ai-edge-torch-nightly 0.3.0.dev20250114__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (213) hide show
  1. ai_edge_torch/__init__.py +32 -0
  2. ai_edge_torch/_config.py +69 -0
  3. ai_edge_torch/_convert/__init__.py +14 -0
  4. ai_edge_torch/_convert/conversion.py +153 -0
  5. ai_edge_torch/_convert/conversion_utils.py +64 -0
  6. ai_edge_torch/_convert/converter.py +270 -0
  7. ai_edge_torch/_convert/fx_passes/__init__.py +23 -0
  8. ai_edge_torch/_convert/fx_passes/build_aten_composite_pass.py +288 -0
  9. ai_edge_torch/_convert/fx_passes/build_interpolate_composite_pass.py +131 -0
  10. ai_edge_torch/_convert/fx_passes/inject_mlir_debuginfo_pass.py +73 -0
  11. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/__init__.py +16 -0
  12. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_check.py +258 -0
  13. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_mark.py +50 -0
  14. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +18 -0
  15. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +68 -0
  16. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +216 -0
  17. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +449 -0
  18. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +30 -0
  19. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/pass_body.py +303 -0
  20. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/utils.py +64 -0
  21. ai_edge_torch/_convert/fx_passes/remove_non_user_outputs_pass.py +52 -0
  22. ai_edge_torch/_convert/signature.py +66 -0
  23. ai_edge_torch/_convert/test/__init__.py +14 -0
  24. ai_edge_torch/_convert/test/test_convert.py +558 -0
  25. ai_edge_torch/_convert/test/test_convert_composites.py +234 -0
  26. ai_edge_torch/_convert/test/test_convert_multisig.py +189 -0
  27. ai_edge_torch/_convert/test/test_to_channel_last_io.py +96 -0
  28. ai_edge_torch/_convert/to_channel_last_io.py +92 -0
  29. ai_edge_torch/conftest.py +20 -0
  30. ai_edge_torch/debug/__init__.py +17 -0
  31. ai_edge_torch/debug/culprit.py +496 -0
  32. ai_edge_torch/debug/test/__init__.py +14 -0
  33. ai_edge_torch/debug/test/test_culprit.py +140 -0
  34. ai_edge_torch/debug/test/test_search_model.py +51 -0
  35. ai_edge_torch/debug/utils.py +59 -0
  36. ai_edge_torch/experimental/__init__.py +14 -0
  37. ai_edge_torch/fx_pass_base.py +110 -0
  38. ai_edge_torch/generative/__init__.py +14 -0
  39. ai_edge_torch/generative/examples/__init__.py +14 -0
  40. ai_edge_torch/generative/examples/amd_llama_135m/__init__.py +14 -0
  41. ai_edge_torch/generative/examples/amd_llama_135m/amd_llama_135m.py +87 -0
  42. ai_edge_torch/generative/examples/amd_llama_135m/convert_to_tflite.py +70 -0
  43. ai_edge_torch/generative/examples/amd_llama_135m/verify.py +72 -0
  44. ai_edge_torch/generative/examples/gemma/__init__.py +14 -0
  45. ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +80 -0
  46. ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +80 -0
  47. ai_edge_torch/generative/examples/gemma/gemma1.py +107 -0
  48. ai_edge_torch/generative/examples/gemma/gemma2.py +295 -0
  49. ai_edge_torch/generative/examples/gemma/verify_gemma1.py +56 -0
  50. ai_edge_torch/generative/examples/gemma/verify_gemma2.py +43 -0
  51. ai_edge_torch/generative/examples/gemma/verify_util.py +157 -0
  52. ai_edge_torch/generative/examples/llama/__init__.py +14 -0
  53. ai_edge_torch/generative/examples/llama/convert_to_tflite.py +91 -0
  54. ai_edge_torch/generative/examples/llama/llama.py +196 -0
  55. ai_edge_torch/generative/examples/llama/verify.py +88 -0
  56. ai_edge_torch/generative/examples/moonshine/__init__.py +14 -0
  57. ai_edge_torch/generative/examples/moonshine/convert_moonshine_to_tflite.py +50 -0
  58. ai_edge_torch/generative/examples/moonshine/moonshine.py +103 -0
  59. ai_edge_torch/generative/examples/openelm/__init__.py +14 -0
  60. ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +80 -0
  61. ai_edge_torch/generative/examples/openelm/openelm.py +127 -0
  62. ai_edge_torch/generative/examples/openelm/verify.py +71 -0
  63. ai_edge_torch/generative/examples/paligemma/__init__.py +14 -0
  64. ai_edge_torch/generative/examples/paligemma/convert_to_tflite.py +95 -0
  65. ai_edge_torch/generative/examples/paligemma/decoder.py +151 -0
  66. ai_edge_torch/generative/examples/paligemma/decoder2.py +177 -0
  67. ai_edge_torch/generative/examples/paligemma/image_encoder.py +160 -0
  68. ai_edge_torch/generative/examples/paligemma/paligemma.py +179 -0
  69. ai_edge_torch/generative/examples/paligemma/verify.py +161 -0
  70. ai_edge_torch/generative/examples/paligemma/verify_decoder.py +75 -0
  71. ai_edge_torch/generative/examples/paligemma/verify_decoder2.py +72 -0
  72. ai_edge_torch/generative/examples/paligemma/verify_image_encoder.py +99 -0
  73. ai_edge_torch/generative/examples/phi/__init__.py +14 -0
  74. ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +80 -0
  75. ai_edge_torch/generative/examples/phi/convert_to_tflite.py +80 -0
  76. ai_edge_torch/generative/examples/phi/phi2.py +107 -0
  77. ai_edge_torch/generative/examples/phi/phi3.py +219 -0
  78. ai_edge_torch/generative/examples/phi/verify.py +64 -0
  79. ai_edge_torch/generative/examples/phi/verify_phi3.py +69 -0
  80. ai_edge_torch/generative/examples/qwen/__init__.py +14 -0
  81. ai_edge_torch/generative/examples/qwen/convert_to_tflite.py +93 -0
  82. ai_edge_torch/generative/examples/qwen/qwen.py +134 -0
  83. ai_edge_torch/generative/examples/qwen/verify.py +88 -0
  84. ai_edge_torch/generative/examples/smollm/__init__.py +14 -0
  85. ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +80 -0
  86. ai_edge_torch/generative/examples/smollm/convert_v2_to_tflite.py +71 -0
  87. ai_edge_torch/generative/examples/smollm/smollm.py +125 -0
  88. ai_edge_torch/generative/examples/smollm/verify.py +86 -0
  89. ai_edge_torch/generative/examples/stable_diffusion/__init__.py +14 -0
  90. ai_edge_torch/generative/examples/stable_diffusion/attention.py +108 -0
  91. ai_edge_torch/generative/examples/stable_diffusion/clip.py +185 -0
  92. ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +173 -0
  93. ai_edge_torch/generative/examples/stable_diffusion/decoder.py +398 -0
  94. ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +749 -0
  95. ai_edge_torch/generative/examples/stable_diffusion/encoder.py +119 -0
  96. ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +254 -0
  97. ai_edge_torch/generative/examples/stable_diffusion/samplers/__init__.py +19 -0
  98. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +62 -0
  99. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +66 -0
  100. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +74 -0
  101. ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +39 -0
  102. ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +111 -0
  103. ai_edge_torch/generative/examples/stable_diffusion/util.py +77 -0
  104. ai_edge_torch/generative/examples/t5/__init__.py +14 -0
  105. ai_edge_torch/generative/examples/t5/convert_to_tflite.py +138 -0
  106. ai_edge_torch/generative/examples/t5/t5.py +655 -0
  107. ai_edge_torch/generative/examples/t5/t5_attention.py +246 -0
  108. ai_edge_torch/generative/examples/test_models/__init__.py +14 -0
  109. ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
  110. ai_edge_torch/generative/examples/test_models/toy_model.py +156 -0
  111. ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +138 -0
  112. ai_edge_torch/generative/examples/tiny_llama/__init__.py +14 -0
  113. ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +80 -0
  114. ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +88 -0
  115. ai_edge_torch/generative/examples/tiny_llama/verify.py +72 -0
  116. ai_edge_torch/generative/fx_passes/__init__.py +30 -0
  117. ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +50 -0
  118. ai_edge_torch/generative/layers/__init__.py +14 -0
  119. ai_edge_torch/generative/layers/attention.py +399 -0
  120. ai_edge_torch/generative/layers/attention_utils.py +210 -0
  121. ai_edge_torch/generative/layers/builder.py +160 -0
  122. ai_edge_torch/generative/layers/feed_forward.py +120 -0
  123. ai_edge_torch/generative/layers/kv_cache.py +204 -0
  124. ai_edge_torch/generative/layers/lora.py +557 -0
  125. ai_edge_torch/generative/layers/model_config.py +238 -0
  126. ai_edge_torch/generative/layers/normalization.py +222 -0
  127. ai_edge_torch/generative/layers/rotary_position_embedding.py +94 -0
  128. ai_edge_torch/generative/layers/scaled_dot_product_attention.py +144 -0
  129. ai_edge_torch/generative/layers/unet/__init__.py +14 -0
  130. ai_edge_torch/generative/layers/unet/blocks_2d.py +806 -0
  131. ai_edge_torch/generative/layers/unet/builder.py +50 -0
  132. ai_edge_torch/generative/layers/unet/model_config.py +282 -0
  133. ai_edge_torch/generative/quantize/__init__.py +14 -0
  134. ai_edge_torch/generative/quantize/example.py +47 -0
  135. ai_edge_torch/generative/quantize/quant_attrs.py +68 -0
  136. ai_edge_torch/generative/quantize/quant_recipe.py +154 -0
  137. ai_edge_torch/generative/quantize/quant_recipe_utils.py +62 -0
  138. ai_edge_torch/generative/quantize/quant_recipes.py +56 -0
  139. ai_edge_torch/generative/quantize/supported_schemes.py +32 -0
  140. ai_edge_torch/generative/test/__init__.py +14 -0
  141. ai_edge_torch/generative/test/test_custom_dus.py +107 -0
  142. ai_edge_torch/generative/test/test_kv_cache.py +120 -0
  143. ai_edge_torch/generative/test/test_loader.py +83 -0
  144. ai_edge_torch/generative/test/test_lora.py +147 -0
  145. ai_edge_torch/generative/test/test_model_conversion.py +191 -0
  146. ai_edge_torch/generative/test/test_model_conversion_large.py +362 -0
  147. ai_edge_torch/generative/test/test_quantize.py +183 -0
  148. ai_edge_torch/generative/test/utils.py +82 -0
  149. ai_edge_torch/generative/utilities/__init__.py +15 -0
  150. ai_edge_torch/generative/utilities/converter.py +215 -0
  151. ai_edge_torch/generative/utilities/dynamic_update_slice.py +56 -0
  152. ai_edge_torch/generative/utilities/loader.py +398 -0
  153. ai_edge_torch/generative/utilities/model_builder.py +180 -0
  154. ai_edge_torch/generative/utilities/moonshine_loader.py +154 -0
  155. ai_edge_torch/generative/utilities/stable_diffusion_loader.py +1032 -0
  156. ai_edge_torch/generative/utilities/t5_loader.py +512 -0
  157. ai_edge_torch/generative/utilities/transformers_verifier.py +42 -0
  158. ai_edge_torch/generative/utilities/verifier.py +335 -0
  159. ai_edge_torch/hlfb/__init__.py +16 -0
  160. ai_edge_torch/hlfb/mark_pattern/__init__.py +153 -0
  161. ai_edge_torch/hlfb/mark_pattern/fx_utils.py +69 -0
  162. ai_edge_torch/hlfb/mark_pattern/pattern.py +288 -0
  163. ai_edge_torch/hlfb/test/__init__.py +14 -0
  164. ai_edge_torch/hlfb/test/test_mark_pattern.py +185 -0
  165. ai_edge_torch/lowertools/__init__.py +18 -0
  166. ai_edge_torch/lowertools/_shim.py +86 -0
  167. ai_edge_torch/lowertools/common_utils.py +142 -0
  168. ai_edge_torch/lowertools/odml_torch_utils.py +260 -0
  169. ai_edge_torch/lowertools/test_utils.py +62 -0
  170. ai_edge_torch/lowertools/torch_xla_utils.py +301 -0
  171. ai_edge_torch/lowertools/translate_recipe.py +163 -0
  172. ai_edge_torch/model.py +177 -0
  173. ai_edge_torch/odml_torch/__init__.py +20 -0
  174. ai_edge_torch/odml_torch/_torch_future.py +88 -0
  175. ai_edge_torch/odml_torch/_torch_library.py +19 -0
  176. ai_edge_torch/odml_torch/composite/__init__.py +16 -0
  177. ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
  178. ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
  179. ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
  180. ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
  181. ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
  182. ai_edge_torch/odml_torch/export.py +403 -0
  183. ai_edge_torch/odml_torch/export_utils.py +157 -0
  184. ai_edge_torch/odml_torch/jax_bridge/__init__.py +18 -0
  185. ai_edge_torch/odml_torch/jax_bridge/_wrap.py +180 -0
  186. ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
  187. ai_edge_torch/odml_torch/lowerings/__init__.py +27 -0
  188. ai_edge_torch/odml_torch/lowerings/_basic.py +294 -0
  189. ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
  190. ai_edge_torch/odml_torch/lowerings/_convolution.py +243 -0
  191. ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +285 -0
  192. ai_edge_torch/odml_torch/lowerings/_layer_norm.py +87 -0
  193. ai_edge_torch/odml_torch/lowerings/_quantized_decomposed.py +177 -0
  194. ai_edge_torch/odml_torch/lowerings/_rand.py +142 -0
  195. ai_edge_torch/odml_torch/lowerings/context.py +42 -0
  196. ai_edge_torch/odml_torch/lowerings/decomp.py +69 -0
  197. ai_edge_torch/odml_torch/lowerings/registry.py +65 -0
  198. ai_edge_torch/odml_torch/lowerings/utils.py +201 -0
  199. ai_edge_torch/odml_torch/passes/__init__.py +38 -0
  200. ai_edge_torch/odml_torch/tf_integration.py +156 -0
  201. ai_edge_torch/quantize/__init__.py +16 -0
  202. ai_edge_torch/quantize/pt2e_quantizer.py +466 -0
  203. ai_edge_torch/quantize/pt2e_quantizer_utils.py +1061 -0
  204. ai_edge_torch/quantize/quant_config.py +85 -0
  205. ai_edge_torch/testing/__init__.py +14 -0
  206. ai_edge_torch/testing/model_coverage/__init__.py +16 -0
  207. ai_edge_torch/testing/model_coverage/model_coverage.py +145 -0
  208. ai_edge_torch/version.py +16 -0
  209. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/LICENSE +202 -0
  210. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/METADATA +44 -0
  211. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/RECORD +213 -0
  212. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/WHEEL +5 -0
  213. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/top_level.txt +1 -0
@@ -0,0 +1,398 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ # Common utility functions for data loading etc.
16
+ from dataclasses import dataclass
17
+ import glob
18
+ import os
19
+ from typing import Callable, Dict, List, Tuple
20
+
21
+ from ai_edge_torch.generative.layers import model_config
22
+ from safetensors import safe_open
23
+ import torch
24
+
25
+
26
+ def load_safetensors(full_path: str):
27
+ """Loads safetensors into a single state dictionary.
28
+
29
+ Args:
30
+ full_path (string): the directory that contains the safetensor files.
31
+
32
+ Returns:
33
+ A state dictionary contating loaded tensors.
34
+
35
+ Raises:
36
+ ValueError: If no tensors are loaded from the provided directory or file.
37
+ """
38
+ pattern = (
39
+ os.path.join(full_path, "*.safetensors")
40
+ if os.path.isdir(full_path)
41
+ else full_path
42
+ )
43
+ files = []
44
+ for file in glob.glob(pattern):
45
+ files.append(file)
46
+
47
+ tensors = {}
48
+ for file in files:
49
+ with safe_open(file, framework="pt") as fp:
50
+ for k in fp.keys():
51
+ assert k not in tensors
52
+ tensors[k] = fp.get_tensor(k)
53
+
54
+ if not tensors:
55
+ raise ValueError("Failed to load SafeTensors.")
56
+ return tensors
57
+
58
+
59
+ def load_pytorch_statedict(full_path: str):
60
+ """Loads state dictionary binaries into a single state dictionary.
61
+
62
+ Args:
63
+ full_path (string): the directory that contains the bin files.
64
+
65
+ Returns:
66
+ A state dictionary contating loaded tensors.
67
+
68
+ Raises:
69
+ ValueError: If no tensors are loaded from the provided directory or file.
70
+ """
71
+ files = []
72
+ patterns = []
73
+ if os.path.isdir(full_path):
74
+ patterns.append(os.path.join(full_path, "*.bin"))
75
+ patterns.append(os.path.join(full_path, "*pt"))
76
+ else:
77
+ patterns.append(full_path)
78
+ for pattern in patterns:
79
+ for file in glob.glob(pattern):
80
+ files.append(file)
81
+
82
+ tensors = {}
83
+ for file in files:
84
+ this_file_tensors = torch.load(file)
85
+ for k in this_file_tensors:
86
+ assert k not in tensors
87
+ tensors.update(this_file_tensors)
88
+
89
+ if not tensors:
90
+ raise ValueError("Failed to load torch bin files.")
91
+ return tensors
92
+
93
+
94
+ class ModelLoader:
95
+ """Utlity for loading model checkpoints to the Edge Generative API layer."""
96
+
97
+ @dataclass
98
+ class TensorNames:
99
+ attn_query_proj: str = None
100
+ attn_key_proj: str = None
101
+ attn_value_proj: str = None
102
+ attn_fused_qkv_proj: str = None
103
+ attn_output_proj: str = None
104
+ attn_query_norm: str = None
105
+ attn_key_norm: str = None
106
+
107
+ ff_up_proj: str = None
108
+ ff_down_proj: str = None
109
+ ff_gate_proj: str = None
110
+
111
+ pre_attn_norm: str = None
112
+ post_attn_norm: str = None
113
+ pre_ff_norm: str = None
114
+ post_ff_norm: str = None
115
+ embedding: str = None
116
+ embedding_position: str = None
117
+ final_norm: str = None
118
+ lm_head: str = None
119
+
120
+ def __init__(self, file_name: str, names: TensorNames) -> None:
121
+ """ModelLoader constructor.
122
+
123
+ Can be used to load multiple models of the same type.
124
+
125
+ Args:
126
+ file_name (str): Path to the checkpoint. Can be a directory or an exact
127
+ file.
128
+ names (TensorNames): An instance of `TensorNames` to determine mappings.
129
+ """
130
+ self._file_name = file_name
131
+ self._names = names
132
+ self._loader = self._get_loader()
133
+
134
+ def get_state(self) -> Dict[str, torch.Tensor]:
135
+ return self._loader(self._file_name)
136
+
137
+ def load(
138
+ self, model: torch.nn.Module, strict: bool = True
139
+ ) -> Tuple[List[str], List[str]]:
140
+ """Load the model from the checkpoint.
141
+
142
+ Args:
143
+ model (torch.nn.Module): The pytorch model that needs to be loaded.
144
+ strict (bool, optional): Whether the converted keys are strictly
145
+ matched. Defaults to True.
146
+
147
+ Returns:
148
+ missing_keys (List[str]): a list of str containing the missing keys.
149
+ unexpected_keys (List[str]): a list of str containing the unexpected
150
+ keys.
151
+
152
+ Raises:
153
+ ValueError: If conversion results in unmapped tensors and strict mode is
154
+ enabled.
155
+ """
156
+ state = self.get_state()
157
+ state = state["model_state_dict"] if "model_state_dict" in state else state
158
+ converted_state = dict()
159
+ if self._names.embedding is not None:
160
+ converted_state["tok_embedding.weight"] = state.pop(
161
+ f"{self._names.embedding}.weight"
162
+ )
163
+ if model.config.embedding_use_bias:
164
+ converted_state["tok_embedding.bias"] = state.pop(
165
+ f"{self._names.embedding}.bias"
166
+ )
167
+ if self._names.embedding_position is not None:
168
+ converted_state["tok_embedding_position"] = state.pop(
169
+ f"{self._names.embedding_position}"
170
+ )
171
+ if self._names.lm_head is not None:
172
+ converted_state["lm_head.weight"] = state.pop(
173
+ f"{self._names.lm_head}.weight"
174
+ )
175
+ if model.config.lm_head_use_bias:
176
+ converted_state["lm_head.bias"] = state.pop(
177
+ f"{self._names.lm_head}.bias"
178
+ )
179
+ if self._names.final_norm is not None:
180
+ final_norm_name = self._names.final_norm
181
+ converted_state["final_norm.weight"] = state.pop(
182
+ f"{final_norm_name}.weight"
183
+ )
184
+ if f"{final_norm_name}.bias" in state:
185
+ converted_state["final_norm.bias"] = state.pop(
186
+ f"{final_norm_name}.bias"
187
+ )
188
+
189
+ for i in range(model.config.num_layers):
190
+ self._map_norm(i, model.config, state, converted_state)
191
+ self._map_feedforward(i, model.config, state, converted_state)
192
+ self._map_attention(i, model.config, state, converted_state)
193
+
194
+ if strict and state:
195
+ raise ValueError(
196
+ f"Failed to map all tensor. Remaing tensor are: {list(state.keys())}"
197
+ )
198
+ return model.load_state_dict(converted_state, strict=strict)
199
+
200
+ def _get_loader(self) -> Callable[[str], Dict[str, torch.Tensor]]:
201
+ """A best effort method for finding appropriate state loader.
202
+
203
+ Raises:
204
+ ValueError: If it fails to find an appropriate loader.
205
+
206
+ Returns:
207
+ Callable[[str], Dict[str, torch.Tensor]]: State loader to be used.
208
+ """
209
+ if os.path.isdir(self._file_name):
210
+ if glob.glob(os.path.join(self._file_name, "*.safetensors")):
211
+ return load_safetensors
212
+ if glob.glob(os.path.join(self._file_name, "*.bin")) or glob.glob(
213
+ os.path.join(self._file_name, "*pt")
214
+ ):
215
+ return load_pytorch_statedict
216
+
217
+ if self._file_name.endswith(".safetensors"):
218
+ return load_safetensors
219
+
220
+ if self._file_name.endswith(".bin") or self._file_name.endswith("pt"):
221
+ return load_pytorch_statedict
222
+
223
+ raise ValueError("File format not supported.")
224
+
225
+ def _map_feedforward(
226
+ self,
227
+ idx: int,
228
+ config: model_config.ModelConfig,
229
+ state: Dict[str, torch.Tensor],
230
+ converted_state: Dict[str, torch.Tensor],
231
+ ):
232
+ prefix = f"transformer_blocks.{idx}"
233
+ ff_config = config.block_config(idx).ff_config
234
+ if ff_config.type == model_config.FeedForwardType.SEQUENTIAL:
235
+ ff_up_proj_name = self._names.ff_up_proj.format(idx)
236
+ ff_down_proj_name = self._names.ff_down_proj.format(idx)
237
+ converted_state[f"{prefix}.ff.w1.weight"] = state.pop(
238
+ f"{ff_up_proj_name}.weight"
239
+ )
240
+ converted_state[f"{prefix}.ff.w2.weight"] = state.pop(
241
+ f"{ff_down_proj_name}.weight"
242
+ )
243
+ if ff_config.use_bias:
244
+ converted_state[f"{prefix}.ff.w1.bias"] = state.pop(
245
+ f"{ff_up_proj_name}.bias"
246
+ )
247
+ converted_state[f"{prefix}.ff.w2.bias"] = state.pop(
248
+ f"{ff_down_proj_name}.bias"
249
+ )
250
+ else:
251
+ ff_up_proj_name = self._names.ff_up_proj.format(idx)
252
+ ff_down_proj_name = self._names.ff_down_proj.format(idx)
253
+ ff_gate_proj_name = self._names.ff_gate_proj.format(idx)
254
+ converted_state[f"{prefix}.ff.w3.weight"] = state.pop(
255
+ f"{ff_up_proj_name}.weight"
256
+ )
257
+ converted_state[f"{prefix}.ff.w2.weight"] = state.pop(
258
+ f"{ff_down_proj_name}.weight"
259
+ )
260
+ converted_state[f"{prefix}.ff.w1.weight"] = state.pop(
261
+ f"{ff_gate_proj_name}.weight"
262
+ )
263
+ if ff_config.use_bias:
264
+ converted_state[f"{prefix}.ff.w3.bias"] = state.pop(
265
+ f"{ff_up_proj_name}.bias"
266
+ )
267
+ converted_state[f"{prefix}.ff.w2.bias"] = state.pop(
268
+ f"{ff_down_proj_name}.bias"
269
+ )
270
+ converted_state[f"{prefix}.ff.w1.bias"] = state.pop(
271
+ f"{ff_gate_proj_name}.bias"
272
+ )
273
+
274
+ if self._names.pre_ff_norm is not None:
275
+ pre_ff_norm_name = self._names.pre_ff_norm.format(idx)
276
+ converted_state[f"{prefix}.ff.pre_ff_norm.weight"] = state.pop(
277
+ f"{pre_ff_norm_name}.weight"
278
+ )
279
+ if f"{pre_ff_norm_name}.bias" in state:
280
+ converted_state[f"{prefix}.ff.pre_ff_norm.bias"] = state.pop(
281
+ f"{pre_ff_norm_name}.bias"
282
+ )
283
+
284
+ if self._names.post_ff_norm is not None:
285
+ post_ff_norm_name = self._names.post_ff_norm.format(idx)
286
+ converted_state[f"{prefix}.ff.post_ff_norm.weight"] = state.pop(
287
+ f"{post_ff_norm_name}.weight"
288
+ )
289
+ if f"{post_ff_norm_name}.bias" in state:
290
+ converted_state[f"{prefix}.ff.post_ff_norm.bias"] = state.pop(
291
+ f"{post_ff_norm_name}.bias"
292
+ )
293
+
294
+ def _map_attention(
295
+ self,
296
+ idx: int,
297
+ config: model_config.ModelConfig,
298
+ state: Dict[str, torch.Tensor],
299
+ converted_state: Dict[str, torch.Tensor],
300
+ ):
301
+ prefix = f"transformer_blocks.{idx}"
302
+ attn_config = config.block_config(idx).attn_config
303
+ if self._names.attn_fused_qkv_proj:
304
+ fused_qkv_name = self._names.attn_fused_qkv_proj.format(idx)
305
+ converted_state[f"{prefix}.atten_func.qkv_projection.weight"] = state.pop(
306
+ f"{fused_qkv_name}.weight"
307
+ )
308
+ else:
309
+ q_name = self._names.attn_query_proj.format(idx)
310
+ k_name = self._names.attn_key_proj.format(idx)
311
+ v_name = self._names.attn_value_proj.format(idx)
312
+ converted_state[f"{prefix}.atten_func.qkv_projection.weight"] = (
313
+ self._fuse_qkv(
314
+ attn_config,
315
+ state.pop(f"{q_name}.weight"),
316
+ state.pop(f"{k_name}.weight"),
317
+ state.pop(f"{v_name}.weight"),
318
+ )
319
+ )
320
+ if attn_config.qkv_use_bias:
321
+ if self._names.attn_fused_qkv_proj:
322
+ converted_state[f"{prefix}.atten_func.qkv_projection.bias"] = state.pop(
323
+ f"{fused_qkv_name}.bias"
324
+ )
325
+ else:
326
+ converted_state[f"{prefix}.atten_func.qkv_projection.bias"] = (
327
+ self._fuse_qkv(
328
+ attn_config,
329
+ state.pop(f"{q_name}.bias"),
330
+ state.pop(f"{k_name}.bias"),
331
+ state.pop(f"{v_name}.bias"),
332
+ )
333
+ )
334
+
335
+ if self._names.attn_query_norm is not None:
336
+ attn_query_norm_name = self._names.attn_query_norm.format(idx)
337
+ converted_state[f"{prefix}.atten_func.query_norm.weight"] = state.pop(
338
+ f"{attn_query_norm_name}.weight"
339
+ )
340
+ if self._names.attn_key_norm is not None:
341
+ attn_key_norm_name = self._names.attn_key_norm.format(idx)
342
+ converted_state[f"{prefix}.atten_func.key_norm.weight"] = state.pop(
343
+ f"{attn_key_norm_name}.weight"
344
+ )
345
+
346
+ o_name = self._names.attn_output_proj.format(idx)
347
+ converted_state[f"{prefix}.atten_func.output_projection.weight"] = (
348
+ state.pop(f"{o_name}.weight")
349
+ )
350
+ if attn_config.output_proj_use_bias:
351
+ converted_state[f"{prefix}.atten_func.output_projection.bias"] = (
352
+ state.pop(f"{o_name}.bias")
353
+ )
354
+
355
+ def _map_norm(
356
+ self,
357
+ idx: int,
358
+ config: model_config.ModelConfig,
359
+ state: Dict[str, torch.Tensor],
360
+ converted_state: Dict[str, torch.Tensor],
361
+ ):
362
+ prefix = f"transformer_blocks.{idx}"
363
+ if self._names.pre_attn_norm is not None:
364
+ pre_attn_norm_name = self._names.pre_attn_norm.format(idx)
365
+ converted_state[f"{prefix}.pre_atten_norm.weight"] = state.pop(
366
+ f"{pre_attn_norm_name}.weight"
367
+ )
368
+ if f"{pre_attn_norm_name}.bias" in state:
369
+ converted_state[f"{prefix}.pre_atten_norm.bias"] = state.pop(
370
+ f"{pre_attn_norm_name}.bias"
371
+ )
372
+
373
+ if self._names.post_attn_norm is not None:
374
+ post_attn_norm_name = self._names.post_attn_norm.format(idx)
375
+ converted_state[f"{prefix}.post_atten_norm.weight"] = state.pop(
376
+ f"{post_attn_norm_name}.weight"
377
+ )
378
+ if f"{post_attn_norm_name}.bias" in state:
379
+ converted_state[f"{prefix}.post_atten_norm.bias"] = state.pop(
380
+ f"{post_attn_norm_name}.bias"
381
+ )
382
+
383
+ def _fuse_qkv(
384
+ self,
385
+ attn_config: model_config.AttentionConfig,
386
+ q: torch.Tensor,
387
+ k: torch.Tensor,
388
+ v: torch.Tensor,
389
+ ) -> torch.Tensor:
390
+ if attn_config.qkv_fused_interleaved:
391
+ q_per_kv = attn_config.num_heads // attn_config.num_query_groups
392
+ qs = torch.split(q, attn_config.head_dim * q_per_kv)
393
+ ks = torch.split(k, attn_config.head_dim)
394
+ vs = torch.split(v, attn_config.head_dim)
395
+ cycled = [t for group in zip(qs, ks, vs) for t in group]
396
+ return torch.cat(cycled)
397
+ else:
398
+ return torch.cat([q, k, v], dim=0)
@@ -0,0 +1,180 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ """Utilities to be used for re-authoring transformer models."""
17
+
18
+ import copy
19
+ from dataclasses import dataclass
20
+ from typing import Optional, Tuple
21
+
22
+ from ai_edge_torch.generative.layers import attention
23
+ from ai_edge_torch.generative.layers import builder
24
+ from ai_edge_torch.generative.layers import kv_cache as kv_utils
25
+ from ai_edge_torch.generative.layers import lora as lora_utils
26
+ import ai_edge_torch.generative.layers.attention_utils as attn_utils
27
+ import ai_edge_torch.generative.layers.model_config as cfg
28
+ import ai_edge_torch.generative.utilities.loader as loading_utils
29
+ import torch
30
+ from torch import nn
31
+
32
+
33
+ TENSOR_NAMES = loading_utils.ModelLoader.TensorNames(
34
+ ff_up_proj="model.layers.{}.mlp.up_proj",
35
+ ff_down_proj="model.layers.{}.mlp.down_proj",
36
+ ff_gate_proj="model.layers.{}.mlp.gate_proj",
37
+ attn_query_proj="model.layers.{}.self_attn.q_proj",
38
+ attn_key_proj="model.layers.{}.self_attn.k_proj",
39
+ attn_value_proj="model.layers.{}.self_attn.v_proj",
40
+ attn_output_proj="model.layers.{}.self_attn.o_proj",
41
+ pre_attn_norm="model.layers.{}.input_layernorm",
42
+ post_attn_norm="model.layers.{}.post_attention_layernorm",
43
+ embedding="model.embed_tokens",
44
+ final_norm="model.norm",
45
+ )
46
+
47
+ TENSOR_NAMES_WITH_SEPARATE_LM_HEAD = copy.copy(TENSOR_NAMES)
48
+ TENSOR_NAMES_WITH_SEPARATE_LM_HEAD.lm_head = "lm_head"
49
+
50
+
51
+ @dataclass
52
+ class ExportConfig:
53
+ """Model generating configuration settings."""
54
+
55
+ # On prefill signatures, should the model produce logit output?
56
+ # When False, only decode signatures will produce output.
57
+ output_logits_on_prefill: bool = False
58
+
59
+
60
+ class DecoderOnlyModel(nn.Module):
61
+ """A simple decoder-only transformer model built from the Edge Generative API.
62
+
63
+ This model is used for re-authoring. model_config is used to specify the
64
+ details of model architecture and parameters.
65
+
66
+ It assumes that the attention configs for ROPE, i.e. head_dim, rotary_base,
67
+ and rotary_percentage are the same for all layers.
68
+ """
69
+
70
+ def __init__(self, config: cfg.ModelConfig):
71
+ super().__init__()
72
+
73
+ # Construct model layers.
74
+ self.tok_embedding = nn.Embedding(
75
+ config.vocab_size, config.embedding_dim, padding_idx=0
76
+ )
77
+ self.lm_head = nn.Linear(
78
+ config.embedding_dim, config.vocab_size, bias=config.lm_head_use_bias
79
+ )
80
+ if config.lm_head_share_weight_with_embedding:
81
+ self.lm_head.weight.data = self.tok_embedding.weight.data
82
+ self.transformer_blocks = nn.ModuleList(
83
+ attention.TransformerBlock(config.block_config(idx), config)
84
+ for idx in range(config.num_layers)
85
+ )
86
+ self.final_norm = builder.build_norm(
87
+ config.embedding_dim,
88
+ config.final_norm_config,
89
+ )
90
+ self.mask_cache = attn_utils.build_causal_mask_cache(
91
+ size=config.kv_cache_max,
92
+ )
93
+ self.config = config
94
+
95
+ @torch.inference_mode
96
+ def forward(
97
+ self,
98
+ tokens: torch.Tensor,
99
+ input_pos: torch.Tensor,
100
+ kv_cache: kv_utils.KVCache,
101
+ mask: Optional[torch.Tensor] = None,
102
+ lora: Optional[lora_utils.LoRA] = None,
103
+ export_config: Optional[ExportConfig] = None,
104
+ ) -> dict[torch.Tensor, kv_utils.KVCache]:
105
+ _, seq_len = tokens.size()
106
+ assert self.config.max_seq_len >= seq_len, (
107
+ f"Cannot forward sequence of length {seq_len}, max seq length is only"
108
+ f" {self.config.max_seq_len}"
109
+ )
110
+
111
+ # token embeddings of shape (b, t, n_embd)
112
+ input_embeds = self.tok_embedding(tokens)
113
+
114
+ # ROPE parameters for all attn_configs are the same. Take the first one.
115
+ attn_config = self.config.block_config(0).attn_config
116
+ n_elem = int(attn_config.rotary_percentage * attn_config.head_dim)
117
+ rope = self.config.build_rope(input_pos, n_elem, attn_config.rotary_base)
118
+
119
+ if mask is None:
120
+ mask = self.mask_cache.index_select(2, input_pos)
121
+ mask = mask[:, :, :, : self.config.kv_cache_max]
122
+
123
+ return self._forward_with_embeds(
124
+ input_embeds, rope, mask, input_pos, kv_cache, lora, export_config
125
+ )
126
+
127
+ def _forward_with_embeds(
128
+ self,
129
+ input_embeds: torch.Tensor,
130
+ rope: Tuple[torch.Tensor, torch.Tensor],
131
+ mask: torch.Tensor,
132
+ input_pos: torch.Tensor,
133
+ kv_cache: kv_utils.KVCache,
134
+ lora: Optional[lora_utils.LoRA] = None,
135
+ export_config: Optional[ExportConfig] = None,
136
+ ) -> dict[torch.Tensor, kv_utils.KVCache]:
137
+ """Forwards the model with input embeddings."""
138
+ assert len(self.transformer_blocks) == len(kv_cache.caches), (
139
+ "The number of transformer blocks and the number of KV cache entries"
140
+ " must be the same."
141
+ )
142
+
143
+ x = input_embeds
144
+ if self.config.embedding_scale is not None:
145
+ x = x * self.config.embedding_scale
146
+
147
+ updated_kv_entries = []
148
+ for i, block in enumerate(self.transformer_blocks):
149
+ kv_entry = kv_cache.caches[i] if kv_cache else None
150
+ lora_adapter = lora.adapters[i] if lora else None
151
+ x, kv_entry = block(x, rope, mask, input_pos, kv_entry, lora_adapter)
152
+ if kv_entry:
153
+ updated_kv_entries.append(kv_entry)
154
+ updated_kv_cache = kv_utils.KVCache(tuple(updated_kv_entries))
155
+
156
+ if export_config is not None:
157
+ if (
158
+ torch.numel(input_pos) > 1
159
+ and not export_config.output_logits_on_prefill
160
+ ):
161
+ return {"kv_cache": updated_kv_cache}
162
+
163
+ x = self.final_norm(x)
164
+ logits = self.lm_head(x) # (b, t, vocab_size)
165
+ return {"logits": logits, "kv_cache": updated_kv_cache}
166
+
167
+
168
+ def build_decoder_only_model(
169
+ checkpoint_path: str,
170
+ config: cfg.ModelConfig,
171
+ tensor_names: loading_utils.ModelLoader.TensorNames,
172
+ model_class: type[nn.Module] = DecoderOnlyModel,
173
+ ) -> nn.Module:
174
+ transformer = model_class(config)
175
+ loader = loading_utils.ModelLoader(checkpoint_path, tensor_names)
176
+ loader.load(
177
+ transformer, strict=not config.lm_head_share_weight_with_embedding
178
+ )
179
+ transformer.eval()
180
+ return transformer