ai-edge-torch-nightly 0.3.0.dev20250114__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- ai_edge_torch/__init__.py +32 -0
- ai_edge_torch/_config.py +69 -0
- ai_edge_torch/_convert/__init__.py +14 -0
- ai_edge_torch/_convert/conversion.py +153 -0
- ai_edge_torch/_convert/conversion_utils.py +64 -0
- ai_edge_torch/_convert/converter.py +270 -0
- ai_edge_torch/_convert/fx_passes/__init__.py +23 -0
- ai_edge_torch/_convert/fx_passes/build_aten_composite_pass.py +288 -0
- ai_edge_torch/_convert/fx_passes/build_interpolate_composite_pass.py +131 -0
- ai_edge_torch/_convert/fx_passes/inject_mlir_debuginfo_pass.py +73 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/__init__.py +16 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_check.py +258 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_mark.py +50 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +18 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +68 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +216 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +449 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +30 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/pass_body.py +303 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/utils.py +64 -0
- ai_edge_torch/_convert/fx_passes/remove_non_user_outputs_pass.py +52 -0
- ai_edge_torch/_convert/signature.py +66 -0
- ai_edge_torch/_convert/test/__init__.py +14 -0
- ai_edge_torch/_convert/test/test_convert.py +558 -0
- ai_edge_torch/_convert/test/test_convert_composites.py +234 -0
- ai_edge_torch/_convert/test/test_convert_multisig.py +189 -0
- ai_edge_torch/_convert/test/test_to_channel_last_io.py +96 -0
- ai_edge_torch/_convert/to_channel_last_io.py +92 -0
- ai_edge_torch/conftest.py +20 -0
- ai_edge_torch/debug/__init__.py +17 -0
- ai_edge_torch/debug/culprit.py +496 -0
- ai_edge_torch/debug/test/__init__.py +14 -0
- ai_edge_torch/debug/test/test_culprit.py +140 -0
- ai_edge_torch/debug/test/test_search_model.py +51 -0
- ai_edge_torch/debug/utils.py +59 -0
- ai_edge_torch/experimental/__init__.py +14 -0
- ai_edge_torch/fx_pass_base.py +110 -0
- ai_edge_torch/generative/__init__.py +14 -0
- ai_edge_torch/generative/examples/__init__.py +14 -0
- ai_edge_torch/generative/examples/amd_llama_135m/__init__.py +14 -0
- ai_edge_torch/generative/examples/amd_llama_135m/amd_llama_135m.py +87 -0
- ai_edge_torch/generative/examples/amd_llama_135m/convert_to_tflite.py +70 -0
- ai_edge_torch/generative/examples/amd_llama_135m/verify.py +72 -0
- ai_edge_torch/generative/examples/gemma/__init__.py +14 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/gemma/gemma1.py +107 -0
- ai_edge_torch/generative/examples/gemma/gemma2.py +295 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma1.py +56 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma2.py +43 -0
- ai_edge_torch/generative/examples/gemma/verify_util.py +157 -0
- ai_edge_torch/generative/examples/llama/__init__.py +14 -0
- ai_edge_torch/generative/examples/llama/convert_to_tflite.py +91 -0
- ai_edge_torch/generative/examples/llama/llama.py +196 -0
- ai_edge_torch/generative/examples/llama/verify.py +88 -0
- ai_edge_torch/generative/examples/moonshine/__init__.py +14 -0
- ai_edge_torch/generative/examples/moonshine/convert_moonshine_to_tflite.py +50 -0
- ai_edge_torch/generative/examples/moonshine/moonshine.py +103 -0
- ai_edge_torch/generative/examples/openelm/__init__.py +14 -0
- ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/openelm/openelm.py +127 -0
- ai_edge_torch/generative/examples/openelm/verify.py +71 -0
- ai_edge_torch/generative/examples/paligemma/__init__.py +14 -0
- ai_edge_torch/generative/examples/paligemma/convert_to_tflite.py +95 -0
- ai_edge_torch/generative/examples/paligemma/decoder.py +151 -0
- ai_edge_torch/generative/examples/paligemma/decoder2.py +177 -0
- ai_edge_torch/generative/examples/paligemma/image_encoder.py +160 -0
- ai_edge_torch/generative/examples/paligemma/paligemma.py +179 -0
- ai_edge_torch/generative/examples/paligemma/verify.py +161 -0
- ai_edge_torch/generative/examples/paligemma/verify_decoder.py +75 -0
- ai_edge_torch/generative/examples/paligemma/verify_decoder2.py +72 -0
- ai_edge_torch/generative/examples/paligemma/verify_image_encoder.py +99 -0
- ai_edge_torch/generative/examples/phi/__init__.py +14 -0
- ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/phi/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/phi/phi2.py +107 -0
- ai_edge_torch/generative/examples/phi/phi3.py +219 -0
- ai_edge_torch/generative/examples/phi/verify.py +64 -0
- ai_edge_torch/generative/examples/phi/verify_phi3.py +69 -0
- ai_edge_torch/generative/examples/qwen/__init__.py +14 -0
- ai_edge_torch/generative/examples/qwen/convert_to_tflite.py +93 -0
- ai_edge_torch/generative/examples/qwen/qwen.py +134 -0
- ai_edge_torch/generative/examples/qwen/verify.py +88 -0
- ai_edge_torch/generative/examples/smollm/__init__.py +14 -0
- ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/smollm/convert_v2_to_tflite.py +71 -0
- ai_edge_torch/generative/examples/smollm/smollm.py +125 -0
- ai_edge_torch/generative/examples/smollm/verify.py +86 -0
- ai_edge_torch/generative/examples/stable_diffusion/__init__.py +14 -0
- ai_edge_torch/generative/examples/stable_diffusion/attention.py +108 -0
- ai_edge_torch/generative/examples/stable_diffusion/clip.py +185 -0
- ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +173 -0
- ai_edge_torch/generative/examples/stable_diffusion/decoder.py +398 -0
- ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +749 -0
- ai_edge_torch/generative/examples/stable_diffusion/encoder.py +119 -0
- ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +254 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/__init__.py +19 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +62 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +66 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +74 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +39 -0
- ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +111 -0
- ai_edge_torch/generative/examples/stable_diffusion/util.py +77 -0
- ai_edge_torch/generative/examples/t5/__init__.py +14 -0
- ai_edge_torch/generative/examples/t5/convert_to_tflite.py +138 -0
- ai_edge_torch/generative/examples/t5/t5.py +655 -0
- ai_edge_torch/generative/examples/t5/t5_attention.py +246 -0
- ai_edge_torch/generative/examples/test_models/__init__.py +14 -0
- ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
- ai_edge_torch/generative/examples/test_models/toy_model.py +156 -0
- ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +138 -0
- ai_edge_torch/generative/examples/tiny_llama/__init__.py +14 -0
- ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +88 -0
- ai_edge_torch/generative/examples/tiny_llama/verify.py +72 -0
- ai_edge_torch/generative/fx_passes/__init__.py +30 -0
- ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +50 -0
- ai_edge_torch/generative/layers/__init__.py +14 -0
- ai_edge_torch/generative/layers/attention.py +399 -0
- ai_edge_torch/generative/layers/attention_utils.py +210 -0
- ai_edge_torch/generative/layers/builder.py +160 -0
- ai_edge_torch/generative/layers/feed_forward.py +120 -0
- ai_edge_torch/generative/layers/kv_cache.py +204 -0
- ai_edge_torch/generative/layers/lora.py +557 -0
- ai_edge_torch/generative/layers/model_config.py +238 -0
- ai_edge_torch/generative/layers/normalization.py +222 -0
- ai_edge_torch/generative/layers/rotary_position_embedding.py +94 -0
- ai_edge_torch/generative/layers/scaled_dot_product_attention.py +144 -0
- ai_edge_torch/generative/layers/unet/__init__.py +14 -0
- ai_edge_torch/generative/layers/unet/blocks_2d.py +806 -0
- ai_edge_torch/generative/layers/unet/builder.py +50 -0
- ai_edge_torch/generative/layers/unet/model_config.py +282 -0
- ai_edge_torch/generative/quantize/__init__.py +14 -0
- ai_edge_torch/generative/quantize/example.py +47 -0
- ai_edge_torch/generative/quantize/quant_attrs.py +68 -0
- ai_edge_torch/generative/quantize/quant_recipe.py +154 -0
- ai_edge_torch/generative/quantize/quant_recipe_utils.py +62 -0
- ai_edge_torch/generative/quantize/quant_recipes.py +56 -0
- ai_edge_torch/generative/quantize/supported_schemes.py +32 -0
- ai_edge_torch/generative/test/__init__.py +14 -0
- ai_edge_torch/generative/test/test_custom_dus.py +107 -0
- ai_edge_torch/generative/test/test_kv_cache.py +120 -0
- ai_edge_torch/generative/test/test_loader.py +83 -0
- ai_edge_torch/generative/test/test_lora.py +147 -0
- ai_edge_torch/generative/test/test_model_conversion.py +191 -0
- ai_edge_torch/generative/test/test_model_conversion_large.py +362 -0
- ai_edge_torch/generative/test/test_quantize.py +183 -0
- ai_edge_torch/generative/test/utils.py +82 -0
- ai_edge_torch/generative/utilities/__init__.py +15 -0
- ai_edge_torch/generative/utilities/converter.py +215 -0
- ai_edge_torch/generative/utilities/dynamic_update_slice.py +56 -0
- ai_edge_torch/generative/utilities/loader.py +398 -0
- ai_edge_torch/generative/utilities/model_builder.py +180 -0
- ai_edge_torch/generative/utilities/moonshine_loader.py +154 -0
- ai_edge_torch/generative/utilities/stable_diffusion_loader.py +1032 -0
- ai_edge_torch/generative/utilities/t5_loader.py +512 -0
- ai_edge_torch/generative/utilities/transformers_verifier.py +42 -0
- ai_edge_torch/generative/utilities/verifier.py +335 -0
- ai_edge_torch/hlfb/__init__.py +16 -0
- ai_edge_torch/hlfb/mark_pattern/__init__.py +153 -0
- ai_edge_torch/hlfb/mark_pattern/fx_utils.py +69 -0
- ai_edge_torch/hlfb/mark_pattern/pattern.py +288 -0
- ai_edge_torch/hlfb/test/__init__.py +14 -0
- ai_edge_torch/hlfb/test/test_mark_pattern.py +185 -0
- ai_edge_torch/lowertools/__init__.py +18 -0
- ai_edge_torch/lowertools/_shim.py +86 -0
- ai_edge_torch/lowertools/common_utils.py +142 -0
- ai_edge_torch/lowertools/odml_torch_utils.py +260 -0
- ai_edge_torch/lowertools/test_utils.py +62 -0
- ai_edge_torch/lowertools/torch_xla_utils.py +301 -0
- ai_edge_torch/lowertools/translate_recipe.py +163 -0
- ai_edge_torch/model.py +177 -0
- ai_edge_torch/odml_torch/__init__.py +20 -0
- ai_edge_torch/odml_torch/_torch_future.py +88 -0
- ai_edge_torch/odml_torch/_torch_library.py +19 -0
- ai_edge_torch/odml_torch/composite/__init__.py +16 -0
- ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
- ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
- ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
- ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
- ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
- ai_edge_torch/odml_torch/export.py +403 -0
- ai_edge_torch/odml_torch/export_utils.py +157 -0
- ai_edge_torch/odml_torch/jax_bridge/__init__.py +18 -0
- ai_edge_torch/odml_torch/jax_bridge/_wrap.py +180 -0
- ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
- ai_edge_torch/odml_torch/lowerings/__init__.py +27 -0
- ai_edge_torch/odml_torch/lowerings/_basic.py +294 -0
- ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
- ai_edge_torch/odml_torch/lowerings/_convolution.py +243 -0
- ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +285 -0
- ai_edge_torch/odml_torch/lowerings/_layer_norm.py +87 -0
- ai_edge_torch/odml_torch/lowerings/_quantized_decomposed.py +177 -0
- ai_edge_torch/odml_torch/lowerings/_rand.py +142 -0
- ai_edge_torch/odml_torch/lowerings/context.py +42 -0
- ai_edge_torch/odml_torch/lowerings/decomp.py +69 -0
- ai_edge_torch/odml_torch/lowerings/registry.py +65 -0
- ai_edge_torch/odml_torch/lowerings/utils.py +201 -0
- ai_edge_torch/odml_torch/passes/__init__.py +38 -0
- ai_edge_torch/odml_torch/tf_integration.py +156 -0
- ai_edge_torch/quantize/__init__.py +16 -0
- ai_edge_torch/quantize/pt2e_quantizer.py +466 -0
- ai_edge_torch/quantize/pt2e_quantizer_utils.py +1061 -0
- ai_edge_torch/quantize/quant_config.py +85 -0
- ai_edge_torch/testing/__init__.py +14 -0
- ai_edge_torch/testing/model_coverage/__init__.py +16 -0
- ai_edge_torch/testing/model_coverage/model_coverage.py +145 -0
- ai_edge_torch/version.py +16 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/LICENSE +202 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/METADATA +44 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/RECORD +213 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/WHEEL +5 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/top_level.txt +1 -0
@@ -0,0 +1,398 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
# Common utility functions for data loading etc.
|
16
|
+
from dataclasses import dataclass
|
17
|
+
import glob
|
18
|
+
import os
|
19
|
+
from typing import Callable, Dict, List, Tuple
|
20
|
+
|
21
|
+
from ai_edge_torch.generative.layers import model_config
|
22
|
+
from safetensors import safe_open
|
23
|
+
import torch
|
24
|
+
|
25
|
+
|
26
|
+
def load_safetensors(full_path: str):
|
27
|
+
"""Loads safetensors into a single state dictionary.
|
28
|
+
|
29
|
+
Args:
|
30
|
+
full_path (string): the directory that contains the safetensor files.
|
31
|
+
|
32
|
+
Returns:
|
33
|
+
A state dictionary contating loaded tensors.
|
34
|
+
|
35
|
+
Raises:
|
36
|
+
ValueError: If no tensors are loaded from the provided directory or file.
|
37
|
+
"""
|
38
|
+
pattern = (
|
39
|
+
os.path.join(full_path, "*.safetensors")
|
40
|
+
if os.path.isdir(full_path)
|
41
|
+
else full_path
|
42
|
+
)
|
43
|
+
files = []
|
44
|
+
for file in glob.glob(pattern):
|
45
|
+
files.append(file)
|
46
|
+
|
47
|
+
tensors = {}
|
48
|
+
for file in files:
|
49
|
+
with safe_open(file, framework="pt") as fp:
|
50
|
+
for k in fp.keys():
|
51
|
+
assert k not in tensors
|
52
|
+
tensors[k] = fp.get_tensor(k)
|
53
|
+
|
54
|
+
if not tensors:
|
55
|
+
raise ValueError("Failed to load SafeTensors.")
|
56
|
+
return tensors
|
57
|
+
|
58
|
+
|
59
|
+
def load_pytorch_statedict(full_path: str):
|
60
|
+
"""Loads state dictionary binaries into a single state dictionary.
|
61
|
+
|
62
|
+
Args:
|
63
|
+
full_path (string): the directory that contains the bin files.
|
64
|
+
|
65
|
+
Returns:
|
66
|
+
A state dictionary contating loaded tensors.
|
67
|
+
|
68
|
+
Raises:
|
69
|
+
ValueError: If no tensors are loaded from the provided directory or file.
|
70
|
+
"""
|
71
|
+
files = []
|
72
|
+
patterns = []
|
73
|
+
if os.path.isdir(full_path):
|
74
|
+
patterns.append(os.path.join(full_path, "*.bin"))
|
75
|
+
patterns.append(os.path.join(full_path, "*pt"))
|
76
|
+
else:
|
77
|
+
patterns.append(full_path)
|
78
|
+
for pattern in patterns:
|
79
|
+
for file in glob.glob(pattern):
|
80
|
+
files.append(file)
|
81
|
+
|
82
|
+
tensors = {}
|
83
|
+
for file in files:
|
84
|
+
this_file_tensors = torch.load(file)
|
85
|
+
for k in this_file_tensors:
|
86
|
+
assert k not in tensors
|
87
|
+
tensors.update(this_file_tensors)
|
88
|
+
|
89
|
+
if not tensors:
|
90
|
+
raise ValueError("Failed to load torch bin files.")
|
91
|
+
return tensors
|
92
|
+
|
93
|
+
|
94
|
+
class ModelLoader:
|
95
|
+
"""Utlity for loading model checkpoints to the Edge Generative API layer."""
|
96
|
+
|
97
|
+
@dataclass
|
98
|
+
class TensorNames:
|
99
|
+
attn_query_proj: str = None
|
100
|
+
attn_key_proj: str = None
|
101
|
+
attn_value_proj: str = None
|
102
|
+
attn_fused_qkv_proj: str = None
|
103
|
+
attn_output_proj: str = None
|
104
|
+
attn_query_norm: str = None
|
105
|
+
attn_key_norm: str = None
|
106
|
+
|
107
|
+
ff_up_proj: str = None
|
108
|
+
ff_down_proj: str = None
|
109
|
+
ff_gate_proj: str = None
|
110
|
+
|
111
|
+
pre_attn_norm: str = None
|
112
|
+
post_attn_norm: str = None
|
113
|
+
pre_ff_norm: str = None
|
114
|
+
post_ff_norm: str = None
|
115
|
+
embedding: str = None
|
116
|
+
embedding_position: str = None
|
117
|
+
final_norm: str = None
|
118
|
+
lm_head: str = None
|
119
|
+
|
120
|
+
def __init__(self, file_name: str, names: TensorNames) -> None:
|
121
|
+
"""ModelLoader constructor.
|
122
|
+
|
123
|
+
Can be used to load multiple models of the same type.
|
124
|
+
|
125
|
+
Args:
|
126
|
+
file_name (str): Path to the checkpoint. Can be a directory or an exact
|
127
|
+
file.
|
128
|
+
names (TensorNames): An instance of `TensorNames` to determine mappings.
|
129
|
+
"""
|
130
|
+
self._file_name = file_name
|
131
|
+
self._names = names
|
132
|
+
self._loader = self._get_loader()
|
133
|
+
|
134
|
+
def get_state(self) -> Dict[str, torch.Tensor]:
|
135
|
+
return self._loader(self._file_name)
|
136
|
+
|
137
|
+
def load(
|
138
|
+
self, model: torch.nn.Module, strict: bool = True
|
139
|
+
) -> Tuple[List[str], List[str]]:
|
140
|
+
"""Load the model from the checkpoint.
|
141
|
+
|
142
|
+
Args:
|
143
|
+
model (torch.nn.Module): The pytorch model that needs to be loaded.
|
144
|
+
strict (bool, optional): Whether the converted keys are strictly
|
145
|
+
matched. Defaults to True.
|
146
|
+
|
147
|
+
Returns:
|
148
|
+
missing_keys (List[str]): a list of str containing the missing keys.
|
149
|
+
unexpected_keys (List[str]): a list of str containing the unexpected
|
150
|
+
keys.
|
151
|
+
|
152
|
+
Raises:
|
153
|
+
ValueError: If conversion results in unmapped tensors and strict mode is
|
154
|
+
enabled.
|
155
|
+
"""
|
156
|
+
state = self.get_state()
|
157
|
+
state = state["model_state_dict"] if "model_state_dict" in state else state
|
158
|
+
converted_state = dict()
|
159
|
+
if self._names.embedding is not None:
|
160
|
+
converted_state["tok_embedding.weight"] = state.pop(
|
161
|
+
f"{self._names.embedding}.weight"
|
162
|
+
)
|
163
|
+
if model.config.embedding_use_bias:
|
164
|
+
converted_state["tok_embedding.bias"] = state.pop(
|
165
|
+
f"{self._names.embedding}.bias"
|
166
|
+
)
|
167
|
+
if self._names.embedding_position is not None:
|
168
|
+
converted_state["tok_embedding_position"] = state.pop(
|
169
|
+
f"{self._names.embedding_position}"
|
170
|
+
)
|
171
|
+
if self._names.lm_head is not None:
|
172
|
+
converted_state["lm_head.weight"] = state.pop(
|
173
|
+
f"{self._names.lm_head}.weight"
|
174
|
+
)
|
175
|
+
if model.config.lm_head_use_bias:
|
176
|
+
converted_state["lm_head.bias"] = state.pop(
|
177
|
+
f"{self._names.lm_head}.bias"
|
178
|
+
)
|
179
|
+
if self._names.final_norm is not None:
|
180
|
+
final_norm_name = self._names.final_norm
|
181
|
+
converted_state["final_norm.weight"] = state.pop(
|
182
|
+
f"{final_norm_name}.weight"
|
183
|
+
)
|
184
|
+
if f"{final_norm_name}.bias" in state:
|
185
|
+
converted_state["final_norm.bias"] = state.pop(
|
186
|
+
f"{final_norm_name}.bias"
|
187
|
+
)
|
188
|
+
|
189
|
+
for i in range(model.config.num_layers):
|
190
|
+
self._map_norm(i, model.config, state, converted_state)
|
191
|
+
self._map_feedforward(i, model.config, state, converted_state)
|
192
|
+
self._map_attention(i, model.config, state, converted_state)
|
193
|
+
|
194
|
+
if strict and state:
|
195
|
+
raise ValueError(
|
196
|
+
f"Failed to map all tensor. Remaing tensor are: {list(state.keys())}"
|
197
|
+
)
|
198
|
+
return model.load_state_dict(converted_state, strict=strict)
|
199
|
+
|
200
|
+
def _get_loader(self) -> Callable[[str], Dict[str, torch.Tensor]]:
|
201
|
+
"""A best effort method for finding appropriate state loader.
|
202
|
+
|
203
|
+
Raises:
|
204
|
+
ValueError: If it fails to find an appropriate loader.
|
205
|
+
|
206
|
+
Returns:
|
207
|
+
Callable[[str], Dict[str, torch.Tensor]]: State loader to be used.
|
208
|
+
"""
|
209
|
+
if os.path.isdir(self._file_name):
|
210
|
+
if glob.glob(os.path.join(self._file_name, "*.safetensors")):
|
211
|
+
return load_safetensors
|
212
|
+
if glob.glob(os.path.join(self._file_name, "*.bin")) or glob.glob(
|
213
|
+
os.path.join(self._file_name, "*pt")
|
214
|
+
):
|
215
|
+
return load_pytorch_statedict
|
216
|
+
|
217
|
+
if self._file_name.endswith(".safetensors"):
|
218
|
+
return load_safetensors
|
219
|
+
|
220
|
+
if self._file_name.endswith(".bin") or self._file_name.endswith("pt"):
|
221
|
+
return load_pytorch_statedict
|
222
|
+
|
223
|
+
raise ValueError("File format not supported.")
|
224
|
+
|
225
|
+
def _map_feedforward(
|
226
|
+
self,
|
227
|
+
idx: int,
|
228
|
+
config: model_config.ModelConfig,
|
229
|
+
state: Dict[str, torch.Tensor],
|
230
|
+
converted_state: Dict[str, torch.Tensor],
|
231
|
+
):
|
232
|
+
prefix = f"transformer_blocks.{idx}"
|
233
|
+
ff_config = config.block_config(idx).ff_config
|
234
|
+
if ff_config.type == model_config.FeedForwardType.SEQUENTIAL:
|
235
|
+
ff_up_proj_name = self._names.ff_up_proj.format(idx)
|
236
|
+
ff_down_proj_name = self._names.ff_down_proj.format(idx)
|
237
|
+
converted_state[f"{prefix}.ff.w1.weight"] = state.pop(
|
238
|
+
f"{ff_up_proj_name}.weight"
|
239
|
+
)
|
240
|
+
converted_state[f"{prefix}.ff.w2.weight"] = state.pop(
|
241
|
+
f"{ff_down_proj_name}.weight"
|
242
|
+
)
|
243
|
+
if ff_config.use_bias:
|
244
|
+
converted_state[f"{prefix}.ff.w1.bias"] = state.pop(
|
245
|
+
f"{ff_up_proj_name}.bias"
|
246
|
+
)
|
247
|
+
converted_state[f"{prefix}.ff.w2.bias"] = state.pop(
|
248
|
+
f"{ff_down_proj_name}.bias"
|
249
|
+
)
|
250
|
+
else:
|
251
|
+
ff_up_proj_name = self._names.ff_up_proj.format(idx)
|
252
|
+
ff_down_proj_name = self._names.ff_down_proj.format(idx)
|
253
|
+
ff_gate_proj_name = self._names.ff_gate_proj.format(idx)
|
254
|
+
converted_state[f"{prefix}.ff.w3.weight"] = state.pop(
|
255
|
+
f"{ff_up_proj_name}.weight"
|
256
|
+
)
|
257
|
+
converted_state[f"{prefix}.ff.w2.weight"] = state.pop(
|
258
|
+
f"{ff_down_proj_name}.weight"
|
259
|
+
)
|
260
|
+
converted_state[f"{prefix}.ff.w1.weight"] = state.pop(
|
261
|
+
f"{ff_gate_proj_name}.weight"
|
262
|
+
)
|
263
|
+
if ff_config.use_bias:
|
264
|
+
converted_state[f"{prefix}.ff.w3.bias"] = state.pop(
|
265
|
+
f"{ff_up_proj_name}.bias"
|
266
|
+
)
|
267
|
+
converted_state[f"{prefix}.ff.w2.bias"] = state.pop(
|
268
|
+
f"{ff_down_proj_name}.bias"
|
269
|
+
)
|
270
|
+
converted_state[f"{prefix}.ff.w1.bias"] = state.pop(
|
271
|
+
f"{ff_gate_proj_name}.bias"
|
272
|
+
)
|
273
|
+
|
274
|
+
if self._names.pre_ff_norm is not None:
|
275
|
+
pre_ff_norm_name = self._names.pre_ff_norm.format(idx)
|
276
|
+
converted_state[f"{prefix}.ff.pre_ff_norm.weight"] = state.pop(
|
277
|
+
f"{pre_ff_norm_name}.weight"
|
278
|
+
)
|
279
|
+
if f"{pre_ff_norm_name}.bias" in state:
|
280
|
+
converted_state[f"{prefix}.ff.pre_ff_norm.bias"] = state.pop(
|
281
|
+
f"{pre_ff_norm_name}.bias"
|
282
|
+
)
|
283
|
+
|
284
|
+
if self._names.post_ff_norm is not None:
|
285
|
+
post_ff_norm_name = self._names.post_ff_norm.format(idx)
|
286
|
+
converted_state[f"{prefix}.ff.post_ff_norm.weight"] = state.pop(
|
287
|
+
f"{post_ff_norm_name}.weight"
|
288
|
+
)
|
289
|
+
if f"{post_ff_norm_name}.bias" in state:
|
290
|
+
converted_state[f"{prefix}.ff.post_ff_norm.bias"] = state.pop(
|
291
|
+
f"{post_ff_norm_name}.bias"
|
292
|
+
)
|
293
|
+
|
294
|
+
def _map_attention(
|
295
|
+
self,
|
296
|
+
idx: int,
|
297
|
+
config: model_config.ModelConfig,
|
298
|
+
state: Dict[str, torch.Tensor],
|
299
|
+
converted_state: Dict[str, torch.Tensor],
|
300
|
+
):
|
301
|
+
prefix = f"transformer_blocks.{idx}"
|
302
|
+
attn_config = config.block_config(idx).attn_config
|
303
|
+
if self._names.attn_fused_qkv_proj:
|
304
|
+
fused_qkv_name = self._names.attn_fused_qkv_proj.format(idx)
|
305
|
+
converted_state[f"{prefix}.atten_func.qkv_projection.weight"] = state.pop(
|
306
|
+
f"{fused_qkv_name}.weight"
|
307
|
+
)
|
308
|
+
else:
|
309
|
+
q_name = self._names.attn_query_proj.format(idx)
|
310
|
+
k_name = self._names.attn_key_proj.format(idx)
|
311
|
+
v_name = self._names.attn_value_proj.format(idx)
|
312
|
+
converted_state[f"{prefix}.atten_func.qkv_projection.weight"] = (
|
313
|
+
self._fuse_qkv(
|
314
|
+
attn_config,
|
315
|
+
state.pop(f"{q_name}.weight"),
|
316
|
+
state.pop(f"{k_name}.weight"),
|
317
|
+
state.pop(f"{v_name}.weight"),
|
318
|
+
)
|
319
|
+
)
|
320
|
+
if attn_config.qkv_use_bias:
|
321
|
+
if self._names.attn_fused_qkv_proj:
|
322
|
+
converted_state[f"{prefix}.atten_func.qkv_projection.bias"] = state.pop(
|
323
|
+
f"{fused_qkv_name}.bias"
|
324
|
+
)
|
325
|
+
else:
|
326
|
+
converted_state[f"{prefix}.atten_func.qkv_projection.bias"] = (
|
327
|
+
self._fuse_qkv(
|
328
|
+
attn_config,
|
329
|
+
state.pop(f"{q_name}.bias"),
|
330
|
+
state.pop(f"{k_name}.bias"),
|
331
|
+
state.pop(f"{v_name}.bias"),
|
332
|
+
)
|
333
|
+
)
|
334
|
+
|
335
|
+
if self._names.attn_query_norm is not None:
|
336
|
+
attn_query_norm_name = self._names.attn_query_norm.format(idx)
|
337
|
+
converted_state[f"{prefix}.atten_func.query_norm.weight"] = state.pop(
|
338
|
+
f"{attn_query_norm_name}.weight"
|
339
|
+
)
|
340
|
+
if self._names.attn_key_norm is not None:
|
341
|
+
attn_key_norm_name = self._names.attn_key_norm.format(idx)
|
342
|
+
converted_state[f"{prefix}.atten_func.key_norm.weight"] = state.pop(
|
343
|
+
f"{attn_key_norm_name}.weight"
|
344
|
+
)
|
345
|
+
|
346
|
+
o_name = self._names.attn_output_proj.format(idx)
|
347
|
+
converted_state[f"{prefix}.atten_func.output_projection.weight"] = (
|
348
|
+
state.pop(f"{o_name}.weight")
|
349
|
+
)
|
350
|
+
if attn_config.output_proj_use_bias:
|
351
|
+
converted_state[f"{prefix}.atten_func.output_projection.bias"] = (
|
352
|
+
state.pop(f"{o_name}.bias")
|
353
|
+
)
|
354
|
+
|
355
|
+
def _map_norm(
|
356
|
+
self,
|
357
|
+
idx: int,
|
358
|
+
config: model_config.ModelConfig,
|
359
|
+
state: Dict[str, torch.Tensor],
|
360
|
+
converted_state: Dict[str, torch.Tensor],
|
361
|
+
):
|
362
|
+
prefix = f"transformer_blocks.{idx}"
|
363
|
+
if self._names.pre_attn_norm is not None:
|
364
|
+
pre_attn_norm_name = self._names.pre_attn_norm.format(idx)
|
365
|
+
converted_state[f"{prefix}.pre_atten_norm.weight"] = state.pop(
|
366
|
+
f"{pre_attn_norm_name}.weight"
|
367
|
+
)
|
368
|
+
if f"{pre_attn_norm_name}.bias" in state:
|
369
|
+
converted_state[f"{prefix}.pre_atten_norm.bias"] = state.pop(
|
370
|
+
f"{pre_attn_norm_name}.bias"
|
371
|
+
)
|
372
|
+
|
373
|
+
if self._names.post_attn_norm is not None:
|
374
|
+
post_attn_norm_name = self._names.post_attn_norm.format(idx)
|
375
|
+
converted_state[f"{prefix}.post_atten_norm.weight"] = state.pop(
|
376
|
+
f"{post_attn_norm_name}.weight"
|
377
|
+
)
|
378
|
+
if f"{post_attn_norm_name}.bias" in state:
|
379
|
+
converted_state[f"{prefix}.post_atten_norm.bias"] = state.pop(
|
380
|
+
f"{post_attn_norm_name}.bias"
|
381
|
+
)
|
382
|
+
|
383
|
+
def _fuse_qkv(
|
384
|
+
self,
|
385
|
+
attn_config: model_config.AttentionConfig,
|
386
|
+
q: torch.Tensor,
|
387
|
+
k: torch.Tensor,
|
388
|
+
v: torch.Tensor,
|
389
|
+
) -> torch.Tensor:
|
390
|
+
if attn_config.qkv_fused_interleaved:
|
391
|
+
q_per_kv = attn_config.num_heads // attn_config.num_query_groups
|
392
|
+
qs = torch.split(q, attn_config.head_dim * q_per_kv)
|
393
|
+
ks = torch.split(k, attn_config.head_dim)
|
394
|
+
vs = torch.split(v, attn_config.head_dim)
|
395
|
+
cycled = [t for group in zip(qs, ks, vs) for t in group]
|
396
|
+
return torch.cat(cycled)
|
397
|
+
else:
|
398
|
+
return torch.cat([q, k, v], dim=0)
|
@@ -0,0 +1,180 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Utilities to be used for re-authoring transformer models."""
|
17
|
+
|
18
|
+
import copy
|
19
|
+
from dataclasses import dataclass
|
20
|
+
from typing import Optional, Tuple
|
21
|
+
|
22
|
+
from ai_edge_torch.generative.layers import attention
|
23
|
+
from ai_edge_torch.generative.layers import builder
|
24
|
+
from ai_edge_torch.generative.layers import kv_cache as kv_utils
|
25
|
+
from ai_edge_torch.generative.layers import lora as lora_utils
|
26
|
+
import ai_edge_torch.generative.layers.attention_utils as attn_utils
|
27
|
+
import ai_edge_torch.generative.layers.model_config as cfg
|
28
|
+
import ai_edge_torch.generative.utilities.loader as loading_utils
|
29
|
+
import torch
|
30
|
+
from torch import nn
|
31
|
+
|
32
|
+
|
33
|
+
TENSOR_NAMES = loading_utils.ModelLoader.TensorNames(
|
34
|
+
ff_up_proj="model.layers.{}.mlp.up_proj",
|
35
|
+
ff_down_proj="model.layers.{}.mlp.down_proj",
|
36
|
+
ff_gate_proj="model.layers.{}.mlp.gate_proj",
|
37
|
+
attn_query_proj="model.layers.{}.self_attn.q_proj",
|
38
|
+
attn_key_proj="model.layers.{}.self_attn.k_proj",
|
39
|
+
attn_value_proj="model.layers.{}.self_attn.v_proj",
|
40
|
+
attn_output_proj="model.layers.{}.self_attn.o_proj",
|
41
|
+
pre_attn_norm="model.layers.{}.input_layernorm",
|
42
|
+
post_attn_norm="model.layers.{}.post_attention_layernorm",
|
43
|
+
embedding="model.embed_tokens",
|
44
|
+
final_norm="model.norm",
|
45
|
+
)
|
46
|
+
|
47
|
+
TENSOR_NAMES_WITH_SEPARATE_LM_HEAD = copy.copy(TENSOR_NAMES)
|
48
|
+
TENSOR_NAMES_WITH_SEPARATE_LM_HEAD.lm_head = "lm_head"
|
49
|
+
|
50
|
+
|
51
|
+
@dataclass
|
52
|
+
class ExportConfig:
|
53
|
+
"""Model generating configuration settings."""
|
54
|
+
|
55
|
+
# On prefill signatures, should the model produce logit output?
|
56
|
+
# When False, only decode signatures will produce output.
|
57
|
+
output_logits_on_prefill: bool = False
|
58
|
+
|
59
|
+
|
60
|
+
class DecoderOnlyModel(nn.Module):
|
61
|
+
"""A simple decoder-only transformer model built from the Edge Generative API.
|
62
|
+
|
63
|
+
This model is used for re-authoring. model_config is used to specify the
|
64
|
+
details of model architecture and parameters.
|
65
|
+
|
66
|
+
It assumes that the attention configs for ROPE, i.e. head_dim, rotary_base,
|
67
|
+
and rotary_percentage are the same for all layers.
|
68
|
+
"""
|
69
|
+
|
70
|
+
def __init__(self, config: cfg.ModelConfig):
|
71
|
+
super().__init__()
|
72
|
+
|
73
|
+
# Construct model layers.
|
74
|
+
self.tok_embedding = nn.Embedding(
|
75
|
+
config.vocab_size, config.embedding_dim, padding_idx=0
|
76
|
+
)
|
77
|
+
self.lm_head = nn.Linear(
|
78
|
+
config.embedding_dim, config.vocab_size, bias=config.lm_head_use_bias
|
79
|
+
)
|
80
|
+
if config.lm_head_share_weight_with_embedding:
|
81
|
+
self.lm_head.weight.data = self.tok_embedding.weight.data
|
82
|
+
self.transformer_blocks = nn.ModuleList(
|
83
|
+
attention.TransformerBlock(config.block_config(idx), config)
|
84
|
+
for idx in range(config.num_layers)
|
85
|
+
)
|
86
|
+
self.final_norm = builder.build_norm(
|
87
|
+
config.embedding_dim,
|
88
|
+
config.final_norm_config,
|
89
|
+
)
|
90
|
+
self.mask_cache = attn_utils.build_causal_mask_cache(
|
91
|
+
size=config.kv_cache_max,
|
92
|
+
)
|
93
|
+
self.config = config
|
94
|
+
|
95
|
+
@torch.inference_mode
|
96
|
+
def forward(
|
97
|
+
self,
|
98
|
+
tokens: torch.Tensor,
|
99
|
+
input_pos: torch.Tensor,
|
100
|
+
kv_cache: kv_utils.KVCache,
|
101
|
+
mask: Optional[torch.Tensor] = None,
|
102
|
+
lora: Optional[lora_utils.LoRA] = None,
|
103
|
+
export_config: Optional[ExportConfig] = None,
|
104
|
+
) -> dict[torch.Tensor, kv_utils.KVCache]:
|
105
|
+
_, seq_len = tokens.size()
|
106
|
+
assert self.config.max_seq_len >= seq_len, (
|
107
|
+
f"Cannot forward sequence of length {seq_len}, max seq length is only"
|
108
|
+
f" {self.config.max_seq_len}"
|
109
|
+
)
|
110
|
+
|
111
|
+
# token embeddings of shape (b, t, n_embd)
|
112
|
+
input_embeds = self.tok_embedding(tokens)
|
113
|
+
|
114
|
+
# ROPE parameters for all attn_configs are the same. Take the first one.
|
115
|
+
attn_config = self.config.block_config(0).attn_config
|
116
|
+
n_elem = int(attn_config.rotary_percentage * attn_config.head_dim)
|
117
|
+
rope = self.config.build_rope(input_pos, n_elem, attn_config.rotary_base)
|
118
|
+
|
119
|
+
if mask is None:
|
120
|
+
mask = self.mask_cache.index_select(2, input_pos)
|
121
|
+
mask = mask[:, :, :, : self.config.kv_cache_max]
|
122
|
+
|
123
|
+
return self._forward_with_embeds(
|
124
|
+
input_embeds, rope, mask, input_pos, kv_cache, lora, export_config
|
125
|
+
)
|
126
|
+
|
127
|
+
def _forward_with_embeds(
|
128
|
+
self,
|
129
|
+
input_embeds: torch.Tensor,
|
130
|
+
rope: Tuple[torch.Tensor, torch.Tensor],
|
131
|
+
mask: torch.Tensor,
|
132
|
+
input_pos: torch.Tensor,
|
133
|
+
kv_cache: kv_utils.KVCache,
|
134
|
+
lora: Optional[lora_utils.LoRA] = None,
|
135
|
+
export_config: Optional[ExportConfig] = None,
|
136
|
+
) -> dict[torch.Tensor, kv_utils.KVCache]:
|
137
|
+
"""Forwards the model with input embeddings."""
|
138
|
+
assert len(self.transformer_blocks) == len(kv_cache.caches), (
|
139
|
+
"The number of transformer blocks and the number of KV cache entries"
|
140
|
+
" must be the same."
|
141
|
+
)
|
142
|
+
|
143
|
+
x = input_embeds
|
144
|
+
if self.config.embedding_scale is not None:
|
145
|
+
x = x * self.config.embedding_scale
|
146
|
+
|
147
|
+
updated_kv_entries = []
|
148
|
+
for i, block in enumerate(self.transformer_blocks):
|
149
|
+
kv_entry = kv_cache.caches[i] if kv_cache else None
|
150
|
+
lora_adapter = lora.adapters[i] if lora else None
|
151
|
+
x, kv_entry = block(x, rope, mask, input_pos, kv_entry, lora_adapter)
|
152
|
+
if kv_entry:
|
153
|
+
updated_kv_entries.append(kv_entry)
|
154
|
+
updated_kv_cache = kv_utils.KVCache(tuple(updated_kv_entries))
|
155
|
+
|
156
|
+
if export_config is not None:
|
157
|
+
if (
|
158
|
+
torch.numel(input_pos) > 1
|
159
|
+
and not export_config.output_logits_on_prefill
|
160
|
+
):
|
161
|
+
return {"kv_cache": updated_kv_cache}
|
162
|
+
|
163
|
+
x = self.final_norm(x)
|
164
|
+
logits = self.lm_head(x) # (b, t, vocab_size)
|
165
|
+
return {"logits": logits, "kv_cache": updated_kv_cache}
|
166
|
+
|
167
|
+
|
168
|
+
def build_decoder_only_model(
|
169
|
+
checkpoint_path: str,
|
170
|
+
config: cfg.ModelConfig,
|
171
|
+
tensor_names: loading_utils.ModelLoader.TensorNames,
|
172
|
+
model_class: type[nn.Module] = DecoderOnlyModel,
|
173
|
+
) -> nn.Module:
|
174
|
+
transformer = model_class(config)
|
175
|
+
loader = loading_utils.ModelLoader(checkpoint_path, tensor_names)
|
176
|
+
loader.load(
|
177
|
+
transformer, strict=not config.lm_head_share_weight_with_embedding
|
178
|
+
)
|
179
|
+
transformer.eval()
|
180
|
+
return transformer
|