ai-edge-torch-nightly 0.3.0.dev20250114__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (213) hide show
  1. ai_edge_torch/__init__.py +32 -0
  2. ai_edge_torch/_config.py +69 -0
  3. ai_edge_torch/_convert/__init__.py +14 -0
  4. ai_edge_torch/_convert/conversion.py +153 -0
  5. ai_edge_torch/_convert/conversion_utils.py +64 -0
  6. ai_edge_torch/_convert/converter.py +270 -0
  7. ai_edge_torch/_convert/fx_passes/__init__.py +23 -0
  8. ai_edge_torch/_convert/fx_passes/build_aten_composite_pass.py +288 -0
  9. ai_edge_torch/_convert/fx_passes/build_interpolate_composite_pass.py +131 -0
  10. ai_edge_torch/_convert/fx_passes/inject_mlir_debuginfo_pass.py +73 -0
  11. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/__init__.py +16 -0
  12. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_check.py +258 -0
  13. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_mark.py +50 -0
  14. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +18 -0
  15. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +68 -0
  16. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +216 -0
  17. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +449 -0
  18. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +30 -0
  19. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/pass_body.py +303 -0
  20. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/utils.py +64 -0
  21. ai_edge_torch/_convert/fx_passes/remove_non_user_outputs_pass.py +52 -0
  22. ai_edge_torch/_convert/signature.py +66 -0
  23. ai_edge_torch/_convert/test/__init__.py +14 -0
  24. ai_edge_torch/_convert/test/test_convert.py +558 -0
  25. ai_edge_torch/_convert/test/test_convert_composites.py +234 -0
  26. ai_edge_torch/_convert/test/test_convert_multisig.py +189 -0
  27. ai_edge_torch/_convert/test/test_to_channel_last_io.py +96 -0
  28. ai_edge_torch/_convert/to_channel_last_io.py +92 -0
  29. ai_edge_torch/conftest.py +20 -0
  30. ai_edge_torch/debug/__init__.py +17 -0
  31. ai_edge_torch/debug/culprit.py +496 -0
  32. ai_edge_torch/debug/test/__init__.py +14 -0
  33. ai_edge_torch/debug/test/test_culprit.py +140 -0
  34. ai_edge_torch/debug/test/test_search_model.py +51 -0
  35. ai_edge_torch/debug/utils.py +59 -0
  36. ai_edge_torch/experimental/__init__.py +14 -0
  37. ai_edge_torch/fx_pass_base.py +110 -0
  38. ai_edge_torch/generative/__init__.py +14 -0
  39. ai_edge_torch/generative/examples/__init__.py +14 -0
  40. ai_edge_torch/generative/examples/amd_llama_135m/__init__.py +14 -0
  41. ai_edge_torch/generative/examples/amd_llama_135m/amd_llama_135m.py +87 -0
  42. ai_edge_torch/generative/examples/amd_llama_135m/convert_to_tflite.py +70 -0
  43. ai_edge_torch/generative/examples/amd_llama_135m/verify.py +72 -0
  44. ai_edge_torch/generative/examples/gemma/__init__.py +14 -0
  45. ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +80 -0
  46. ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +80 -0
  47. ai_edge_torch/generative/examples/gemma/gemma1.py +107 -0
  48. ai_edge_torch/generative/examples/gemma/gemma2.py +295 -0
  49. ai_edge_torch/generative/examples/gemma/verify_gemma1.py +56 -0
  50. ai_edge_torch/generative/examples/gemma/verify_gemma2.py +43 -0
  51. ai_edge_torch/generative/examples/gemma/verify_util.py +157 -0
  52. ai_edge_torch/generative/examples/llama/__init__.py +14 -0
  53. ai_edge_torch/generative/examples/llama/convert_to_tflite.py +91 -0
  54. ai_edge_torch/generative/examples/llama/llama.py +196 -0
  55. ai_edge_torch/generative/examples/llama/verify.py +88 -0
  56. ai_edge_torch/generative/examples/moonshine/__init__.py +14 -0
  57. ai_edge_torch/generative/examples/moonshine/convert_moonshine_to_tflite.py +50 -0
  58. ai_edge_torch/generative/examples/moonshine/moonshine.py +103 -0
  59. ai_edge_torch/generative/examples/openelm/__init__.py +14 -0
  60. ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +80 -0
  61. ai_edge_torch/generative/examples/openelm/openelm.py +127 -0
  62. ai_edge_torch/generative/examples/openelm/verify.py +71 -0
  63. ai_edge_torch/generative/examples/paligemma/__init__.py +14 -0
  64. ai_edge_torch/generative/examples/paligemma/convert_to_tflite.py +95 -0
  65. ai_edge_torch/generative/examples/paligemma/decoder.py +151 -0
  66. ai_edge_torch/generative/examples/paligemma/decoder2.py +177 -0
  67. ai_edge_torch/generative/examples/paligemma/image_encoder.py +160 -0
  68. ai_edge_torch/generative/examples/paligemma/paligemma.py +179 -0
  69. ai_edge_torch/generative/examples/paligemma/verify.py +161 -0
  70. ai_edge_torch/generative/examples/paligemma/verify_decoder.py +75 -0
  71. ai_edge_torch/generative/examples/paligemma/verify_decoder2.py +72 -0
  72. ai_edge_torch/generative/examples/paligemma/verify_image_encoder.py +99 -0
  73. ai_edge_torch/generative/examples/phi/__init__.py +14 -0
  74. ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +80 -0
  75. ai_edge_torch/generative/examples/phi/convert_to_tflite.py +80 -0
  76. ai_edge_torch/generative/examples/phi/phi2.py +107 -0
  77. ai_edge_torch/generative/examples/phi/phi3.py +219 -0
  78. ai_edge_torch/generative/examples/phi/verify.py +64 -0
  79. ai_edge_torch/generative/examples/phi/verify_phi3.py +69 -0
  80. ai_edge_torch/generative/examples/qwen/__init__.py +14 -0
  81. ai_edge_torch/generative/examples/qwen/convert_to_tflite.py +93 -0
  82. ai_edge_torch/generative/examples/qwen/qwen.py +134 -0
  83. ai_edge_torch/generative/examples/qwen/verify.py +88 -0
  84. ai_edge_torch/generative/examples/smollm/__init__.py +14 -0
  85. ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +80 -0
  86. ai_edge_torch/generative/examples/smollm/convert_v2_to_tflite.py +71 -0
  87. ai_edge_torch/generative/examples/smollm/smollm.py +125 -0
  88. ai_edge_torch/generative/examples/smollm/verify.py +86 -0
  89. ai_edge_torch/generative/examples/stable_diffusion/__init__.py +14 -0
  90. ai_edge_torch/generative/examples/stable_diffusion/attention.py +108 -0
  91. ai_edge_torch/generative/examples/stable_diffusion/clip.py +185 -0
  92. ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +173 -0
  93. ai_edge_torch/generative/examples/stable_diffusion/decoder.py +398 -0
  94. ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +749 -0
  95. ai_edge_torch/generative/examples/stable_diffusion/encoder.py +119 -0
  96. ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +254 -0
  97. ai_edge_torch/generative/examples/stable_diffusion/samplers/__init__.py +19 -0
  98. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +62 -0
  99. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +66 -0
  100. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +74 -0
  101. ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +39 -0
  102. ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +111 -0
  103. ai_edge_torch/generative/examples/stable_diffusion/util.py +77 -0
  104. ai_edge_torch/generative/examples/t5/__init__.py +14 -0
  105. ai_edge_torch/generative/examples/t5/convert_to_tflite.py +138 -0
  106. ai_edge_torch/generative/examples/t5/t5.py +655 -0
  107. ai_edge_torch/generative/examples/t5/t5_attention.py +246 -0
  108. ai_edge_torch/generative/examples/test_models/__init__.py +14 -0
  109. ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
  110. ai_edge_torch/generative/examples/test_models/toy_model.py +156 -0
  111. ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +138 -0
  112. ai_edge_torch/generative/examples/tiny_llama/__init__.py +14 -0
  113. ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +80 -0
  114. ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +88 -0
  115. ai_edge_torch/generative/examples/tiny_llama/verify.py +72 -0
  116. ai_edge_torch/generative/fx_passes/__init__.py +30 -0
  117. ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +50 -0
  118. ai_edge_torch/generative/layers/__init__.py +14 -0
  119. ai_edge_torch/generative/layers/attention.py +399 -0
  120. ai_edge_torch/generative/layers/attention_utils.py +210 -0
  121. ai_edge_torch/generative/layers/builder.py +160 -0
  122. ai_edge_torch/generative/layers/feed_forward.py +120 -0
  123. ai_edge_torch/generative/layers/kv_cache.py +204 -0
  124. ai_edge_torch/generative/layers/lora.py +557 -0
  125. ai_edge_torch/generative/layers/model_config.py +238 -0
  126. ai_edge_torch/generative/layers/normalization.py +222 -0
  127. ai_edge_torch/generative/layers/rotary_position_embedding.py +94 -0
  128. ai_edge_torch/generative/layers/scaled_dot_product_attention.py +144 -0
  129. ai_edge_torch/generative/layers/unet/__init__.py +14 -0
  130. ai_edge_torch/generative/layers/unet/blocks_2d.py +806 -0
  131. ai_edge_torch/generative/layers/unet/builder.py +50 -0
  132. ai_edge_torch/generative/layers/unet/model_config.py +282 -0
  133. ai_edge_torch/generative/quantize/__init__.py +14 -0
  134. ai_edge_torch/generative/quantize/example.py +47 -0
  135. ai_edge_torch/generative/quantize/quant_attrs.py +68 -0
  136. ai_edge_torch/generative/quantize/quant_recipe.py +154 -0
  137. ai_edge_torch/generative/quantize/quant_recipe_utils.py +62 -0
  138. ai_edge_torch/generative/quantize/quant_recipes.py +56 -0
  139. ai_edge_torch/generative/quantize/supported_schemes.py +32 -0
  140. ai_edge_torch/generative/test/__init__.py +14 -0
  141. ai_edge_torch/generative/test/test_custom_dus.py +107 -0
  142. ai_edge_torch/generative/test/test_kv_cache.py +120 -0
  143. ai_edge_torch/generative/test/test_loader.py +83 -0
  144. ai_edge_torch/generative/test/test_lora.py +147 -0
  145. ai_edge_torch/generative/test/test_model_conversion.py +191 -0
  146. ai_edge_torch/generative/test/test_model_conversion_large.py +362 -0
  147. ai_edge_torch/generative/test/test_quantize.py +183 -0
  148. ai_edge_torch/generative/test/utils.py +82 -0
  149. ai_edge_torch/generative/utilities/__init__.py +15 -0
  150. ai_edge_torch/generative/utilities/converter.py +215 -0
  151. ai_edge_torch/generative/utilities/dynamic_update_slice.py +56 -0
  152. ai_edge_torch/generative/utilities/loader.py +398 -0
  153. ai_edge_torch/generative/utilities/model_builder.py +180 -0
  154. ai_edge_torch/generative/utilities/moonshine_loader.py +154 -0
  155. ai_edge_torch/generative/utilities/stable_diffusion_loader.py +1032 -0
  156. ai_edge_torch/generative/utilities/t5_loader.py +512 -0
  157. ai_edge_torch/generative/utilities/transformers_verifier.py +42 -0
  158. ai_edge_torch/generative/utilities/verifier.py +335 -0
  159. ai_edge_torch/hlfb/__init__.py +16 -0
  160. ai_edge_torch/hlfb/mark_pattern/__init__.py +153 -0
  161. ai_edge_torch/hlfb/mark_pattern/fx_utils.py +69 -0
  162. ai_edge_torch/hlfb/mark_pattern/pattern.py +288 -0
  163. ai_edge_torch/hlfb/test/__init__.py +14 -0
  164. ai_edge_torch/hlfb/test/test_mark_pattern.py +185 -0
  165. ai_edge_torch/lowertools/__init__.py +18 -0
  166. ai_edge_torch/lowertools/_shim.py +86 -0
  167. ai_edge_torch/lowertools/common_utils.py +142 -0
  168. ai_edge_torch/lowertools/odml_torch_utils.py +260 -0
  169. ai_edge_torch/lowertools/test_utils.py +62 -0
  170. ai_edge_torch/lowertools/torch_xla_utils.py +301 -0
  171. ai_edge_torch/lowertools/translate_recipe.py +163 -0
  172. ai_edge_torch/model.py +177 -0
  173. ai_edge_torch/odml_torch/__init__.py +20 -0
  174. ai_edge_torch/odml_torch/_torch_future.py +88 -0
  175. ai_edge_torch/odml_torch/_torch_library.py +19 -0
  176. ai_edge_torch/odml_torch/composite/__init__.py +16 -0
  177. ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
  178. ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
  179. ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
  180. ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
  181. ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
  182. ai_edge_torch/odml_torch/export.py +403 -0
  183. ai_edge_torch/odml_torch/export_utils.py +157 -0
  184. ai_edge_torch/odml_torch/jax_bridge/__init__.py +18 -0
  185. ai_edge_torch/odml_torch/jax_bridge/_wrap.py +180 -0
  186. ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
  187. ai_edge_torch/odml_torch/lowerings/__init__.py +27 -0
  188. ai_edge_torch/odml_torch/lowerings/_basic.py +294 -0
  189. ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
  190. ai_edge_torch/odml_torch/lowerings/_convolution.py +243 -0
  191. ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +285 -0
  192. ai_edge_torch/odml_torch/lowerings/_layer_norm.py +87 -0
  193. ai_edge_torch/odml_torch/lowerings/_quantized_decomposed.py +177 -0
  194. ai_edge_torch/odml_torch/lowerings/_rand.py +142 -0
  195. ai_edge_torch/odml_torch/lowerings/context.py +42 -0
  196. ai_edge_torch/odml_torch/lowerings/decomp.py +69 -0
  197. ai_edge_torch/odml_torch/lowerings/registry.py +65 -0
  198. ai_edge_torch/odml_torch/lowerings/utils.py +201 -0
  199. ai_edge_torch/odml_torch/passes/__init__.py +38 -0
  200. ai_edge_torch/odml_torch/tf_integration.py +156 -0
  201. ai_edge_torch/quantize/__init__.py +16 -0
  202. ai_edge_torch/quantize/pt2e_quantizer.py +466 -0
  203. ai_edge_torch/quantize/pt2e_quantizer_utils.py +1061 -0
  204. ai_edge_torch/quantize/quant_config.py +85 -0
  205. ai_edge_torch/testing/__init__.py +14 -0
  206. ai_edge_torch/testing/model_coverage/__init__.py +16 -0
  207. ai_edge_torch/testing/model_coverage/model_coverage.py +145 -0
  208. ai_edge_torch/version.py +16 -0
  209. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/LICENSE +202 -0
  210. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/METADATA +44 -0
  211. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/RECORD +213 -0
  212. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/WHEEL +5 -0
  213. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/top_level.txt +1 -0
@@ -0,0 +1,56 @@
1
+ # Copyright 2024 The AI Edge Torch Authors. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ """Helper functions to create common and supported quantization recipes.
17
+
18
+ These recipes will work with models created with the Edge Generative API only.
19
+ Assume Transformer architecture congruent with
20
+ ai_edge_torch/generative/layers/model_config.py:ModelConfig.
21
+
22
+ Typical usage example:
23
+
24
+ quant_config = quant_recipes.full_int8_dynamic_recipe()
25
+ edge_model = ai_edge_torch.convert(
26
+ model, (tokens, input_pos), quant_config=quant_config
27
+ )
28
+ """
29
+
30
+ from ai_edge_torch.generative.quantize import quant_recipe
31
+ from ai_edge_torch.generative.quantize import quant_recipe_utils
32
+ from ai_edge_torch.quantize import quant_config
33
+
34
+
35
+ def full_int8_dynamic_recipe() -> quant_config.QuantConfig:
36
+ return quant_config.QuantConfig(
37
+ generative_recipe=quant_recipe.GenerativeQuantRecipe(
38
+ default=quant_recipe_utils.create_layer_quant_int8_dynamic(),
39
+ )
40
+ )
41
+
42
+
43
+ def full_int8_weight_only_recipe() -> quant_config.QuantConfig:
44
+ return quant_config.QuantConfig(
45
+ generative_recipe=quant_recipe.GenerativeQuantRecipe(
46
+ default=quant_recipe_utils.create_layer_quant_int8_weight_only(),
47
+ )
48
+ )
49
+
50
+
51
+ def full_fp16_recipe() -> quant_config.QuantConfig:
52
+ return quant_config.QuantConfig(
53
+ generative_recipe=quant_recipe.GenerativeQuantRecipe(
54
+ default=quant_recipe_utils.create_layer_quant_fp16()
55
+ )
56
+ )
@@ -0,0 +1,32 @@
1
+ # Copyright 2024 The AI Edge Torch Authors. All Rights Reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+
17
+ def get_supported_layer_schemes():
18
+ """List of layer-scoped quantization schemes supported in runtime.
19
+
20
+ Returns:
21
+ List of tuple(activation_dtype, weight_dtype, mode, algorithm, granularity).
22
+ """
23
+ from ai_edge_torch.generative.quantize.quant_attrs import Algorithm as _a
24
+ from ai_edge_torch.generative.quantize.quant_attrs import Dtype as _t
25
+ from ai_edge_torch.generative.quantize.quant_attrs import Granularity as _g
26
+ from ai_edge_torch.generative.quantize.quant_attrs import Mode as _m
27
+
28
+ return [
29
+ (_t.FP32, _t.INT8, _m.DYNAMIC_RANGE, _a.MIN_MAX, _g.CHANNELWISE),
30
+ (_t.FP32, _t.INT8, _m.WEIGHT_ONLY, _a.MIN_MAX, _g.CHANNELWISE),
31
+ (_t.FP32, _t.FP16, _m.WEIGHT_ONLY, _a.FLOAT_CAST, _g.NONE),
32
+ ]
@@ -0,0 +1,14 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
@@ -0,0 +1,107 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ """A suite of tests to validate the Dynamic Update Slice Custom Op."""
17
+
18
+ from ai_edge_torch.generative.layers import kv_cache as kv_utils
19
+ import ai_edge_torch.generative.layers.model_config as cfg
20
+ import torch
21
+ from torch import nn
22
+
23
+ from absl.testing import absltest as googletest, parameterized
24
+
25
+
26
+ def updated_slice_matches(buffer, update, index):
27
+ indexer = [slice(i, i + d) for i, d in zip(index, update.shape)]
28
+ buf = buffer[indexer]
29
+ return torch.allclose(buf, update)
30
+
31
+
32
+ def intT(x):
33
+ return torch.tensor(x).int()
34
+
35
+
36
+ class DUSMod(nn.Module):
37
+
38
+ def forward(self, buffer, update, index):
39
+ out = dynamic_update_slice(buffer, update, index)
40
+ out = out * 2
41
+ return out
42
+
43
+
44
+ @googletest.skip('Enable this when odml_torch is default b/373387583')
45
+ class TestCustomDUS(parameterized.TestCase):
46
+
47
+ @parameterized.named_parameters(
48
+ (
49
+ 'DUS_whole_buffer',
50
+ torch.randn(1, 1280, 4, 64),
51
+ torch.randn([1, 1024, 4, 64]),
52
+ [intT(0), intT(0), intT(0), intT(0)],
53
+ ),
54
+ (
55
+ 'DUS_kv_example',
56
+ torch.randn(2, 1280, 4, 64),
57
+ torch.randn([2, 1024, 4, 64]),
58
+ [intT(0), intT(0), intT(0), intT(0)],
59
+ ),
60
+ (
61
+ 'DUS_3d',
62
+ torch.randn(2, 256, 4, 64),
63
+ torch.randn([2, 256, 2, 64]),
64
+ [intT(0), intT(0), intT(2), intT(0)],
65
+ ),
66
+ (
67
+ 'DUS_3d_v2',
68
+ torch.randn(2, 256, 4, 64),
69
+ torch.randn([2, 256, 3, 64]),
70
+ [intT(0), intT(0), intT(1), intT(0)],
71
+ ),
72
+ (
73
+ 'DUS_3d_v3',
74
+ torch.randn(6, 8, 32),
75
+ torch.randn([6, 3, 32]),
76
+ [intT(0), intT(5), intT(0)],
77
+ ),
78
+ (
79
+ 'DUS_2d',
80
+ torch.randn(8, 32),
81
+ torch.randn([8, 12]),
82
+ [intT(0), intT(20)],
83
+ ),
84
+ )
85
+ def test_opcheck_dynamic_update_slice(self, buffer, update, indices):
86
+ torch.library.opcheck(dynamic_update_slice, (buffer, update, indices))
87
+ out = dynamic_update_slice(buffer, update, indices)
88
+ self.assertTrue(updated_slice_matches(out, update, indices))
89
+
90
+ def test_exported_program(self):
91
+ buffer = torch.randn(1, 1280, 4, 64)
92
+ update = torch.randn([1, 1024, 4, 64])
93
+ index = [intT(0), intT(0), intT(0), intT(0)]
94
+ dm = DUSMod()
95
+ ep = torch.export.export(dm, (buffer, update, index))
96
+ dus_in_exported_program = False
97
+ for node in ep.graph.nodes:
98
+ if node.op == 'call_function':
99
+ if node.target.__name__.startswith('dynamic_update_slice'):
100
+ dus_in_exported_program = True
101
+ break
102
+
103
+ self.assertTrue(dus_in_exported_program)
104
+
105
+
106
+ if __name__ == '__main__':
107
+ googletest.main()
@@ -0,0 +1,120 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ """A suite of tests to validate KV Cache layer."""
17
+
18
+ from ai_edge_torch.generative.layers import kv_cache as kv_utils
19
+ import ai_edge_torch.generative.layers.model_config as cfg
20
+ import torch
21
+
22
+ from absl.testing import absltest as googletest
23
+
24
+
25
+ class TestKVLayers(googletest.TestCase):
26
+
27
+ def _get_test_config(
28
+ self, num_layers, head_dim, num_query_groups, kv_cache_max_len
29
+ ):
30
+ attn_config = cfg.AttentionConfig(
31
+ num_heads=1, head_dim=head_dim, num_query_groups=num_query_groups
32
+ )
33
+ block_config = cfg.TransformerBlockConfig(
34
+ attn_config=attn_config, ff_config=None
35
+ )
36
+ config = cfg.ModelConfig(
37
+ kv_cache_max_len=kv_cache_max_len,
38
+ embedding_dim=head_dim,
39
+ block_configs=block_config,
40
+ num_layers=num_layers,
41
+ max_seq_len=None,
42
+ vocab_size=None,
43
+ )
44
+ return config
45
+
46
+ def test_cache_udpate(self):
47
+ N = 1
48
+ HEAD_DIM = 2
49
+ NUM_QG = 1
50
+ KV_LEN = 4
51
+ config = self._get_test_config(
52
+ num_layers=N,
53
+ head_dim=HEAD_DIM,
54
+ num_query_groups=NUM_QG,
55
+ kv_cache_max_len=KV_LEN,
56
+ )
57
+ kv = kv_utils.KVCache.from_model_config(config)
58
+ entry = kv.caches[0]
59
+ # single-slice update
60
+ input_pos = torch.tensor([1])
61
+ k_slice = v_slice = torch.full(
62
+ (1, 1, NUM_QG, HEAD_DIM), 5, dtype=torch.float
63
+ )
64
+ updated_entry = kv_utils.update(entry, input_pos, k_slice, v_slice)
65
+ self.assertEqual(
66
+ updated_entry.k_cache.numpy().flatten().tolist(),
67
+ [0, 0, 5, 5, 0, 0, 0, 0],
68
+ )
69
+ self.assertEqual(
70
+ updated_entry.v_cache.numpy().flatten().tolist(),
71
+ [0, 0, 5, 5, 0, 0, 0, 0],
72
+ )
73
+ # multi-slice update
74
+ input_pos = torch.tensor([0, 1])
75
+ k_slice = v_slice = torch.full(
76
+ (1, 2, NUM_QG, HEAD_DIM), 7, dtype=torch.float
77
+ )
78
+ updated_entry = kv_utils.update(entry, input_pos, k_slice, v_slice)
79
+ self.assertEqual(
80
+ updated_entry.k_cache.numpy().flatten().tolist(),
81
+ [7, 7, 7, 7, 0, 0, 0, 0],
82
+ )
83
+ self.assertEqual(
84
+ updated_entry.v_cache.numpy().flatten().tolist(),
85
+ [7, 7, 7, 7, 0, 0, 0, 0],
86
+ )
87
+
88
+ def test_serialization(self):
89
+ class TestModel(torch.nn.Module):
90
+
91
+ def forward(self, kv: kv_utils.KVCache) -> kv_utils.KVCache:
92
+ updated_kv_entries = [
93
+ kv_utils.KVCacheEntry(
94
+ torch.zeros_like(entry.k_cache), torch.zeros_like(entry.v_cache)
95
+ )
96
+ for entry in kv.caches
97
+ ]
98
+ return kv_utils.KVCache(updated_kv_entries)
99
+
100
+ N = 1
101
+ HEAD_DIM = 2
102
+ NUM_QG = 1
103
+ KV_LEN = 4
104
+ config = self._get_test_config(
105
+ num_layers=N,
106
+ head_dim=HEAD_DIM,
107
+ num_query_groups=NUM_QG,
108
+ kv_cache_max_len=KV_LEN,
109
+ )
110
+ kv = kv_utils.KVCache.from_model_config(config)
111
+ model = TestModel()
112
+ exported_program = torch.export.export(model, (kv,))
113
+ input_specs = exported_program.graph_signature.input_specs
114
+ self.assertEqual(len(input_specs), 2)
115
+ self.assertEqual(input_specs[0].arg.name, "kv_k_0")
116
+ self.assertEqual(input_specs[1].arg.name, "kv_v_0")
117
+
118
+
119
+ if __name__ == "__main__":
120
+ googletest.main()
@@ -0,0 +1,83 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ # Testing weight loader utilities.
16
+
17
+ import os
18
+ import tempfile
19
+
20
+ from ai_edge_torch.generative.examples.tiny_llama import tiny_llama
21
+ from ai_edge_torch.generative.utilities import loader as loading_utils
22
+ from ai_edge_torch.generative.utilities import model_builder
23
+ import safetensors.torch
24
+ import torch
25
+
26
+ from absl.testing import absltest as googletest
27
+
28
+
29
+ class TestLoader(googletest.TestCase):
30
+ """Unit tests that check weight loader."""
31
+
32
+ def test_load_safetensors(self):
33
+ with tempfile.TemporaryDirectory() as temp_dir:
34
+ file_path = os.path.join(temp_dir, "test.safetensors")
35
+ test_data = {"weight": torch.randn(20, 10), "bias": torch.randn(20)}
36
+ safetensors.torch.save_file(test_data, file_path)
37
+
38
+ loaded_tensors = loading_utils.load_safetensors(file_path)
39
+ self.assertIn("weight", loaded_tensors)
40
+ self.assertIn("bias", loaded_tensors)
41
+
42
+ def test_load_statedict(self):
43
+ with tempfile.TemporaryDirectory() as temp_dir:
44
+ file_path = os.path.join(temp_dir, "test.pt")
45
+ model = torch.nn.Linear(10, 5)
46
+ state_dict = model.state_dict()
47
+ torch.save(state_dict, file_path)
48
+
49
+ loaded_tensors = loading_utils.load_pytorch_statedict(file_path)
50
+ self.assertIn("weight", loaded_tensors)
51
+ self.assertIn("bias", loaded_tensors)
52
+
53
+ def test_model_loader(self):
54
+ with tempfile.TemporaryDirectory() as temp_dir:
55
+ file_path = os.path.join(temp_dir, "test.safetensors")
56
+ test_weights = {
57
+ "lm_head.weight": torch.randn((32000, 2048)),
58
+ "model.embed_tokens.weight": torch.randn((32000, 2048)),
59
+ "model.layers.0.input_layernorm.weight": torch.randn((2048,)),
60
+ "model.layers.0.mlp.down_proj.weight": torch.randn((2048, 5632)),
61
+ "model.layers.0.mlp.gate_proj.weight": torch.randn((5632, 2048)),
62
+ "model.layers.0.mlp.up_proj.weight": torch.randn((5632, 2048)),
63
+ "model.layers.0.post_attention_layernorm.weight": torch.randn((
64
+ 2048,
65
+ )),
66
+ "model.layers.0.self_attn.k_proj.weight": torch.randn((256, 2048)),
67
+ "model.layers.0.self_attn.o_proj.weight": torch.randn((2048, 2048)),
68
+ "model.layers.0.self_attn.q_proj.weight": torch.randn((2048, 2048)),
69
+ "model.layers.0.self_attn.v_proj.weight": torch.randn((256, 2048)),
70
+ "model.norm.weight": torch.randn((2048,)),
71
+ }
72
+ safetensors.torch.save_file(test_weights, file_path)
73
+ cfg = tiny_llama.get_model_config()
74
+ cfg.num_layers = 1
75
+ model = model_builder.DecoderOnlyModel(cfg)
76
+
77
+ loader = loading_utils.ModelLoader(file_path, tiny_llama.TENSOR_NAMES)
78
+ # if returns successfully, it means all the tensors were initiallized.
79
+ loader.load(model, strict=True)
80
+
81
+
82
+ if __name__ == "__main__":
83
+ googletest.main()
@@ -0,0 +1,147 @@
1
+ # Copyright 2025 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ """A suite of tests to validate LoRA utilities."""
17
+
18
+ from ai_edge_torch.generative.layers import lora as lora_utils
19
+ import ai_edge_torch.generative.layers.model_config as cfg
20
+ import torch
21
+ from absl.testing import absltest as googletest
22
+ from tensorflow.python.platform import resource_loader # pylint: disable=g-direct-tensorflow-import
23
+
24
+
25
+ class TestLora(googletest.TestCase):
26
+ """Tests for LoRA utilities."""
27
+
28
+ def test_safetensors_builder(self):
29
+ """Converts a safetensors file to a LoRA module."""
30
+
31
+ tensor_names = lora_utils.LoRATensorNames(
32
+ attn_query_w_a=(
33
+ "base_model.model.model.layers.{}.self_attn.q_proj.lora_A.weight"
34
+ ),
35
+ attn_query_w_b=(
36
+ "base_model.model.model.layers.{}.self_attn.q_proj.lora_B.weight"
37
+ ),
38
+ attn_key_w_a=(
39
+ "base_model.model.model.layers.{}.self_attn.k_proj.lora_A.weight"
40
+ ),
41
+ attn_key_w_b=(
42
+ "base_model.model.model.layers.{}.self_attn.k_proj.lora_B.weight"
43
+ ),
44
+ attn_value_w_a=(
45
+ "base_model.model.model.layers.{}.self_attn.v_proj.lora_A.weight"
46
+ ),
47
+ attn_value_w_b=(
48
+ "base_model.model.model.layers.{}.self_attn.v_proj.lora_B.weight"
49
+ ),
50
+ attn_output_w_a=(
51
+ "base_model.model.model.layers.{}.self_attn.o_proj.lora_A.weight"
52
+ ),
53
+ attn_output_w_b=(
54
+ "base_model.model.model.layers.{}.self_attn.o_proj.lora_B.weight"
55
+ ),
56
+ )
57
+
58
+ safetensors_file = resource_loader.get_path_to_datafile(
59
+ "fixtures/test_lora_rank16.safetensors"
60
+ )
61
+ config = self._get_test_config(
62
+ num_layers=1,
63
+ head_dim=8,
64
+ num_query_groups=1,
65
+ kv_cache_max_len=16,
66
+ )
67
+ lora = lora_utils.LoRA.from_safetensors(
68
+ safetensors_file,
69
+ scale=1.0,
70
+ lora_tensor_names=tensor_names,
71
+ config=config,
72
+ )
73
+ self.assertEqual(lora.get_rank(), 16)
74
+
75
+ def test_torch_export(self):
76
+ """Tests the export of the LoRA module."""
77
+
78
+ class TestModel(torch.nn.Module):
79
+
80
+ def forward(self, x: torch.Tensor, lora: lora_utils.LoRA) -> torch.Tensor:
81
+ x += lora_utils.apply_lora(x, lora.adapters[0].attention.query)
82
+ return x
83
+
84
+ n = 1
85
+ head_dim = 2
86
+ num_query_groups = 1
87
+ key_length = 4
88
+ config = self._get_test_config(
89
+ num_layers=n,
90
+ head_dim=head_dim,
91
+ num_query_groups=num_query_groups,
92
+ kv_cache_max_len=key_length,
93
+ )
94
+ inputs = torch.zeros((n, 1, head_dim))
95
+ lora = lora_utils.LoRA.zeros(rank=16, config=config)
96
+ model = TestModel()
97
+ exported_program = torch.export.export(model, (inputs, lora))
98
+ input_specs = exported_program.graph_signature.input_specs
99
+ # 9 inputs: 1 for x, 2 for query lora, 2 for key lora, 2 for value lora,
100
+ # 2 for output lora.
101
+ self.assertLen(input_specs, 9)
102
+ self.assertEqual(input_specs[0].arg.name, "x")
103
+ self.assertEqual(input_specs[1].arg.name, "lora_atten_q_a_prime_weight_0")
104
+ self.assertEqual(input_specs[2].arg.name, "lora_atten_q_b_prime_weight_0")
105
+ self.assertEqual(input_specs[3].arg.name, "lora_atten_k_a_prime_weight_0")
106
+ self.assertEqual(input_specs[4].arg.name, "lora_atten_k_b_prime_weight_0")
107
+ self.assertEqual(input_specs[5].arg.name, "lora_atten_v_a_prime_weight_0")
108
+ self.assertEqual(input_specs[6].arg.name, "lora_atten_v_b_prime_weight_0")
109
+ self.assertEqual(input_specs[7].arg.name, "lora_atten_o_a_prime_weight_0")
110
+ self.assertEqual(input_specs[8].arg.name, "lora_atten_o_b_prime_weight_0")
111
+
112
+ def test_lora_tflite_serialization(self):
113
+ """Tests the serialization of the LoRA module."""
114
+ config = self._get_test_config(
115
+ num_layers=2,
116
+ head_dim=8,
117
+ num_query_groups=1,
118
+ kv_cache_max_len=16,
119
+ )
120
+ lora = lora_utils.LoRA.random(rank=16, config=config)
121
+ flatbuffer_model = lora.to_tflite()
122
+ recovered_lora = lora_utils.LoRA.from_flatbuffers(flatbuffer_model)
123
+ self.assertEqual(lora, recovered_lora)
124
+
125
+ def _get_test_config(
126
+ self, num_layers, head_dim, num_query_groups, kv_cache_max_len
127
+ ):
128
+ """Returns a test model config."""
129
+ attn_config = cfg.AttentionConfig(
130
+ num_heads=1, head_dim=head_dim, num_query_groups=num_query_groups
131
+ )
132
+ block_config = cfg.TransformerBlockConfig(
133
+ attn_config=attn_config, ff_config=None
134
+ )
135
+ config = cfg.ModelConfig(
136
+ kv_cache_max_len=kv_cache_max_len,
137
+ embedding_dim=head_dim,
138
+ block_configs=block_config,
139
+ num_layers=num_layers,
140
+ max_seq_len=None,
141
+ vocab_size=None,
142
+ )
143
+ return config
144
+
145
+
146
+ if __name__ == "__main__":
147
+ googletest.main()