ai-edge-torch-nightly 0.3.0.dev20250114__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (213) hide show
  1. ai_edge_torch/__init__.py +32 -0
  2. ai_edge_torch/_config.py +69 -0
  3. ai_edge_torch/_convert/__init__.py +14 -0
  4. ai_edge_torch/_convert/conversion.py +153 -0
  5. ai_edge_torch/_convert/conversion_utils.py +64 -0
  6. ai_edge_torch/_convert/converter.py +270 -0
  7. ai_edge_torch/_convert/fx_passes/__init__.py +23 -0
  8. ai_edge_torch/_convert/fx_passes/build_aten_composite_pass.py +288 -0
  9. ai_edge_torch/_convert/fx_passes/build_interpolate_composite_pass.py +131 -0
  10. ai_edge_torch/_convert/fx_passes/inject_mlir_debuginfo_pass.py +73 -0
  11. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/__init__.py +16 -0
  12. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_check.py +258 -0
  13. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_mark.py +50 -0
  14. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +18 -0
  15. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +68 -0
  16. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +216 -0
  17. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +449 -0
  18. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +30 -0
  19. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/pass_body.py +303 -0
  20. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/utils.py +64 -0
  21. ai_edge_torch/_convert/fx_passes/remove_non_user_outputs_pass.py +52 -0
  22. ai_edge_torch/_convert/signature.py +66 -0
  23. ai_edge_torch/_convert/test/__init__.py +14 -0
  24. ai_edge_torch/_convert/test/test_convert.py +558 -0
  25. ai_edge_torch/_convert/test/test_convert_composites.py +234 -0
  26. ai_edge_torch/_convert/test/test_convert_multisig.py +189 -0
  27. ai_edge_torch/_convert/test/test_to_channel_last_io.py +96 -0
  28. ai_edge_torch/_convert/to_channel_last_io.py +92 -0
  29. ai_edge_torch/conftest.py +20 -0
  30. ai_edge_torch/debug/__init__.py +17 -0
  31. ai_edge_torch/debug/culprit.py +496 -0
  32. ai_edge_torch/debug/test/__init__.py +14 -0
  33. ai_edge_torch/debug/test/test_culprit.py +140 -0
  34. ai_edge_torch/debug/test/test_search_model.py +51 -0
  35. ai_edge_torch/debug/utils.py +59 -0
  36. ai_edge_torch/experimental/__init__.py +14 -0
  37. ai_edge_torch/fx_pass_base.py +110 -0
  38. ai_edge_torch/generative/__init__.py +14 -0
  39. ai_edge_torch/generative/examples/__init__.py +14 -0
  40. ai_edge_torch/generative/examples/amd_llama_135m/__init__.py +14 -0
  41. ai_edge_torch/generative/examples/amd_llama_135m/amd_llama_135m.py +87 -0
  42. ai_edge_torch/generative/examples/amd_llama_135m/convert_to_tflite.py +70 -0
  43. ai_edge_torch/generative/examples/amd_llama_135m/verify.py +72 -0
  44. ai_edge_torch/generative/examples/gemma/__init__.py +14 -0
  45. ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +80 -0
  46. ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +80 -0
  47. ai_edge_torch/generative/examples/gemma/gemma1.py +107 -0
  48. ai_edge_torch/generative/examples/gemma/gemma2.py +295 -0
  49. ai_edge_torch/generative/examples/gemma/verify_gemma1.py +56 -0
  50. ai_edge_torch/generative/examples/gemma/verify_gemma2.py +43 -0
  51. ai_edge_torch/generative/examples/gemma/verify_util.py +157 -0
  52. ai_edge_torch/generative/examples/llama/__init__.py +14 -0
  53. ai_edge_torch/generative/examples/llama/convert_to_tflite.py +91 -0
  54. ai_edge_torch/generative/examples/llama/llama.py +196 -0
  55. ai_edge_torch/generative/examples/llama/verify.py +88 -0
  56. ai_edge_torch/generative/examples/moonshine/__init__.py +14 -0
  57. ai_edge_torch/generative/examples/moonshine/convert_moonshine_to_tflite.py +50 -0
  58. ai_edge_torch/generative/examples/moonshine/moonshine.py +103 -0
  59. ai_edge_torch/generative/examples/openelm/__init__.py +14 -0
  60. ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +80 -0
  61. ai_edge_torch/generative/examples/openelm/openelm.py +127 -0
  62. ai_edge_torch/generative/examples/openelm/verify.py +71 -0
  63. ai_edge_torch/generative/examples/paligemma/__init__.py +14 -0
  64. ai_edge_torch/generative/examples/paligemma/convert_to_tflite.py +95 -0
  65. ai_edge_torch/generative/examples/paligemma/decoder.py +151 -0
  66. ai_edge_torch/generative/examples/paligemma/decoder2.py +177 -0
  67. ai_edge_torch/generative/examples/paligemma/image_encoder.py +160 -0
  68. ai_edge_torch/generative/examples/paligemma/paligemma.py +179 -0
  69. ai_edge_torch/generative/examples/paligemma/verify.py +161 -0
  70. ai_edge_torch/generative/examples/paligemma/verify_decoder.py +75 -0
  71. ai_edge_torch/generative/examples/paligemma/verify_decoder2.py +72 -0
  72. ai_edge_torch/generative/examples/paligemma/verify_image_encoder.py +99 -0
  73. ai_edge_torch/generative/examples/phi/__init__.py +14 -0
  74. ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +80 -0
  75. ai_edge_torch/generative/examples/phi/convert_to_tflite.py +80 -0
  76. ai_edge_torch/generative/examples/phi/phi2.py +107 -0
  77. ai_edge_torch/generative/examples/phi/phi3.py +219 -0
  78. ai_edge_torch/generative/examples/phi/verify.py +64 -0
  79. ai_edge_torch/generative/examples/phi/verify_phi3.py +69 -0
  80. ai_edge_torch/generative/examples/qwen/__init__.py +14 -0
  81. ai_edge_torch/generative/examples/qwen/convert_to_tflite.py +93 -0
  82. ai_edge_torch/generative/examples/qwen/qwen.py +134 -0
  83. ai_edge_torch/generative/examples/qwen/verify.py +88 -0
  84. ai_edge_torch/generative/examples/smollm/__init__.py +14 -0
  85. ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +80 -0
  86. ai_edge_torch/generative/examples/smollm/convert_v2_to_tflite.py +71 -0
  87. ai_edge_torch/generative/examples/smollm/smollm.py +125 -0
  88. ai_edge_torch/generative/examples/smollm/verify.py +86 -0
  89. ai_edge_torch/generative/examples/stable_diffusion/__init__.py +14 -0
  90. ai_edge_torch/generative/examples/stable_diffusion/attention.py +108 -0
  91. ai_edge_torch/generative/examples/stable_diffusion/clip.py +185 -0
  92. ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +173 -0
  93. ai_edge_torch/generative/examples/stable_diffusion/decoder.py +398 -0
  94. ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +749 -0
  95. ai_edge_torch/generative/examples/stable_diffusion/encoder.py +119 -0
  96. ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +254 -0
  97. ai_edge_torch/generative/examples/stable_diffusion/samplers/__init__.py +19 -0
  98. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +62 -0
  99. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +66 -0
  100. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +74 -0
  101. ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +39 -0
  102. ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +111 -0
  103. ai_edge_torch/generative/examples/stable_diffusion/util.py +77 -0
  104. ai_edge_torch/generative/examples/t5/__init__.py +14 -0
  105. ai_edge_torch/generative/examples/t5/convert_to_tflite.py +138 -0
  106. ai_edge_torch/generative/examples/t5/t5.py +655 -0
  107. ai_edge_torch/generative/examples/t5/t5_attention.py +246 -0
  108. ai_edge_torch/generative/examples/test_models/__init__.py +14 -0
  109. ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
  110. ai_edge_torch/generative/examples/test_models/toy_model.py +156 -0
  111. ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +138 -0
  112. ai_edge_torch/generative/examples/tiny_llama/__init__.py +14 -0
  113. ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +80 -0
  114. ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +88 -0
  115. ai_edge_torch/generative/examples/tiny_llama/verify.py +72 -0
  116. ai_edge_torch/generative/fx_passes/__init__.py +30 -0
  117. ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +50 -0
  118. ai_edge_torch/generative/layers/__init__.py +14 -0
  119. ai_edge_torch/generative/layers/attention.py +399 -0
  120. ai_edge_torch/generative/layers/attention_utils.py +210 -0
  121. ai_edge_torch/generative/layers/builder.py +160 -0
  122. ai_edge_torch/generative/layers/feed_forward.py +120 -0
  123. ai_edge_torch/generative/layers/kv_cache.py +204 -0
  124. ai_edge_torch/generative/layers/lora.py +557 -0
  125. ai_edge_torch/generative/layers/model_config.py +238 -0
  126. ai_edge_torch/generative/layers/normalization.py +222 -0
  127. ai_edge_torch/generative/layers/rotary_position_embedding.py +94 -0
  128. ai_edge_torch/generative/layers/scaled_dot_product_attention.py +144 -0
  129. ai_edge_torch/generative/layers/unet/__init__.py +14 -0
  130. ai_edge_torch/generative/layers/unet/blocks_2d.py +806 -0
  131. ai_edge_torch/generative/layers/unet/builder.py +50 -0
  132. ai_edge_torch/generative/layers/unet/model_config.py +282 -0
  133. ai_edge_torch/generative/quantize/__init__.py +14 -0
  134. ai_edge_torch/generative/quantize/example.py +47 -0
  135. ai_edge_torch/generative/quantize/quant_attrs.py +68 -0
  136. ai_edge_torch/generative/quantize/quant_recipe.py +154 -0
  137. ai_edge_torch/generative/quantize/quant_recipe_utils.py +62 -0
  138. ai_edge_torch/generative/quantize/quant_recipes.py +56 -0
  139. ai_edge_torch/generative/quantize/supported_schemes.py +32 -0
  140. ai_edge_torch/generative/test/__init__.py +14 -0
  141. ai_edge_torch/generative/test/test_custom_dus.py +107 -0
  142. ai_edge_torch/generative/test/test_kv_cache.py +120 -0
  143. ai_edge_torch/generative/test/test_loader.py +83 -0
  144. ai_edge_torch/generative/test/test_lora.py +147 -0
  145. ai_edge_torch/generative/test/test_model_conversion.py +191 -0
  146. ai_edge_torch/generative/test/test_model_conversion_large.py +362 -0
  147. ai_edge_torch/generative/test/test_quantize.py +183 -0
  148. ai_edge_torch/generative/test/utils.py +82 -0
  149. ai_edge_torch/generative/utilities/__init__.py +15 -0
  150. ai_edge_torch/generative/utilities/converter.py +215 -0
  151. ai_edge_torch/generative/utilities/dynamic_update_slice.py +56 -0
  152. ai_edge_torch/generative/utilities/loader.py +398 -0
  153. ai_edge_torch/generative/utilities/model_builder.py +180 -0
  154. ai_edge_torch/generative/utilities/moonshine_loader.py +154 -0
  155. ai_edge_torch/generative/utilities/stable_diffusion_loader.py +1032 -0
  156. ai_edge_torch/generative/utilities/t5_loader.py +512 -0
  157. ai_edge_torch/generative/utilities/transformers_verifier.py +42 -0
  158. ai_edge_torch/generative/utilities/verifier.py +335 -0
  159. ai_edge_torch/hlfb/__init__.py +16 -0
  160. ai_edge_torch/hlfb/mark_pattern/__init__.py +153 -0
  161. ai_edge_torch/hlfb/mark_pattern/fx_utils.py +69 -0
  162. ai_edge_torch/hlfb/mark_pattern/pattern.py +288 -0
  163. ai_edge_torch/hlfb/test/__init__.py +14 -0
  164. ai_edge_torch/hlfb/test/test_mark_pattern.py +185 -0
  165. ai_edge_torch/lowertools/__init__.py +18 -0
  166. ai_edge_torch/lowertools/_shim.py +86 -0
  167. ai_edge_torch/lowertools/common_utils.py +142 -0
  168. ai_edge_torch/lowertools/odml_torch_utils.py +260 -0
  169. ai_edge_torch/lowertools/test_utils.py +62 -0
  170. ai_edge_torch/lowertools/torch_xla_utils.py +301 -0
  171. ai_edge_torch/lowertools/translate_recipe.py +163 -0
  172. ai_edge_torch/model.py +177 -0
  173. ai_edge_torch/odml_torch/__init__.py +20 -0
  174. ai_edge_torch/odml_torch/_torch_future.py +88 -0
  175. ai_edge_torch/odml_torch/_torch_library.py +19 -0
  176. ai_edge_torch/odml_torch/composite/__init__.py +16 -0
  177. ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
  178. ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
  179. ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
  180. ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
  181. ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
  182. ai_edge_torch/odml_torch/export.py +403 -0
  183. ai_edge_torch/odml_torch/export_utils.py +157 -0
  184. ai_edge_torch/odml_torch/jax_bridge/__init__.py +18 -0
  185. ai_edge_torch/odml_torch/jax_bridge/_wrap.py +180 -0
  186. ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
  187. ai_edge_torch/odml_torch/lowerings/__init__.py +27 -0
  188. ai_edge_torch/odml_torch/lowerings/_basic.py +294 -0
  189. ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
  190. ai_edge_torch/odml_torch/lowerings/_convolution.py +243 -0
  191. ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +285 -0
  192. ai_edge_torch/odml_torch/lowerings/_layer_norm.py +87 -0
  193. ai_edge_torch/odml_torch/lowerings/_quantized_decomposed.py +177 -0
  194. ai_edge_torch/odml_torch/lowerings/_rand.py +142 -0
  195. ai_edge_torch/odml_torch/lowerings/context.py +42 -0
  196. ai_edge_torch/odml_torch/lowerings/decomp.py +69 -0
  197. ai_edge_torch/odml_torch/lowerings/registry.py +65 -0
  198. ai_edge_torch/odml_torch/lowerings/utils.py +201 -0
  199. ai_edge_torch/odml_torch/passes/__init__.py +38 -0
  200. ai_edge_torch/odml_torch/tf_integration.py +156 -0
  201. ai_edge_torch/quantize/__init__.py +16 -0
  202. ai_edge_torch/quantize/pt2e_quantizer.py +466 -0
  203. ai_edge_torch/quantize/pt2e_quantizer_utils.py +1061 -0
  204. ai_edge_torch/quantize/quant_config.py +85 -0
  205. ai_edge_torch/testing/__init__.py +14 -0
  206. ai_edge_torch/testing/model_coverage/__init__.py +16 -0
  207. ai_edge_torch/testing/model_coverage/model_coverage.py +145 -0
  208. ai_edge_torch/version.py +16 -0
  209. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/LICENSE +202 -0
  210. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/METADATA +44 -0
  211. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/RECORD +213 -0
  212. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/WHEEL +5 -0
  213. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/top_level.txt +1 -0
@@ -0,0 +1,127 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ """Example of building an OpenELM model."""
17
+
18
+ import ai_edge_torch.generative.layers.model_config as cfg
19
+ from ai_edge_torch.generative.utilities import model_builder
20
+ import ai_edge_torch.generative.utilities.loader as loading_utils
21
+ from torch import nn
22
+
23
+ TENSOR_NAMES = loading_utils.ModelLoader.TensorNames(
24
+ ff_up_proj="transformer.layers.{}.ffn.proj_1",
25
+ ff_down_proj="transformer.layers.{}.ffn.proj_2",
26
+ attn_fused_qkv_proj="transformer.layers.{}.attn.qkv_proj",
27
+ attn_query_norm="transformer.layers.{}.attn.q_norm",
28
+ attn_key_norm="transformer.layers.{}.attn.k_norm",
29
+ attn_output_proj="transformer.layers.{}.attn.out_proj",
30
+ pre_attn_norm="transformer.layers.{}.attn_norm",
31
+ pre_ff_norm="transformer.layers.{}.ffn_norm",
32
+ embedding="transformer.token_embeddings",
33
+ final_norm="transformer.norm",
34
+ lm_head=None,
35
+ )
36
+
37
+
38
+ class OpenELM(model_builder.DecoderOnlyModel):
39
+ """An OpenELM model built from the Edge Generative API layers."""
40
+ pass
41
+
42
+
43
+ def get_model_config(kv_cache_max_len: int = 1024) -> cfg.ModelConfig:
44
+ """Returns the model config for an OpenELM model.
45
+
46
+ Args:
47
+ kv_cache_max_len (int): The maximum sequence length of the KV cache. Default
48
+ is 1024.
49
+
50
+ Returns:
51
+ The model config for an OpenELM model.
52
+ """
53
+ norm_config = cfg.NormalizationConfig(
54
+ type=cfg.NormalizationType.RMS_NORM, epsilon=1e-6
55
+ )
56
+ num_heads = [12] * 4 + [16] * 14 + [20] * 12 + [24] * 6
57
+ num_query_groups = [3] * 4 + [4] * 14 + [5] * 12 + [6] * 6
58
+
59
+ def make_divisible(v, d):
60
+ """Ensures that all layers have a channel number that is divisible by d."""
61
+ new_v = int(v + d / 2) // d * d
62
+ # Make sure that round down does not go down by more than 10%.
63
+ if new_v < 0.9 * v:
64
+ new_v += d
65
+ return new_v
66
+
67
+ # The way to get intermediate size is from
68
+ # https://huggingface.co/apple/OpenELM-3B/blob/main/modeling_openelm.py
69
+ def get_intermediate_size(idx: int) -> int:
70
+ return make_divisible((0.5 + 0.1 * idx) * 3072, 256)
71
+
72
+ def get_block_config(idx: int) -> cfg.TransformerBlockConfig:
73
+ return cfg.TransformerBlockConfig(
74
+ attn_config=cfg.AttentionConfig(
75
+ num_heads=num_heads[idx],
76
+ head_dim=128,
77
+ num_query_groups=num_query_groups[idx],
78
+ rotary_base=10000,
79
+ rotary_percentage=1.0,
80
+ qkv_transpose_before_split=True,
81
+ query_norm_config=norm_config,
82
+ key_norm_config=norm_config,
83
+ ),
84
+ ff_config=cfg.FeedForwardConfig(
85
+ type=cfg.FeedForwardType.SEQUENTIAL,
86
+ activation=cfg.ActivationConfig(cfg.ActivationType.SILU_GLU),
87
+ intermediate_size=get_intermediate_size(idx),
88
+ pre_ff_norm_config=norm_config,
89
+ ),
90
+ pre_attention_norm_config=norm_config,
91
+ )
92
+
93
+ num_layers = 36
94
+ config = cfg.ModelConfig(
95
+ vocab_size=32000,
96
+ num_layers=num_layers,
97
+ max_seq_len=2048,
98
+ embedding_dim=3072,
99
+ kv_cache_max_len=kv_cache_max_len,
100
+ block_configs=[get_block_config(i) for i in range(num_layers)],
101
+ final_norm_config=norm_config,
102
+ enable_hlfb=True,
103
+ )
104
+ return config
105
+
106
+
107
+ def get_fake_model_config(kv_cache_max_len: int = 128) -> cfg.ModelConfig:
108
+ config = get_model_config(kv_cache_max_len)
109
+ config.vocab_size = 128
110
+ config.num_layers = 2
111
+ config.max_seq_len = 2 * kv_cache_max_len
112
+ config.embedding_dim = 128
113
+ config.block_configs = config.block_configs[: config.num_layers]
114
+ for block_config in config.block_configs:
115
+ block_config.attn_config.num_heads = 3
116
+ block_config.attn_config.head_dim = 64
117
+ block_config.ff_config.intermediate_size = 128
118
+ return config
119
+
120
+
121
+ def build_model(checkpoint_path: str, **kwargs) -> nn.Module:
122
+ return model_builder.build_decoder_only_model(
123
+ checkpoint_path=checkpoint_path,
124
+ config=get_model_config(**kwargs),
125
+ tensor_names=TENSOR_NAMES,
126
+ model_class=OpenELM,
127
+ )
@@ -0,0 +1,71 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ """Verifies the reauthored OpenELM-3B model."""
17
+
18
+ import logging
19
+ import pathlib
20
+ from absl import app
21
+ from absl import flags
22
+ from ai_edge_torch.generative.examples.openelm import openelm
23
+ from ai_edge_torch.generative.utilities import transformers_verifier
24
+ from ai_edge_torch.generative.utilities import verifier
25
+ import transformers
26
+
27
+
28
+ _PROMPTS = flags.DEFINE_multi_string(
29
+ "prompts",
30
+ "What is the meaning of life?",
31
+ "The input prompts to generate answers.",
32
+ )
33
+ _MAX_NEW_TOKENS = flags.DEFINE_integer(
34
+ "max_new_tokens",
35
+ 30,
36
+ "The maximum size of the generated tokens.",
37
+ )
38
+
39
+
40
+ def main(_):
41
+ checkpoint = "apple/OpenELM-3B"
42
+ logging.info("Loading the original model from: %s", checkpoint)
43
+ original_model = transformers.AutoModelForCausalLM.from_pretrained(
44
+ checkpoint, trust_remote_code=True
45
+ )
46
+
47
+ # Locate the cached dir.
48
+ cached_config_file = transformers.utils.cached_file(
49
+ checkpoint, transformers.utils.CONFIG_NAME
50
+ )
51
+ reauthored_checkpoint = pathlib.Path(cached_config_file).parent
52
+ logging.info("Building the reauthored model from: %s", reauthored_checkpoint)
53
+ reauthored_model = openelm.build_model(reauthored_checkpoint)
54
+
55
+ tokenizer_checkpoint = "meta-llama/Llama-2-7b-hf"
56
+ logging.info("Loading the tokenizer from: %s", tokenizer_checkpoint)
57
+ tokenizer = transformers.AutoTokenizer.from_pretrained(tokenizer_checkpoint)
58
+
59
+ verifier.verify_reauthored_model(
60
+ original_model=transformers_verifier.TransformersModelWrapper(
61
+ original_model
62
+ ),
63
+ reauthored_model=verifier.ReauthoredModelWrapper(reauthored_model),
64
+ tokenizer=verifier.TokenizerWrapper(tokenizer),
65
+ generate_prompts=_PROMPTS.value,
66
+ max_new_tokens=_MAX_NEW_TOKENS.value,
67
+ )
68
+
69
+
70
+ if __name__ == "__main__":
71
+ app.run(main)
@@ -0,0 +1,14 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
@@ -0,0 +1,95 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ """Example of converting a PaliGemma model to multi-signature tflite model.
17
+
18
+ DISCLAIMER: It works only with ODML Torch conversion backend. Refer to
19
+ https://github.com/google-ai-edge/ai-edge-torch/blob/main/docs/pytorch_converter/README.md#use-odml-torch-conversion-backend-experimental.
20
+ """
21
+
22
+ import os
23
+ import pathlib
24
+
25
+ from absl import app
26
+ from absl import flags
27
+ from ai_edge_torch.generative.examples.paligemma import paligemma
28
+ from ai_edge_torch.generative.utilities import converter
29
+ from ai_edge_torch.generative.utilities.model_builder import ExportConfig
30
+ import torch
31
+
32
+ _VERSION = flags.DEFINE_enum(
33
+ 'version',
34
+ '2',
35
+ ['1', '2'],
36
+ 'The version of PaliGemma model to verify.',
37
+ )
38
+ _CHECKPOINT_PATH = flags.DEFINE_string(
39
+ 'checkpoint_path',
40
+ os.path.join(pathlib.Path.home(), 'Downloads/llm_data/paligemma2-3b-224'),
41
+ 'The path to the model checkpoint, or directory holding the checkpoint.',
42
+ )
43
+ _OUTPUT_PATH = flags.DEFINE_string(
44
+ 'output_path',
45
+ '/tmp/',
46
+ 'The path to export the tflite model.',
47
+ )
48
+ _OUTPUT_NAME_PREFIX = flags.DEFINE_string(
49
+ 'output_name_prefix',
50
+ 'paligemma',
51
+ 'The prefix of the output tflite model name.',
52
+ )
53
+ _PREFILL_SEQ_LEN = flags.DEFINE_integer(
54
+ 'prefill_seq_len',
55
+ 1024,
56
+ 'The maximum size of prefill input tensor.',
57
+ )
58
+ _KV_CACHE_MAX_LEN = flags.DEFINE_integer(
59
+ 'kv_cache_max_len',
60
+ 1280,
61
+ 'The maximum size of KV cache buffer, including both prefill and decode.',
62
+ )
63
+ _PIXEL_VALUES_SIZE = flags.DEFINE_multi_integer(
64
+ 'pixel_values_size',
65
+ [3, 224, 224],
66
+ 'The size of prefill pixel values except the batch dimension.',
67
+ )
68
+ _QUANTIZE = flags.DEFINE_bool(
69
+ 'quantize',
70
+ True,
71
+ 'Whether the model should be quantized.',
72
+ )
73
+
74
+
75
+ def main(_):
76
+ pytorch_model = paligemma.build_model(
77
+ _CHECKPOINT_PATH.value,
78
+ version=int(_VERSION.value),
79
+ kv_cache_max_len=_KV_CACHE_MAX_LEN.value,
80
+ )
81
+
82
+ converter.convert_to_tflite(
83
+ pytorch_model,
84
+ output_path=_OUTPUT_PATH.value,
85
+ output_name_prefix=f'{_OUTPUT_NAME_PREFIX.value}_{_VERSION.value}',
86
+ prefill_seq_len=_PREFILL_SEQ_LEN.value,
87
+ pixel_values_size=torch.Size(_PIXEL_VALUES_SIZE.value),
88
+ quantize=_QUANTIZE.value,
89
+ config=pytorch_model.config.decoder_config,
90
+ export_config=ExportConfig(),
91
+ )
92
+
93
+
94
+ if __name__ == '__main__':
95
+ app.run(main)
@@ -0,0 +1,151 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ """Example of building a decoder of PaliGemma 3B model which is Gemma1."""
17
+
18
+ from typing import Optional
19
+
20
+ from ai_edge_torch.generative.layers import kv_cache as kv_utils
21
+ import ai_edge_torch.generative.layers.model_config as cfg
22
+ import ai_edge_torch.generative.layers.rotary_position_embedding as rotary_pos_emb
23
+ from ai_edge_torch.generative.utilities import model_builder
24
+ import ai_edge_torch.generative.utilities.loader as loading_utils
25
+ import torch
26
+
27
+ TENSOR_NAMES = loading_utils.ModelLoader.TensorNames(
28
+ ff_up_proj="language_model.model.layers.{}.mlp.up_proj",
29
+ ff_down_proj="language_model.model.layers.{}.mlp.down_proj",
30
+ ff_gate_proj="language_model.model.layers.{}.mlp.gate_proj",
31
+ attn_query_proj="language_model.model.layers.{}.self_attn.q_proj",
32
+ attn_key_proj="language_model.model.layers.{}.self_attn.k_proj",
33
+ attn_value_proj="language_model.model.layers.{}.self_attn.v_proj",
34
+ attn_output_proj="language_model.model.layers.{}.self_attn.o_proj",
35
+ pre_attn_norm="language_model.model.layers.{}.input_layernorm",
36
+ post_attn_norm="language_model.model.layers.{}.post_attention_layernorm",
37
+ embedding="language_model.model.embed_tokens",
38
+ final_norm="language_model.model.norm",
39
+ lm_head=None,
40
+ )
41
+
42
+
43
+ class Decoder(model_builder.DecoderOnlyModel):
44
+ """A decoder of PaliGemma 3B model which is Gemma1.
45
+
46
+ Besides a tensor of text token IDs, forward() can also take a tensor of
47
+ embeddings which may include text or image or both.
48
+ """
49
+
50
+ @torch.inference_mode
51
+ def forward(
52
+ self,
53
+ tokens: torch.Tensor,
54
+ input_pos: torch.Tensor,
55
+ kv_cache: kv_utils.KVCache,
56
+ input_embeds: torch.Tensor = None,
57
+ mask: Optional[torch.Tensor] = None,
58
+ export_config: Optional[model_builder.ExportConfig] = None,
59
+ called_by_generate: bool = True,
60
+ ) -> dict[torch.Tensor, kv_utils.KVCache]:
61
+ if input_embeds is None:
62
+ return super().forward(tokens, input_pos, kv_cache)
63
+
64
+ assert input_embeds is not None
65
+
66
+ repo_pos = input_pos + 1 # PaliGemma position is 1-based.
67
+ # ROPE parameters for all attn_configs are the same. Take the first one.
68
+ attn_config = self.config.block_config(0).attn_config
69
+ n_elem = int(attn_config.rotary_percentage * attn_config.head_dim)
70
+ rope = rotary_pos_emb.build_rope(repo_pos, n_elem, attn_config.rotary_base)
71
+
72
+ # The first part of input_embeds are image embeddings. Diagonal causal mask
73
+ # doesn't work here.
74
+ embeds_len = input_embeds.shape[1]
75
+ if mask is None:
76
+ mask = torch.zeros(embeds_len, self.config.kv_cache_max)
77
+ mask[:, embeds_len:] = float("-inf")
78
+
79
+ return self._forward_with_embeds(
80
+ input_embeds, rope, mask, input_pos, kv_cache
81
+ )
82
+
83
+
84
+ def get_decoder_config(kv_cache_max_len: int = 1024) -> cfg.ModelConfig:
85
+ """Returns the model config for the decoder of a PaliGemma 3B model.
86
+
87
+ Args:
88
+ kv_cache_max_len (int): The maximum sequence length of the KV cache. Default
89
+ is 1024.
90
+
91
+ Returns:
92
+ The model config for the decoder of a PaliGemma 3B model.
93
+ """
94
+ attn_config = cfg.AttentionConfig(
95
+ num_heads=8,
96
+ head_dim=256,
97
+ num_query_groups=1,
98
+ rotary_base=10000,
99
+ rotary_percentage=1.0,
100
+ )
101
+ ff_config = cfg.FeedForwardConfig(
102
+ type=cfg.FeedForwardType.GATED,
103
+ activation=cfg.ActivationConfig(cfg.ActivationType.GELU_TANH),
104
+ intermediate_size=16384,
105
+ )
106
+ norm_config = cfg.NormalizationConfig(
107
+ type=cfg.NormalizationType.RMS_NORM,
108
+ epsilon=1e-6,
109
+ zero_centered=True,
110
+ )
111
+ block_config = cfg.TransformerBlockConfig(
112
+ attn_config=attn_config,
113
+ ff_config=ff_config,
114
+ pre_attention_norm_config=norm_config,
115
+ post_attention_norm_config=norm_config,
116
+ )
117
+ embedding_dim = 2048
118
+ config = cfg.ModelConfig(
119
+ vocab_size=257216,
120
+ num_layers=18,
121
+ max_seq_len=8192,
122
+ embedding_dim=embedding_dim,
123
+ embedding_scale=embedding_dim**0.5,
124
+ kv_cache_max_len=kv_cache_max_len,
125
+ block_configs=block_config,
126
+ final_norm_config=norm_config,
127
+ lm_head_use_bias=False,
128
+ enable_hlfb=True,
129
+ )
130
+ return config
131
+
132
+
133
+ def get_fake_decoder_config(kv_cache_max_len: int = 128) -> cfg.ModelConfig:
134
+ config = get_decoder_config(kv_cache_max_len)
135
+ # PaliGemma decoder has only one block config.
136
+ config.block_config(0).ff_config.intermediate_size = 128
137
+ config.vocab_size = 128
138
+ config.num_layers = 2
139
+ config.max_seq_len = 2 * kv_cache_max_len
140
+ config.embedding_dim = 128
141
+ config.embedding_scale = 128**0.5
142
+ return config
143
+
144
+
145
+ def build_decoder(checkpoint_path: str, **kwargs) -> torch.nn.Module:
146
+ return model_builder.build_decoder_only_model(
147
+ checkpoint_path=checkpoint_path,
148
+ config=get_decoder_config(**kwargs),
149
+ tensor_names=TENSOR_NAMES,
150
+ model_class=Decoder,
151
+ )
@@ -0,0 +1,177 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ """Example of building a decoder of PaliGemma2 3B model which is Gemma2."""
17
+
18
+ from typing import Optional
19
+
20
+ from ai_edge_torch.generative.examples.gemma import gemma2
21
+ from ai_edge_torch.generative.layers import kv_cache as kv_utils
22
+ import ai_edge_torch.generative.layers.model_config as cfg
23
+ import ai_edge_torch.generative.layers.rotary_position_embedding as rotary_pos_emb
24
+ from ai_edge_torch.generative.utilities import model_builder
25
+ import ai_edge_torch.generative.utilities.loader as loading_utils
26
+ import torch
27
+
28
+ TENSOR_NAMES = loading_utils.ModelLoader.TensorNames(
29
+ ff_up_proj="language_model.model.layers.{}.mlp.up_proj",
30
+ ff_down_proj="language_model.model.layers.{}.mlp.down_proj",
31
+ ff_gate_proj="language_model.model.layers.{}.mlp.gate_proj",
32
+ attn_query_proj="language_model.model.layers.{}.self_attn.q_proj",
33
+ attn_key_proj="language_model.model.layers.{}.self_attn.k_proj",
34
+ attn_value_proj="language_model.model.layers.{}.self_attn.v_proj",
35
+ attn_output_proj="language_model.model.layers.{}.self_attn.o_proj",
36
+ pre_attn_norm="language_model.model.layers.{}.input_layernorm",
37
+ post_attn_norm="language_model.model.layers.{}.post_attention_layernorm",
38
+ pre_ff_norm="language_model.model.layers.{}.pre_feedforward_layernorm",
39
+ post_ff_norm="language_model.model.layers.{}.post_feedforward_layernorm",
40
+ embedding="language_model.model.embed_tokens",
41
+ final_norm="language_model.model.norm",
42
+ lm_head=None,
43
+ )
44
+
45
+
46
+ class Decoder2(gemma2.Gemma2):
47
+ """A decoder of PaliGemma2 3B model which is Gemma2.
48
+
49
+ Besides a tensor of text token IDs, forward() can also take a tensor of
50
+ embeddings which may include text or image or both.
51
+ """
52
+
53
+ @torch.inference_mode
54
+ def forward(
55
+ self,
56
+ tokens: torch.Tensor,
57
+ input_pos: torch.Tensor,
58
+ kv_cache: kv_utils.KVCache,
59
+ input_embeds: torch.Tensor = None,
60
+ mask: Optional[torch.Tensor] = None,
61
+ export_config: Optional[model_builder.ExportConfig] = None,
62
+ called_by_generate: bool = True,
63
+ ) -> dict[torch.Tensor, kv_utils.KVCache]:
64
+ if input_embeds is None:
65
+ return super().forward(tokens, input_pos, kv_cache)
66
+
67
+ assert input_embeds is not None
68
+
69
+ repo_pos = input_pos + 1 # PaliGemma2 position is 1-based.
70
+ # ROPE parameters for all attn_configs are the same. Take the first one.
71
+ attn_config = self.config.block_config(0).attn_config
72
+ n_elem = int(attn_config.rotary_percentage * attn_config.head_dim)
73
+ rope = rotary_pos_emb.build_rope(repo_pos, n_elem, attn_config.rotary_base)
74
+
75
+ if mask is None:
76
+ if called_by_generate:
77
+ # PaliGemma2 generate() use a diagonal causal mask even with image embeds.
78
+ mask = [
79
+ self.get_attention_mask(
80
+ self.config.block_config(i).attn_config.attn_type, input_pos
81
+ )
82
+ for i in range(self.config.num_layers)
83
+ ]
84
+ else:
85
+ # By default, don't mask image embeds with a diagonal causal mask.
86
+ embeds_len = input_embeds.shape[1]
87
+ mask = torch.zeros(embeds_len, self.config.kv_cache_max)
88
+ mask[:, embeds_len:] = float("-inf")
89
+ mask = [mask] * self.config.num_layers
90
+
91
+ return self._forward_with_embeds(
92
+ input_embeds, rope, mask, input_pos, kv_cache, export_config
93
+ )
94
+
95
+
96
+ def get_decoder2_config(kv_cache_max_len: int = 1024) -> cfg.ModelConfig:
97
+ """Returns the model config for the decoder of a PaliGemma 3B model.
98
+
99
+ Args:
100
+ kv_cache_max_len (int): The maximum sequence length of the KV cache. Default
101
+ is 1024.
102
+
103
+ Returns:
104
+ The model config for the decoder of a PaliGemma 3B model.
105
+ """
106
+ norm_config = cfg.NormalizationConfig(
107
+ type=cfg.NormalizationType.RMS_NORM,
108
+ epsilon=1e-6,
109
+ zero_centered=True,
110
+ )
111
+ ff_config = cfg.FeedForwardConfig(
112
+ type=cfg.FeedForwardType.GATED,
113
+ activation=cfg.ActivationConfig(cfg.ActivationType.GELU_TANH),
114
+ intermediate_size=9216,
115
+ pre_ff_norm_config=norm_config,
116
+ post_ff_norm_config=norm_config,
117
+ )
118
+
119
+ def get_block_config(idx: int) -> cfg.TransformerBlockConfig:
120
+ attn_config = cfg.AttentionConfig(
121
+ num_heads=8,
122
+ head_dim=256,
123
+ num_query_groups=4,
124
+ rotary_base=10000,
125
+ rotary_percentage=1.0,
126
+ logit_softcap=50.0,
127
+ sliding_window_size=4096,
128
+ attn_type=(
129
+ cfg.AttentionType.GLOBAL
130
+ if idx % 2 == 0
131
+ else cfg.AttentionType.LOCAL_SLIDING
132
+ ),
133
+ )
134
+ return cfg.TransformerBlockConfig(
135
+ attn_config=attn_config,
136
+ ff_config=ff_config,
137
+ pre_attention_norm_config=norm_config,
138
+ post_attention_norm_config=norm_config,
139
+ )
140
+
141
+ num_layers = 26
142
+ embedding_dim = 2304
143
+ config = cfg.ModelConfig(
144
+ vocab_size=257216,
145
+ num_layers=num_layers,
146
+ max_seq_len=8192,
147
+ embedding_dim=embedding_dim,
148
+ embedding_scale=embedding_dim**0.5,
149
+ kv_cache_max_len=kv_cache_max_len,
150
+ block_configs=[get_block_config(i) for i in range(num_layers)],
151
+ final_norm_config=norm_config,
152
+ lm_head_use_bias=False,
153
+ enable_hlfb=True,
154
+ final_logit_softcap=30.0,
155
+ )
156
+ return config
157
+
158
+
159
+ def get_fake_decoder2_config(kv_cache_max_len: int = 128) -> cfg.ModelConfig:
160
+ config = get_decoder2_config(kv_cache_max_len)
161
+ # PaliGemma2 decoder has only one block config.
162
+ config.block_config(0).ff_config.intermediate_size = 128
163
+ config.vocab_size = 128
164
+ config.num_layers = 2
165
+ config.max_seq_len = 2 * kv_cache_max_len
166
+ config.embedding_dim = 128
167
+ config.embedding_scale = 128**0.5
168
+ return config
169
+
170
+
171
+ def build_decoder2(checkpoint_path: str, **kwargs) -> torch.nn.Module:
172
+ return model_builder.build_decoder_only_model(
173
+ checkpoint_path=checkpoint_path,
174
+ config=get_decoder2_config(**kwargs),
175
+ tensor_names=TENSOR_NAMES,
176
+ model_class=Decoder2,
177
+ )