odml_torch/lowerings/_quantized_decomposed.py +177 -0
- ai_edge_torch/odml_torch/lowerings/_rand.py +142 -0
- ai_edge_torch/odml_torch/lowerings/context.py +42 -0
- ai_edge_torch/odml_torch/lowerings/decomp.py +69 -0
- ai_edge_torch/odml_torch/lowerings/registry.py +65 -0
- ai_edge_torch/odml_torch/lowerings/utils.py +201 -0
- ai_edge_torch/odml_torch/passes/__init__.py +38 -0
- ai_edge_torch/odml_torch/tf_integration.py +156 -0
- ai_edge_torch/quantize/__init__.py +16 -0
- ai_edge_torch/quantize/pt2e_quantizer.py +466 -0
- ai_edge_torch/quantize/pt2e_quantizer_utils.py +1061 -0
- ai_edge_torch/quantize/quant_config.py +85 -0
- ai_edge_torch/testing/__init__.py +14 -0
- ai_edge_torch/testing/model_coverage/__init__.py +16 -0
- ai_edge_torch/testing/model_coverage/model_coverage.py +145 -0
- ai_edge_torch/version.py +16 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/LICENSE +202 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/METADATA +44 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/RECORD +213 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/WHEEL +5 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/top_level.txt +1 -0
@@ -0,0 +1,127 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Example of building an OpenELM model."""
|
17
|
+
|
18
|
+
import ai_edge_torch.generative.layers.model_config as cfg
|
19
|
+
from ai_edge_torch.generative.utilities import model_builder
|
20
|
+
import ai_edge_torch.generative.utilities.loader as loading_utils
|
21
|
+
from torch import nn
|
22
|
+
|
23
|
+
TENSOR_NAMES = loading_utils.ModelLoader.TensorNames(
|
24
|
+
ff_up_proj="transformer.layers.{}.ffn.proj_1",
|
25
|
+
ff_down_proj="transformer.layers.{}.ffn.proj_2",
|
26
|
+
attn_fused_qkv_proj="transformer.layers.{}.attn.qkv_proj",
|
27
|
+
attn_query_norm="transformer.layers.{}.attn.q_norm",
|
28
|
+
attn_key_norm="transformer.layers.{}.attn.k_norm",
|
29
|
+
attn_output_proj="transformer.layers.{}.attn.out_proj",
|
30
|
+
pre_attn_norm="transformer.layers.{}.attn_norm",
|
31
|
+
pre_ff_norm="transformer.layers.{}.ffn_norm",
|
32
|
+
embedding="transformer.token_embeddings",
|
33
|
+
final_norm="transformer.norm",
|
34
|
+
lm_head=None,
|
35
|
+
)
|
36
|
+
|
37
|
+
|
38
|
+
class OpenELM(model_builder.DecoderOnlyModel):
|
39
|
+
"""An OpenELM model built from the Edge Generative API layers."""
|
40
|
+
pass
|
41
|
+
|
42
|
+
|
43
|
+
def get_model_config(kv_cache_max_len: int = 1024) -> cfg.ModelConfig:
|
44
|
+
"""Returns the model config for an OpenELM model.
|
45
|
+
|
46
|
+
Args:
|
47
|
+
kv_cache_max_len (int): The maximum sequence length of the KV cache. Default
|
48
|
+
is 1024.
|
49
|
+
|
50
|
+
Returns:
|
51
|
+
The model config for an OpenELM model.
|
52
|
+
"""
|
53
|
+
norm_config = cfg.NormalizationConfig(
|
54
|
+
type=cfg.NormalizationType.RMS_NORM, epsilon=1e-6
|
55
|
+
)
|
56
|
+
num_heads = [12] * 4 + [16] * 14 + [20] * 12 + [24] * 6
|
57
|
+
num_query_groups = [3] * 4 + [4] * 14 + [5] * 12 + [6] * 6
|
58
|
+
|
59
|
+
def make_divisible(v, d):
|
60
|
+
"""Ensures that all layers have a channel number that is divisible by d."""
|
61
|
+
new_v = int(v + d / 2) // d * d
|
62
|
+
# Make sure that round down does not go down by more than 10%.
|
63
|
+
if new_v < 0.9 * v:
|
64
|
+
new_v += d
|
65
|
+
return new_v
|
66
|
+
|
67
|
+
# The way to get intermediate size is from
|
68
|
+
# https://huggingface.co/apple/OpenELM-3B/blob/main/modeling_openelm.py
|
69
|
+
def get_intermediate_size(idx: int) -> int:
|
70
|
+
return make_divisible((0.5 + 0.1 * idx) * 3072, 256)
|
71
|
+
|
72
|
+
def get_block_config(idx: int) -> cfg.TransformerBlockConfig:
|
73
|
+
return cfg.TransformerBlockConfig(
|
74
|
+
attn_config=cfg.AttentionConfig(
|
75
|
+
num_heads=num_heads[idx],
|
76
|
+
head_dim=128,
|
77
|
+
num_query_groups=num_query_groups[idx],
|
78
|
+
rotary_base=10000,
|
79
|
+
rotary_percentage=1.0,
|
80
|
+
qkv_transpose_before_split=True,
|
81
|
+
query_norm_config=norm_config,
|
82
|
+
key_norm_config=norm_config,
|
83
|
+
),
|
84
|
+
ff_config=cfg.FeedForwardConfig(
|
85
|
+
type=cfg.FeedForwardType.SEQUENTIAL,
|
86
|
+
activation=cfg.ActivationConfig(cfg.ActivationType.SILU_GLU),
|
87
|
+
intermediate_size=get_intermediate_size(idx),
|
88
|
+
pre_ff_norm_config=norm_config,
|
89
|
+
),
|
90
|
+
pre_attention_norm_config=norm_config,
|
91
|
+
)
|
92
|
+
|
93
|
+
num_layers = 36
|
94
|
+
config = cfg.ModelConfig(
|
95
|
+
vocab_size=32000,
|
96
|
+
num_layers=num_layers,
|
97
|
+
max_seq_len=2048,
|
98
|
+
embedding_dim=3072,
|
99
|
+
kv_cache_max_len=kv_cache_max_len,
|
100
|
+
block_configs=[get_block_config(i) for i in range(num_layers)],
|
101
|
+
final_norm_config=norm_config,
|
102
|
+
enable_hlfb=True,
|
103
|
+
)
|
104
|
+
return config
|
105
|
+
|
106
|
+
|
107
|
+
def get_fake_model_config(kv_cache_max_len: int = 128) -> cfg.ModelConfig:
|
108
|
+
config = get_model_config(kv_cache_max_len)
|
109
|
+
config.vocab_size = 128
|
110
|
+
config.num_layers = 2
|
111
|
+
config.max_seq_len = 2 * kv_cache_max_len
|
112
|
+
config.embedding_dim = 128
|
113
|
+
config.block_configs = config.block_configs[: config.num_layers]
|
114
|
+
for block_config in config.block_configs:
|
115
|
+
block_config.attn_config.num_heads = 3
|
116
|
+
block_config.attn_config.head_dim = 64
|
117
|
+
block_config.ff_config.intermediate_size = 128
|
118
|
+
return config
|
119
|
+
|
120
|
+
|
121
|
+
def build_model(checkpoint_path: str, **kwargs) -> nn.Module:
|
122
|
+
return model_builder.build_decoder_only_model(
|
123
|
+
checkpoint_path=checkpoint_path,
|
124
|
+
config=get_model_config(**kwargs),
|
125
|
+
tensor_names=TENSOR_NAMES,
|
126
|
+
model_class=OpenELM,
|
127
|
+
)
|
@@ -0,0 +1,71 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Verifies the reauthored OpenELM-3B model."""
|
17
|
+
|
18
|
+
import logging
|
19
|
+
import pathlib
|
20
|
+
from absl import app
|
21
|
+
from absl import flags
|
22
|
+
from ai_edge_torch.generative.examples.openelm import openelm
|
23
|
+
from ai_edge_torch.generative.utilities import transformers_verifier
|
24
|
+
from ai_edge_torch.generative.utilities import verifier
|
25
|
+
import transformers
|
26
|
+
|
27
|
+
|
28
|
+
_PROMPTS = flags.DEFINE_multi_string(
|
29
|
+
"prompts",
|
30
|
+
"What is the meaning of life?",
|
31
|
+
"The input prompts to generate answers.",
|
32
|
+
)
|
33
|
+
_MAX_NEW_TOKENS = flags.DEFINE_integer(
|
34
|
+
"max_new_tokens",
|
35
|
+
30,
|
36
|
+
"The maximum size of the generated tokens.",
|
37
|
+
)
|
38
|
+
|
39
|
+
|
40
|
+
def main(_):
|
41
|
+
checkpoint = "apple/OpenELM-3B"
|
42
|
+
logging.info("Loading the original model from: %s", checkpoint)
|
43
|
+
original_model = transformers.AutoModelForCausalLM.from_pretrained(
|
44
|
+
checkpoint, trust_remote_code=True
|
45
|
+
)
|
46
|
+
|
47
|
+
# Locate the cached dir.
|
48
|
+
cached_config_file = transformers.utils.cached_file(
|
49
|
+
checkpoint, transformers.utils.CONFIG_NAME
|
50
|
+
)
|
51
|
+
reauthored_checkpoint = pathlib.Path(cached_config_file).parent
|
52
|
+
logging.info("Building the reauthored model from: %s", reauthored_checkpoint)
|
53
|
+
reauthored_model = openelm.build_model(reauthored_checkpoint)
|
54
|
+
|
55
|
+
tokenizer_checkpoint = "meta-llama/Llama-2-7b-hf"
|
56
|
+
logging.info("Loading the tokenizer from: %s", tokenizer_checkpoint)
|
57
|
+
tokenizer = transformers.AutoTokenizer.from_pretrained(tokenizer_checkpoint)
|
58
|
+
|
59
|
+
verifier.verify_reauthored_model(
|
60
|
+
original_model=transformers_verifier.TransformersModelWrapper(
|
61
|
+
original_model
|
62
|
+
),
|
63
|
+
reauthored_model=verifier.ReauthoredModelWrapper(reauthored_model),
|
64
|
+
tokenizer=verifier.TokenizerWrapper(tokenizer),
|
65
|
+
generate_prompts=_PROMPTS.value,
|
66
|
+
max_new_tokens=_MAX_NEW_TOKENS.value,
|
67
|
+
)
|
68
|
+
|
69
|
+
|
70
|
+
if __name__ == "__main__":
|
71
|
+
app.run(main)
|
@@ -0,0 +1,14 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
@@ -0,0 +1,95 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Example of converting a PaliGemma model to multi-signature tflite model.
|
17
|
+
|
18
|
+
DISCLAIMER: It works only with ODML Torch conversion backend. Refer to
|
19
|
+
https://github.com/google-ai-edge/ai-edge-torch/blob/main/docs/pytorch_converter/README.md#use-odml-torch-conversion-backend-experimental.
|
20
|
+
"""
|
21
|
+
|
22
|
+
import os
|
23
|
+
import pathlib
|
24
|
+
|
25
|
+
from absl import app
|
26
|
+
from absl import flags
|
27
|
+
from ai_edge_torch.generative.examples.paligemma import paligemma
|
28
|
+
from ai_edge_torch.generative.utilities import converter
|
29
|
+
from ai_edge_torch.generative.utilities.model_builder import ExportConfig
|
30
|
+
import torch
|
31
|
+
|
32
|
+
_VERSION = flags.DEFINE_enum(
|
33
|
+
'version',
|
34
|
+
'2',
|
35
|
+
['1', '2'],
|
36
|
+
'The version of PaliGemma model to verify.',
|
37
|
+
)
|
38
|
+
_CHECKPOINT_PATH = flags.DEFINE_string(
|
39
|
+
'checkpoint_path',
|
40
|
+
os.path.join(pathlib.Path.home(), 'Downloads/llm_data/paligemma2-3b-224'),
|
41
|
+
'The path to the model checkpoint, or directory holding the checkpoint.',
|
42
|
+
)
|
43
|
+
_OUTPUT_PATH = flags.DEFINE_string(
|
44
|
+
'output_path',
|
45
|
+
'/tmp/',
|
46
|
+
'The path to export the tflite model.',
|
47
|
+
)
|
48
|
+
_OUTPUT_NAME_PREFIX = flags.DEFINE_string(
|
49
|
+
'output_name_prefix',
|
50
|
+
'paligemma',
|
51
|
+
'The prefix of the output tflite model name.',
|
52
|
+
)
|
53
|
+
_PREFILL_SEQ_LEN = flags.DEFINE_integer(
|
54
|
+
'prefill_seq_len',
|
55
|
+
1024,
|
56
|
+
'The maximum size of prefill input tensor.',
|
57
|
+
)
|
58
|
+
_KV_CACHE_MAX_LEN = flags.DEFINE_integer(
|
59
|
+
'kv_cache_max_len',
|
60
|
+
1280,
|
61
|
+
'The maximum size of KV cache buffer, including both prefill and decode.',
|
62
|
+
)
|
63
|
+
_PIXEL_VALUES_SIZE = flags.DEFINE_multi_integer(
|
64
|
+
'pixel_values_size',
|
65
|
+
[3, 224, 224],
|
66
|
+
'The size of prefill pixel values except the batch dimension.',
|
67
|
+
)
|
68
|
+
_QUANTIZE = flags.DEFINE_bool(
|
69
|
+
'quantize',
|
70
|
+
True,
|
71
|
+
'Whether the model should be quantized.',
|
72
|
+
)
|
73
|
+
|
74
|
+
|
75
|
+
def main(_):
|
76
|
+
pytorch_model = paligemma.build_model(
|
77
|
+
_CHECKPOINT_PATH.value,
|
78
|
+
version=int(_VERSION.value),
|
79
|
+
kv_cache_max_len=_KV_CACHE_MAX_LEN.value,
|
80
|
+
)
|
81
|
+
|
82
|
+
converter.convert_to_tflite(
|
83
|
+
pytorch_model,
|
84
|
+
output_path=_OUTPUT_PATH.value,
|
85
|
+
output_name_prefix=f'{_OUTPUT_NAME_PREFIX.value}_{_VERSION.value}',
|
86
|
+
prefill_seq_len=_PREFILL_SEQ_LEN.value,
|
87
|
+
pixel_values_size=torch.Size(_PIXEL_VALUES_SIZE.value),
|
88
|
+
quantize=_QUANTIZE.value,
|
89
|
+
config=pytorch_model.config.decoder_config,
|
90
|
+
export_config=ExportConfig(),
|
91
|
+
)
|
92
|
+
|
93
|
+
|
94
|
+
if __name__ == '__main__':
|
95
|
+
app.run(main)
|
@@ -0,0 +1,151 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Example of building a decoder of PaliGemma 3B model which is Gemma1."""
|
17
|
+
|
18
|
+
from typing import Optional
|
19
|
+
|
20
|
+
from ai_edge_torch.generative.layers import kv_cache as kv_utils
|
21
|
+
import ai_edge_torch.generative.layers.model_config as cfg
|
22
|
+
import ai_edge_torch.generative.layers.rotary_position_embedding as rotary_pos_emb
|
23
|
+
from ai_edge_torch.generative.utilities import model_builder
|
24
|
+
import ai_edge_torch.generative.utilities.loader as loading_utils
|
25
|
+
import torch
|
26
|
+
|
27
|
+
TENSOR_NAMES = loading_utils.ModelLoader.TensorNames(
|
28
|
+
ff_up_proj="language_model.model.layers.{}.mlp.up_proj",
|
29
|
+
ff_down_proj="language_model.model.layers.{}.mlp.down_proj",
|
30
|
+
ff_gate_proj="language_model.model.layers.{}.mlp.gate_proj",
|
31
|
+
attn_query_proj="language_model.model.layers.{}.self_attn.q_proj",
|
32
|
+
attn_key_proj="language_model.model.layers.{}.self_attn.k_proj",
|
33
|
+
attn_value_proj="language_model.model.layers.{}.self_attn.v_proj",
|
34
|
+
attn_output_proj="language_model.model.layers.{}.self_attn.o_proj",
|
35
|
+
pre_attn_norm="language_model.model.layers.{}.input_layernorm",
|
36
|
+
post_attn_norm="language_model.model.layers.{}.post_attention_layernorm",
|
37
|
+
embedding="language_model.model.embed_tokens",
|
38
|
+
final_norm="language_model.model.norm",
|
39
|
+
lm_head=None,
|
40
|
+
)
|
41
|
+
|
42
|
+
|
43
|
+
class Decoder(model_builder.DecoderOnlyModel):
|
44
|
+
"""A decoder of PaliGemma 3B model which is Gemma1.
|
45
|
+
|
46
|
+
Besides a tensor of text token IDs, forward() can also take a tensor of
|
47
|
+
embeddings which may include text or image or both.
|
48
|
+
"""
|
49
|
+
|
50
|
+
@torch.inference_mode
|
51
|
+
def forward(
|
52
|
+
self,
|
53
|
+
tokens: torch.Tensor,
|
54
|
+
input_pos: torch.Tensor,
|
55
|
+
kv_cache: kv_utils.KVCache,
|
56
|
+
input_embeds: torch.Tensor = None,
|
57
|
+
mask: Optional[torch.Tensor] = None,
|
58
|
+
export_config: Optional[model_builder.ExportConfig] = None,
|
59
|
+
called_by_generate: bool = True,
|
60
|
+
) -> dict[torch.Tensor, kv_utils.KVCache]:
|
61
|
+
if input_embeds is None:
|
62
|
+
return super().forward(tokens, input_pos, kv_cache)
|
63
|
+
|
64
|
+
assert input_embeds is not None
|
65
|
+
|
66
|
+
repo_pos = input_pos + 1 # PaliGemma position is 1-based.
|
67
|
+
# ROPE parameters for all attn_configs are the same. Take the first one.
|
68
|
+
attn_config = self.config.block_config(0).attn_config
|
69
|
+
n_elem = int(attn_config.rotary_percentage * attn_config.head_dim)
|
70
|
+
rope = rotary_pos_emb.build_rope(repo_pos, n_elem, attn_config.rotary_base)
|
71
|
+
|
72
|
+
# The first part of input_embeds are image embeddings. Diagonal causal mask
|
73
|
+
# doesn't work here.
|
74
|
+
embeds_len = input_embeds.shape[1]
|
75
|
+
if mask is None:
|
76
|
+
mask = torch.zeros(embeds_len, self.config.kv_cache_max)
|
77
|
+
mask[:, embeds_len:] = float("-inf")
|
78
|
+
|
79
|
+
return self._forward_with_embeds(
|
80
|
+
input_embeds, rope, mask, input_pos, kv_cache
|
81
|
+
)
|
82
|
+
|
83
|
+
|
84
|
+
def get_decoder_config(kv_cache_max_len: int = 1024) -> cfg.ModelConfig:
|
85
|
+
"""Returns the model config for the decoder of a PaliGemma 3B model.
|
86
|
+
|
87
|
+
Args:
|
88
|
+
kv_cache_max_len (int): The maximum sequence length of the KV cache. Default
|
89
|
+
is 1024.
|
90
|
+
|
91
|
+
Returns:
|
92
|
+
The model config for the decoder of a PaliGemma 3B model.
|
93
|
+
"""
|
94
|
+
attn_config = cfg.AttentionConfig(
|
95
|
+
num_heads=8,
|
96
|
+
head_dim=256,
|
97
|
+
num_query_groups=1,
|
98
|
+
rotary_base=10000,
|
99
|
+
rotary_percentage=1.0,
|
100
|
+
)
|
101
|
+
ff_config = cfg.FeedForwardConfig(
|
102
|
+
type=cfg.FeedForwardType.GATED,
|
103
|
+
activation=cfg.ActivationConfig(cfg.ActivationType.GELU_TANH),
|
104
|
+
intermediate_size=16384,
|
105
|
+
)
|
106
|
+
norm_config = cfg.NormalizationConfig(
|
107
|
+
type=cfg.NormalizationType.RMS_NORM,
|
108
|
+
epsilon=1e-6,
|
109
|
+
zero_centered=True,
|
110
|
+
)
|
111
|
+
block_config = cfg.TransformerBlockConfig(
|
112
|
+
attn_config=attn_config,
|
113
|
+
ff_config=ff_config,
|
114
|
+
pre_attention_norm_config=norm_config,
|
115
|
+
post_attention_norm_config=norm_config,
|
116
|
+
)
|
117
|
+
embedding_dim = 2048
|
118
|
+
config = cfg.ModelConfig(
|
119
|
+
vocab_size=257216,
|
120
|
+
num_layers=18,
|
121
|
+
max_seq_len=8192,
|
122
|
+
embedding_dim=embedding_dim,
|
123
|
+
embedding_scale=embedding_dim**0.5,
|
124
|
+
kv_cache_max_len=kv_cache_max_len,
|
125
|
+
block_configs=block_config,
|
126
|
+
final_norm_config=norm_config,
|
127
|
+
lm_head_use_bias=False,
|
128
|
+
enable_hlfb=True,
|
129
|
+
)
|
130
|
+
return config
|
131
|
+
|
132
|
+
|
133
|
+
def get_fake_decoder_config(kv_cache_max_len: int = 128) -> cfg.ModelConfig:
|
134
|
+
config = get_decoder_config(kv_cache_max_len)
|
135
|
+
# PaliGemma decoder has only one block config.
|
136
|
+
config.block_config(0).ff_config.intermediate_size = 128
|
137
|
+
config.vocab_size = 128
|
138
|
+
config.num_layers = 2
|
139
|
+
config.max_seq_len = 2 * kv_cache_max_len
|
140
|
+
config.embedding_dim = 128
|
141
|
+
config.embedding_scale = 128**0.5
|
142
|
+
return config
|
143
|
+
|
144
|
+
|
145
|
+
def build_decoder(checkpoint_path: str, **kwargs) -> torch.nn.Module:
|
146
|
+
return model_builder.build_decoder_only_model(
|
147
|
+
checkpoint_path=checkpoint_path,
|
148
|
+
config=get_decoder_config(**kwargs),
|
149
|
+
tensor_names=TENSOR_NAMES,
|
150
|
+
model_class=Decoder,
|
151
|
+
)
|
@@ -0,0 +1,177 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Example of building a decoder of PaliGemma2 3B model which is Gemma2."""
|
17
|
+
|
18
|
+
from typing import Optional
|
19
|
+
|
20
|
+
from ai_edge_torch.generative.examples.gemma import gemma2
|
21
|
+
from ai_edge_torch.generative.layers import kv_cache as kv_utils
|
22
|
+
import ai_edge_torch.generative.layers.model_config as cfg
|
23
|
+
import ai_edge_torch.generative.layers.rotary_position_embedding as rotary_pos_emb
|
24
|
+
from ai_edge_torch.generative.utilities import model_builder
|
25
|
+
import ai_edge_torch.generative.utilities.loader as loading_utils
|
26
|
+
import torch
|
27
|
+
|
28
|
+
TENSOR_NAMES = loading_utils.ModelLoader.TensorNames(
|
29
|
+
ff_up_proj="language_model.model.layers.{}.mlp.up_proj",
|
30
|
+
ff_down_proj="language_model.model.layers.{}.mlp.down_proj",
|
31
|
+
ff_gate_proj="language_model.model.layers.{}.mlp.gate_proj",
|
32
|
+
attn_query_proj="language_model.model.layers.{}.self_attn.q_proj",
|
33
|
+
attn_key_proj="language_model.model.layers.{}.self_attn.k_proj",
|
34
|
+
attn_value_proj="language_model.model.layers.{}.self_attn.v_proj",
|
35
|
+
attn_output_proj="language_model.model.layers.{}.self_attn.o_proj",
|
36
|
+
pre_attn_norm="language_model.model.layers.{}.input_layernorm",
|
37
|
+
post_attn_norm="language_model.model.layers.{}.post_attention_layernorm",
|
38
|
+
pre_ff_norm="language_model.model.layers.{}.pre_feedforward_layernorm",
|
39
|
+
post_ff_norm="language_model.model.layers.{}.post_feedforward_layernorm",
|
40
|
+
embedding="language_model.model.embed_tokens",
|
41
|
+
final_norm="language_model.model.norm",
|
42
|
+
lm_head=None,
|
43
|
+
)
|
44
|
+
|
45
|
+
|
46
|
+
class Decoder2(gemma2.Gemma2):
|
47
|
+
"""A decoder of PaliGemma2 3B model which is Gemma2.
|
48
|
+
|
49
|
+
Besides a tensor of text token IDs, forward() can also take a tensor of
|
50
|
+
embeddings which may include text or image or both.
|
51
|
+
"""
|
52
|
+
|
53
|
+
@torch.inference_mode
|
54
|
+
def forward(
|
55
|
+
self,
|
56
|
+
tokens: torch.Tensor,
|
57
|
+
input_pos: torch.Tensor,
|
58
|
+
kv_cache: kv_utils.KVCache,
|
59
|
+
input_embeds: torch.Tensor = None,
|
60
|
+
mask: Optional[torch.Tensor] = None,
|
61
|
+
export_config: Optional[model_builder.ExportConfig] = None,
|
62
|
+
called_by_generate: bool = True,
|
63
|
+
) -> dict[torch.Tensor, kv_utils.KVCache]:
|
64
|
+
if input_embeds is None:
|
65
|
+
return super().forward(tokens, input_pos, kv_cache)
|
66
|
+
|
67
|
+
assert input_embeds is not None
|
68
|
+
|
69
|
+
repo_pos = input_pos + 1 # PaliGemma2 position is 1-based.
|
70
|
+
# ROPE parameters for all attn_configs are the same. Take the first one.
|
71
|
+
attn_config = self.config.block_config(0).attn_config
|
72
|
+
n_elem = int(attn_config.rotary_percentage * attn_config.head_dim)
|
73
|
+
rope = rotary_pos_emb.build_rope(repo_pos, n_elem, attn_config.rotary_base)
|
74
|
+
|
75
|
+
if mask is None:
|
76
|
+
if called_by_generate:
|
77
|
+
# PaliGemma2 generate() use a diagonal causal mask even with image embeds.
|
78
|
+
mask = [
|
79
|
+
self.get_attention_mask(
|
80
|
+
self.config.block_config(i).attn_config.attn_type, input_pos
|
81
|
+
)
|
82
|
+
for i in range(self.config.num_layers)
|
83
|
+
]
|
84
|
+
else:
|
85
|
+
# By default, don't mask image embeds with a diagonal causal mask.
|
86
|
+
embeds_len = input_embeds.shape[1]
|
87
|
+
mask = torch.zeros(embeds_len, self.config.kv_cache_max)
|
88
|
+
mask[:, embeds_len:] = float("-inf")
|
89
|
+
mask = [mask] * self.config.num_layers
|
90
|
+
|
91
|
+
return self._forward_with_embeds(
|
92
|
+
input_embeds, rope, mask, input_pos, kv_cache, export_config
|
93
|
+
)
|
94
|
+
|
95
|
+
|
96
|
+
def get_decoder2_config(kv_cache_max_len: int = 1024) -> cfg.ModelConfig:
|
97
|
+
"""Returns the model config for the decoder of a PaliGemma 3B model.
|
98
|
+
|
99
|
+
Args:
|
100
|
+
kv_cache_max_len (int): The maximum sequence length of the KV cache. Default
|
101
|
+
is 1024.
|
102
|
+
|
103
|
+
Returns:
|
104
|
+
The model config for the decoder of a PaliGemma 3B model.
|
105
|
+
"""
|
106
|
+
norm_config = cfg.NormalizationConfig(
|
107
|
+
type=cfg.NormalizationType.RMS_NORM,
|
108
|
+
epsilon=1e-6,
|
109
|
+
zero_centered=True,
|
110
|
+
)
|
111
|
+
ff_config = cfg.FeedForwardConfig(
|
112
|
+
type=cfg.FeedForwardType.GATED,
|
113
|
+
activation=cfg.ActivationConfig(cfg.ActivationType.GELU_TANH),
|
114
|
+
intermediate_size=9216,
|
115
|
+
pre_ff_norm_config=norm_config,
|
116
|
+
post_ff_norm_config=norm_config,
|
117
|
+
)
|
118
|
+
|
119
|
+
def get_block_config(idx: int) -> cfg.TransformerBlockConfig:
|
120
|
+
attn_config = cfg.AttentionConfig(
|
121
|
+
num_heads=8,
|
122
|
+
head_dim=256,
|
123
|
+
num_query_groups=4,
|
124
|
+
rotary_base=10000,
|
125
|
+
rotary_percentage=1.0,
|
126
|
+
logit_softcap=50.0,
|
127
|
+
sliding_window_size=4096,
|
128
|
+
attn_type=(
|
129
|
+
cfg.AttentionType.GLOBAL
|
130
|
+
if idx % 2 == 0
|
131
|
+
else cfg.AttentionType.LOCAL_SLIDING
|
132
|
+
),
|
133
|
+
)
|
134
|
+
return cfg.TransformerBlockConfig(
|
135
|
+
attn_config=attn_config,
|
136
|
+
ff_config=ff_config,
|
137
|
+
pre_attention_norm_config=norm_config,
|
138
|
+
post_attention_norm_config=norm_config,
|
139
|
+
)
|
140
|
+
|
141
|
+
num_layers = 26
|
142
|
+
embedding_dim = 2304
|
143
|
+
config = cfg.ModelConfig(
|
144
|
+
vocab_size=257216,
|
145
|
+
num_layers=num_layers,
|
146
|
+
max_seq_len=8192,
|
147
|
+
embedding_dim=embedding_dim,
|
148
|
+
embedding_scale=embedding_dim**0.5,
|
149
|
+
kv_cache_max_len=kv_cache_max_len,
|
150
|
+
block_configs=[get_block_config(i) for i in range(num_layers)],
|
151
|
+
final_norm_config=norm_config,
|
152
|
+
lm_head_use_bias=False,
|
153
|
+
enable_hlfb=True,
|
154
|
+
final_logit_softcap=30.0,
|
155
|
+
)
|
156
|
+
return config
|
157
|
+
|
158
|
+
|
159
|
+
def get_fake_decoder2_config(kv_cache_max_len: int = 128) -> cfg.ModelConfig:
|
160
|
+
config = get_decoder2_config(kv_cache_max_len)
|
161
|
+
# PaliGemma2 decoder has only one block config.
|
162
|
+
config.block_config(0).ff_config.intermediate_size = 128
|
163
|
+
config.vocab_size = 128
|
164
|
+
config.num_layers = 2
|
165
|
+
config.max_seq_len = 2 * kv_cache_max_len
|
166
|
+
config.embedding_dim = 128
|
167
|
+
config.embedding_scale = 128**0.5
|
168
|
+
return config
|
169
|
+
|
170
|
+
|
171
|
+
def build_decoder2(checkpoint_path: str, **kwargs) -> torch.nn.Module:
|
172
|
+
return model_builder.build_decoder_only_model(
|
173
|
+
checkpoint_path=checkpoint_path,
|
174
|
+
config=get_decoder2_config(**kwargs),
|
175
|
+
tensor_names=TENSOR_NAMES,
|
176
|
+
model_class=Decoder2,
|
177
|
+
)
|