ai-edge-torch-nightly 0.3.0.dev20250114__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- ai_edge_torch/__init__.py +32 -0
- ai_edge_torch/_config.py +69 -0
- ai_edge_torch/_convert/__init__.py +14 -0
- ai_edge_torch/_convert/conversion.py +153 -0
- ai_edge_torch/_convert/conversion_utils.py +64 -0
- ai_edge_torch/_convert/converter.py +270 -0
- ai_edge_torch/_convert/fx_passes/__init__.py +23 -0
- ai_edge_torch/_convert/fx_passes/build_aten_composite_pass.py +288 -0
- ai_edge_torch/_convert/fx_passes/build_interpolate_composite_pass.py +131 -0
- ai_edge_torch/_convert/fx_passes/inject_mlir_debuginfo_pass.py +73 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/__init__.py +16 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_check.py +258 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_mark.py +50 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +18 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +68 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +216 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +449 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +30 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/pass_body.py +303 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/utils.py +64 -0
- ai_edge_torch/_convert/fx_passes/remove_non_user_outputs_pass.py +52 -0
- ai_edge_torch/_convert/signature.py +66 -0
- ai_edge_torch/_convert/test/__init__.py +14 -0
- ai_edge_torch/_convert/test/test_convert.py +558 -0
- ai_edge_torch/_convert/test/test_convert_composites.py +234 -0
- ai_edge_torch/_convert/test/test_convert_multisig.py +189 -0
- ai_edge_torch/_convert/test/test_to_channel_last_io.py +96 -0
- ai_edge_torch/_convert/to_channel_last_io.py +92 -0
- ai_edge_torch/conftest.py +20 -0
- ai_edge_torch/debug/__init__.py +17 -0
- ai_edge_torch/debug/culprit.py +496 -0
- ai_edge_torch/debug/test/__init__.py +14 -0
- ai_edge_torch/debug/test/test_culprit.py +140 -0
- ai_edge_torch/debug/test/test_search_model.py +51 -0
- ai_edge_torch/debug/utils.py +59 -0
- ai_edge_torch/experimental/__init__.py +14 -0
- ai_edge_torch/fx_pass_base.py +110 -0
- ai_edge_torch/generative/__init__.py +14 -0
- ai_edge_torch/generative/examples/__init__.py +14 -0
- ai_edge_torch/generative/examples/amd_llama_135m/__init__.py +14 -0
- ai_edge_torch/generative/examples/amd_llama_135m/amd_llama_135m.py +87 -0
- ai_edge_torch/generative/examples/amd_llama_135m/convert_to_tflite.py +70 -0
- ai_edge_torch/generative/examples/amd_llama_135m/verify.py +72 -0
- ai_edge_torch/generative/examples/gemma/__init__.py +14 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/gemma/gemma1.py +107 -0
- ai_edge_torch/generative/examples/gemma/gemma2.py +295 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma1.py +56 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma2.py +43 -0
- ai_edge_torch/generative/examples/gemma/verify_util.py +157 -0
- ai_edge_torch/generative/examples/llama/__init__.py +14 -0
- ai_edge_torch/generative/examples/llama/convert_to_tflite.py +91 -0
- ai_edge_torch/generative/examples/llama/llama.py +196 -0
- ai_edge_torch/generative/examples/llama/verify.py +88 -0
- ai_edge_torch/generative/examples/moonshine/__init__.py +14 -0
- ai_edge_torch/generative/examples/moonshine/convert_moonshine_to_tflite.py +50 -0
- ai_edge_torch/generative/examples/moonshine/moonshine.py +103 -0
- ai_edge_torch/generative/examples/openelm/__init__.py +14 -0
- ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/openelm/openelm.py +127 -0
- ai_edge_torch/generative/examples/openelm/verify.py +71 -0
- ai_edge_torch/generative/examples/paligemma/__init__.py +14 -0
- ai_edge_torch/generative/examples/paligemma/convert_to_tflite.py +95 -0
- ai_edge_torch/generative/examples/paligemma/decoder.py +151 -0
- ai_edge_torch/generative/examples/paligemma/decoder2.py +177 -0
- ai_edge_torch/generative/examples/paligemma/image_encoder.py +160 -0
- ai_edge_torch/generative/examples/paligemma/paligemma.py +179 -0
- ai_edge_torch/generative/examples/paligemma/verify.py +161 -0
- ai_edge_torch/generative/examples/paligemma/verify_decoder.py +75 -0
- ai_edge_torch/generative/examples/paligemma/verify_decoder2.py +72 -0
- ai_edge_torch/generative/examples/paligemma/verify_image_encoder.py +99 -0
- ai_edge_torch/generative/examples/phi/__init__.py +14 -0
- ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/phi/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/phi/phi2.py +107 -0
- ai_edge_torch/generative/examples/phi/phi3.py +219 -0
- ai_edge_torch/generative/examples/phi/verify.py +64 -0
- ai_edge_torch/generative/examples/phi/verify_phi3.py +69 -0
- ai_edge_torch/generative/examples/qwen/__init__.py +14 -0
- ai_edge_torch/generative/examples/qwen/convert_to_tflite.py +93 -0
- ai_edge_torch/generative/examples/qwen/qwen.py +134 -0
- ai_edge_torch/generative/examples/qwen/verify.py +88 -0
- ai_edge_torch/generative/examples/smollm/__init__.py +14 -0
- ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/smollm/convert_v2_to_tflite.py +71 -0
- ai_edge_torch/generative/examples/smollm/smollm.py +125 -0
- ai_edge_torch/generative/examples/smollm/verify.py +86 -0
- ai_edge_torch/generative/examples/stable_diffusion/__init__.py +14 -0
- ai_edge_torch/generative/examples/stable_diffusion/attention.py +108 -0
- ai_edge_torch/generative/examples/stable_diffusion/clip.py +185 -0
- ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +173 -0
- ai_edge_torch/generative/examples/stable_diffusion/decoder.py +398 -0
- ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +749 -0
- ai_edge_torch/generative/examples/stable_diffusion/encoder.py +119 -0
- ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +254 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/__init__.py +19 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +62 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +66 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +74 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +39 -0
- ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +111 -0
- ai_edge_torch/generative/examples/stable_diffusion/util.py +77 -0
- ai_edge_torch/generative/examples/t5/__init__.py +14 -0
- ai_edge_torch/generative/examples/t5/convert_to_tflite.py +138 -0
- ai_edge_torch/generative/examples/t5/t5.py +655 -0
- ai_edge_torch/generative/examples/t5/t5_attention.py +246 -0
- ai_edge_torch/generative/examples/test_models/__init__.py +14 -0
- ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
- ai_edge_torch/generative/examples/test_models/toy_model.py +156 -0
- ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +138 -0
- ai_edge_torch/generative/examples/tiny_llama/__init__.py +14 -0
- ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +88 -0
- ai_edge_torch/generative/examples/tiny_llama/verify.py +72 -0
- ai_edge_torch/generative/fx_passes/__init__.py +30 -0
- ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +50 -0
- ai_edge_torch/generative/layers/__init__.py +14 -0
- ai_edge_torch/generative/layers/attention.py +399 -0
- ai_edge_torch/generative/layers/attention_utils.py +210 -0
- ai_edge_torch/generative/layers/builder.py +160 -0
- ai_edge_torch/generative/layers/feed_forward.py +120 -0
- ai_edge_torch/generative/layers/kv_cache.py +204 -0
- ai_edge_torch/generative/layers/lora.py +557 -0
- ai_edge_torch/generative/layers/model_config.py +238 -0
- ai_edge_torch/generative/layers/normalization.py +222 -0
- ai_edge_torch/generative/layers/rotary_position_embedding.py +94 -0
- ai_edge_torch/generative/layers/scaled_dot_product_attention.py +144 -0
- ai_edge_torch/generative/layers/unet/__init__.py +14 -0
- ai_edge_torch/generative/layers/unet/blocks_2d.py +806 -0
- ai_edge_torch/generative/layers/unet/builder.py +50 -0
- ai_edge_torch/generative/layers/unet/model_config.py +282 -0
- ai_edge_torch/generative/quantize/__init__.py +14 -0
- ai_edge_torch/generative/quantize/example.py +47 -0
- ai_edge_torch/generative/quantize/quant_attrs.py +68 -0
- ai_edge_torch/generative/quantize/quant_recipe.py +154 -0
- ai_edge_torch/generative/quantize/quant_recipe_utils.py +62 -0
- ai_edge_torch/generative/quantize/quant_recipes.py +56 -0
- ai_edge_torch/generative/quantize/supported_schemes.py +32 -0
- ai_edge_torch/generative/test/__init__.py +14 -0
- ai_edge_torch/generative/test/test_custom_dus.py +107 -0
- ai_edge_torch/generative/test/test_kv_cache.py +120 -0
- ai_edge_torch/generative/test/test_loader.py +83 -0
- ai_edge_torch/generative/test/test_lora.py +147 -0
- ai_edge_torch/generative/test/test_model_conversion.py +191 -0
- ai_edge_torch/generative/test/test_model_conversion_large.py +362 -0
- ai_edge_torch/generative/test/test_quantize.py +183 -0
- ai_edge_torch/generative/test/utils.py +82 -0
- ai_edge_torch/generative/utilities/__init__.py +15 -0
- ai_edge_torch/generative/utilities/converter.py +215 -0
- ai_edge_torch/generative/utilities/dynamic_update_slice.py +56 -0
- ai_edge_torch/generative/utilities/loader.py +398 -0
- ai_edge_torch/generative/utilities/model_builder.py +180 -0
- ai_edge_torch/generative/utilities/moonshine_loader.py +154 -0
- ai_edge_torch/generative/utilities/stable_diffusion_loader.py +1032 -0
- ai_edge_torch/generative/utilities/t5_loader.py +512 -0
- ai_edge_torch/generative/utilities/transformers_verifier.py +42 -0
- ai_edge_torch/generative/utilities/verifier.py +335 -0
- ai_edge_torch/hlfb/__init__.py +16 -0
- ai_edge_torch/hlfb/mark_pattern/__init__.py +153 -0
- ai_edge_torch/hlfb/mark_pattern/fx_utils.py +69 -0
- ai_edge_torch/hlfb/mark_pattern/pattern.py +288 -0
- ai_edge_torch/hlfb/test/__init__.py +14 -0
- ai_edge_torch/hlfb/test/test_mark_pattern.py +185 -0
- ai_edge_torch/lowertools/__init__.py +18 -0
- ai_edge_torch/lowertools/_shim.py +86 -0
- ai_edge_torch/lowertools/common_utils.py +142 -0
- ai_edge_torch/lowertools/odml_torch_utils.py +260 -0
- ai_edge_torch/lowertools/test_utils.py +62 -0
- ai_edge_torch/lowertools/torch_xla_utils.py +301 -0
- ai_edge_torch/lowertools/translate_recipe.py +163 -0
- ai_edge_torch/model.py +177 -0
- ai_edge_torch/odml_torch/__init__.py +20 -0
- ai_edge_torch/odml_torch/_torch_future.py +88 -0
- ai_edge_torch/odml_torch/_torch_library.py +19 -0
- ai_edge_torch/odml_torch/composite/__init__.py +16 -0
- ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
- ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
- ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
- ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
- ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
- ai_edge_torch/odml_torch/export.py +403 -0
- ai_edge_torch/odml_torch/export_utils.py +157 -0
- ai_edge_torch/odml_torch/jax_bridge/__init__.py +18 -0
- ai_edge_torch/odml_torch/jax_bridge/_wrap.py +180 -0
- ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
- ai_edge_torch/odml_torch/lowerings/__init__.py +27 -0
- ai_edge_torch/odml_torch/lowerings/_basic.py +294 -0
- ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
- ai_edge_torch/odml_torch/lowerings/_convolution.py +243 -0
- ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +285 -0
- ai_edge_torch/odml_torch/lowerings/_layer_norm.py +87 -0
- ai_edge_torch/odml_torch/lowerings/_quantized_decomposed.py +177 -0
- ai_edge_torch/odml_torch/lowerings/_rand.py +142 -0
- ai_edge_torch/odml_torch/lowerings/context.py +42 -0
- ai_edge_torch/odml_torch/lowerings/decomp.py +69 -0
- ai_edge_torch/odml_torch/lowerings/registry.py +65 -0
- ai_edge_torch/odml_torch/lowerings/utils.py +201 -0
- ai_edge_torch/odml_torch/passes/__init__.py +38 -0
- ai_edge_torch/odml_torch/tf_integration.py +156 -0
- ai_edge_torch/quantize/__init__.py +16 -0
- ai_edge_torch/quantize/pt2e_quantizer.py +466 -0
- ai_edge_torch/quantize/pt2e_quantizer_utils.py +1061 -0
- ai_edge_torch/quantize/quant_config.py +85 -0
- ai_edge_torch/testing/__init__.py +14 -0
- ai_edge_torch/testing/model_coverage/__init__.py +16 -0
- ai_edge_torch/testing/model_coverage/model_coverage.py +145 -0
- ai_edge_torch/version.py +16 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/LICENSE +202 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/METADATA +44 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/RECORD +213 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/WHEEL +5 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/top_level.txt +1 -0
@@ -0,0 +1,160 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Example of building an image encoder of PaliGemma model which is Siglip."""
|
17
|
+
|
18
|
+
from ai_edge_torch.generative.layers import attention
|
19
|
+
from ai_edge_torch.generative.layers import builder
|
20
|
+
import ai_edge_torch.generative.layers.model_config as cfg
|
21
|
+
import ai_edge_torch.generative.utilities.loader as loading_utils
|
22
|
+
import torch
|
23
|
+
from torch import nn
|
24
|
+
|
25
|
+
TENSOR_NAMES = loading_utils.ModelLoader.TensorNames(
|
26
|
+
ff_up_proj="vision_tower.vision_model.encoder.layers.{}.mlp.fc1",
|
27
|
+
ff_down_proj="vision_tower.vision_model.encoder.layers.{}.mlp.fc2",
|
28
|
+
attn_query_proj=(
|
29
|
+
"vision_tower.vision_model.encoder.layers.{}.self_attn.q_proj"
|
30
|
+
),
|
31
|
+
attn_key_proj=(
|
32
|
+
"vision_tower.vision_model.encoder.layers.{}.self_attn.k_proj"
|
33
|
+
),
|
34
|
+
attn_value_proj=(
|
35
|
+
"vision_tower.vision_model.encoder.layers.{}.self_attn.v_proj"
|
36
|
+
),
|
37
|
+
attn_output_proj=(
|
38
|
+
"vision_tower.vision_model.encoder.layers.{}.self_attn.out_proj"
|
39
|
+
),
|
40
|
+
pre_attn_norm="vision_tower.vision_model.encoder.layers.{}.layer_norm1",
|
41
|
+
post_attn_norm="vision_tower.vision_model.encoder.layers.{}.layer_norm2",
|
42
|
+
embedding="vision_tower.vision_model.embeddings.patch_embedding",
|
43
|
+
embedding_position=(
|
44
|
+
"vision_tower.vision_model.embeddings.position_embedding.weight"
|
45
|
+
),
|
46
|
+
final_norm="vision_tower.vision_model.post_layernorm",
|
47
|
+
)
|
48
|
+
|
49
|
+
|
50
|
+
class SiglipVisionEncoder(nn.Module):
|
51
|
+
"""Signlip vision encoder from the Edge Generative API."""
|
52
|
+
|
53
|
+
def __init__(self, config: cfg.ModelConfig):
|
54
|
+
super().__init__()
|
55
|
+
|
56
|
+
# Construct model layers.
|
57
|
+
self.tok_embedding = nn.Conv2d(
|
58
|
+
in_channels=config.image_embedding.channels,
|
59
|
+
out_channels=config.embedding_dim,
|
60
|
+
kernel_size=config.image_embedding.patch_size,
|
61
|
+
stride=config.image_embedding.patch_size,
|
62
|
+
padding=0,
|
63
|
+
)
|
64
|
+
num_patches = (
|
65
|
+
config.image_embedding.image_size // config.image_embedding.patch_size
|
66
|
+
) ** 2
|
67
|
+
self.tok_embedding_position = nn.Parameter(
|
68
|
+
torch.zeros((num_patches, config.embedding_dim))
|
69
|
+
)
|
70
|
+
|
71
|
+
self.transformer_blocks = nn.ModuleList(
|
72
|
+
attention.TransformerBlock(config.block_config(idx), config)
|
73
|
+
for idx in range(config.num_layers)
|
74
|
+
)
|
75
|
+
self.final_norm = builder.build_norm(
|
76
|
+
config.embedding_dim,
|
77
|
+
config.final_norm_config,
|
78
|
+
)
|
79
|
+
self.config = config
|
80
|
+
|
81
|
+
@torch.inference_mode
|
82
|
+
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
|
83
|
+
# Embed the image according to SiplipVisionEmbeddings.
|
84
|
+
x = self.tok_embedding(pixel_values)
|
85
|
+
x = x.flatten(2).transpose(1, 2) + self.tok_embedding_position
|
86
|
+
|
87
|
+
# Pass a dummy mask because SDPA attention impl expects non-None mask.
|
88
|
+
mask = torch.zeros(x.shape[:2])
|
89
|
+
for _, block in enumerate(self.transformer_blocks):
|
90
|
+
x = block(x, mask=mask)
|
91
|
+
return self.final_norm(x)
|
92
|
+
|
93
|
+
|
94
|
+
def get_image_encoder_config() -> cfg.ModelConfig:
|
95
|
+
"""Returns the model config for the image encoder of a PaliGemma 3B-224 model.
|
96
|
+
|
97
|
+
Returns:
|
98
|
+
The model config for the image encoder of a PaliGemma 3B model.
|
99
|
+
"""
|
100
|
+
image_embedding_config = cfg.ImageEmbeddingConfig(
|
101
|
+
channels=3,
|
102
|
+
image_size=224,
|
103
|
+
patch_size=14,
|
104
|
+
)
|
105
|
+
attn_config = cfg.AttentionConfig(
|
106
|
+
num_heads=16,
|
107
|
+
head_dim=72,
|
108
|
+
num_query_groups=16,
|
109
|
+
qkv_use_bias=True,
|
110
|
+
output_proj_use_bias=True,
|
111
|
+
)
|
112
|
+
ff_config = cfg.FeedForwardConfig(
|
113
|
+
type=cfg.FeedForwardType.SEQUENTIAL,
|
114
|
+
activation=cfg.ActivationConfig(cfg.ActivationType.GELU_TANH),
|
115
|
+
intermediate_size=4304,
|
116
|
+
use_bias=True,
|
117
|
+
)
|
118
|
+
norm_config = cfg.NormalizationConfig(
|
119
|
+
type=cfg.NormalizationType.LAYER_NORM,
|
120
|
+
epsilon=1e-6,
|
121
|
+
enable_hlfb=True,
|
122
|
+
)
|
123
|
+
block_config = cfg.TransformerBlockConfig(
|
124
|
+
attn_config=attn_config,
|
125
|
+
ff_config=ff_config,
|
126
|
+
pre_attention_norm_config=norm_config,
|
127
|
+
post_attention_norm_config=norm_config,
|
128
|
+
)
|
129
|
+
config = cfg.ModelConfig(
|
130
|
+
vocab_size=0, # Not used in image encoder.
|
131
|
+
num_layers=27,
|
132
|
+
max_seq_len=0, # Not used in image encoder.
|
133
|
+
embedding_dim=1152,
|
134
|
+
embedding_use_bias=True,
|
135
|
+
image_embedding=image_embedding_config,
|
136
|
+
block_configs=block_config,
|
137
|
+
final_norm_config=norm_config,
|
138
|
+
enable_hlfb=True,
|
139
|
+
)
|
140
|
+
return config
|
141
|
+
|
142
|
+
|
143
|
+
def get_fake_image_encoder_config() -> cfg.ModelConfig:
|
144
|
+
config = get_image_encoder_config()
|
145
|
+
# PaliGemma image encoder has only one block config.
|
146
|
+
config.block_config(0).ff_config.intermediate_size = 128
|
147
|
+
config.image_embedding.image_size = 8
|
148
|
+
config.image_embedding.patch_size = 2
|
149
|
+
config.num_layers = 2
|
150
|
+
return config
|
151
|
+
|
152
|
+
|
153
|
+
def build_image_encoder(checkpoint_path: str) -> SiglipVisionEncoder:
|
154
|
+
config = get_image_encoder_config()
|
155
|
+
encoder = SiglipVisionEncoder(config)
|
156
|
+
loader = loading_utils.ModelLoader(checkpoint_path, TENSOR_NAMES)
|
157
|
+
# Loose the strictness because only image encoder is being loaded.
|
158
|
+
loader.load(encoder, strict=False)
|
159
|
+
encoder.eval()
|
160
|
+
return encoder
|
@@ -0,0 +1,179 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Example of building a full-stack of PaliGemma model."""
|
17
|
+
|
18
|
+
from dataclasses import dataclass
|
19
|
+
from typing import Optional
|
20
|
+
|
21
|
+
from ai_edge_torch.generative.examples.paligemma import decoder
|
22
|
+
from ai_edge_torch.generative.examples.paligemma import decoder2
|
23
|
+
from ai_edge_torch.generative.examples.paligemma import image_encoder
|
24
|
+
import ai_edge_torch.generative.layers.kv_cache as kv_utils
|
25
|
+
import ai_edge_torch.generative.layers.model_config as cfg
|
26
|
+
from ai_edge_torch.generative.utilities import model_builder
|
27
|
+
import ai_edge_torch.generative.utilities.loader as loading_utils
|
28
|
+
import torch
|
29
|
+
from torch import nn
|
30
|
+
|
31
|
+
PROJECTION_TENSOR_NAME = "multi_modal_projector.linear"
|
32
|
+
|
33
|
+
|
34
|
+
@dataclass
|
35
|
+
class PaliGemmaConfig:
|
36
|
+
"""PaliGemma model configurations."""
|
37
|
+
|
38
|
+
image_encoder_config: cfg.ModelConfig
|
39
|
+
decoder_config: cfg.ModelConfig
|
40
|
+
|
41
|
+
image_token_id: int
|
42
|
+
image_projection_scale: float
|
43
|
+
image_projection_use_bias: bool = False
|
44
|
+
|
45
|
+
|
46
|
+
class PaliGemma(nn.Module):
|
47
|
+
"""PaliGemma model from the Edge Generative API."""
|
48
|
+
|
49
|
+
def __init__(self, config: PaliGemmaConfig, decoder_class: nn.Module):
|
50
|
+
super().__init__()
|
51
|
+
|
52
|
+
self.image_encoder = image_encoder.SiglipVisionEncoder(
|
53
|
+
config.image_encoder_config
|
54
|
+
)
|
55
|
+
self.image_projection = nn.Linear(
|
56
|
+
config.image_encoder_config.embedding_dim,
|
57
|
+
config.decoder_config.embedding_dim,
|
58
|
+
bias=config.image_projection_use_bias,
|
59
|
+
)
|
60
|
+
self.decoder = decoder_class(config.decoder_config)
|
61
|
+
image_embedding_config = config.image_encoder_config.image_embedding
|
62
|
+
self.num_patches = (
|
63
|
+
image_embedding_config.image_size // image_embedding_config.patch_size
|
64
|
+
) ** 2
|
65
|
+
self.config = config
|
66
|
+
|
67
|
+
@torch.inference_mode
|
68
|
+
def forward(
|
69
|
+
self,
|
70
|
+
tokens: torch.Tensor,
|
71
|
+
input_pos: torch.Tensor,
|
72
|
+
kv_cache: kv_utils.KVCache,
|
73
|
+
mask: Optional[torch.Tensor] = None,
|
74
|
+
pixel_values: torch.Tensor = None,
|
75
|
+
export_config: Optional[model_builder.ExportConfig] = None,
|
76
|
+
called_by_generate: bool = True,
|
77
|
+
) -> dict[torch.Tensor, kv_utils.KVCache]:
|
78
|
+
if pixel_values is None:
|
79
|
+
return self.decoder(
|
80
|
+
tokens=tokens,
|
81
|
+
input_pos=input_pos,
|
82
|
+
kv_cache=kv_cache,
|
83
|
+
mask=mask,
|
84
|
+
input_embeds=None,
|
85
|
+
export_config=export_config,
|
86
|
+
called_by_generate=called_by_generate,
|
87
|
+
)
|
88
|
+
|
89
|
+
input_embeds = self.decoder.tok_embedding(tokens)
|
90
|
+
|
91
|
+
image_encoded = self.image_encoder(pixel_values=pixel_values)
|
92
|
+
image_embeds = self.image_projection(image_encoded)
|
93
|
+
image_embeds = image_embeds / self.config.image_projection_scale
|
94
|
+
|
95
|
+
# Merging image_embeds into text_embeds as PaliGemmaForConditionalGeneration
|
96
|
+
# can be done like:
|
97
|
+
#
|
98
|
+
# image_mask = tokens == self.config.image_token_id
|
99
|
+
# image_mask = image_mask.unsqueeze(-1).expand_as(input_embeds)
|
100
|
+
# input_embeds = input_embeds.masked_scatter(image_mask, image_embeds)
|
101
|
+
#
|
102
|
+
# Unfortunately, torch.Tensor.masked_scatter can't be lowered on CPU.
|
103
|
+
# Since PaliGemma token embedder reserves the first [num_patches] tokens
|
104
|
+
# for image tokens, we can use this property to merge image_embeds into
|
105
|
+
# input_embeds by concatenating them.
|
106
|
+
assert image_embeds.shape[1] == self.num_patches
|
107
|
+
assert input_embeds.shape[1] >= self.num_patches
|
108
|
+
input_embeds = torch.cat(
|
109
|
+
(image_embeds, input_embeds[:, self.num_patches:, :]), dim=1
|
110
|
+
)
|
111
|
+
|
112
|
+
return self.decoder(
|
113
|
+
tokens=None,
|
114
|
+
input_pos=input_pos,
|
115
|
+
kv_cache=kv_cache,
|
116
|
+
mask=mask,
|
117
|
+
input_embeds=input_embeds,
|
118
|
+
export_config=export_config,
|
119
|
+
called_by_generate=called_by_generate,
|
120
|
+
)
|
121
|
+
|
122
|
+
|
123
|
+
def get_model_config(get_decoder_config, **kwargs) -> PaliGemmaConfig:
|
124
|
+
"""Returns the model config for a PaliGemma 3B-224 model.
|
125
|
+
|
126
|
+
Returns:
|
127
|
+
The model config for a PaliGemma 3B model.
|
128
|
+
"""
|
129
|
+
return PaliGemmaConfig(
|
130
|
+
image_encoder_config=image_encoder.get_image_encoder_config(),
|
131
|
+
decoder_config=get_decoder_config(**kwargs),
|
132
|
+
image_token_id=257152,
|
133
|
+
image_projection_scale=2048**0.5,
|
134
|
+
image_projection_use_bias=True,
|
135
|
+
)
|
136
|
+
|
137
|
+
|
138
|
+
def get_fake_model_config(get_decoder_config, **kwargs) -> PaliGemmaConfig:
|
139
|
+
return PaliGemmaConfig(
|
140
|
+
image_encoder_config=image_encoder.get_fake_image_encoder_config(),
|
141
|
+
decoder_config=get_decoder_config(**kwargs),
|
142
|
+
image_token_id=127,
|
143
|
+
image_projection_scale=128**0.5,
|
144
|
+
image_projection_use_bias=True,
|
145
|
+
)
|
146
|
+
|
147
|
+
|
148
|
+
def build_model(checkpoint_path: str, version: int = 2, **kwargs) -> PaliGemma:
|
149
|
+
if version == 1:
|
150
|
+
decoder_class = decoder.Decoder
|
151
|
+
decoder_tensor_names = decoder.TENSOR_NAMES
|
152
|
+
get_decoder_config = decoder.get_decoder_config
|
153
|
+
else:
|
154
|
+
decoder_class = decoder2.Decoder2
|
155
|
+
decoder_tensor_names = decoder2.TENSOR_NAMES
|
156
|
+
get_decoder_config = decoder2.get_decoder2_config
|
157
|
+
|
158
|
+
config = get_model_config(get_decoder_config, **kwargs)
|
159
|
+
model = PaliGemma(config, decoder_class)
|
160
|
+
# Load the parameters of image encoder.
|
161
|
+
loader = loading_utils.ModelLoader(
|
162
|
+
checkpoint_path, image_encoder.TENSOR_NAMES
|
163
|
+
)
|
164
|
+
loader.load(model.image_encoder, strict=False)
|
165
|
+
# Load the parameters of decoder.
|
166
|
+
loader = loading_utils.ModelLoader(checkpoint_path, decoder_tensor_names)
|
167
|
+
loader.load(model.decoder, strict=False)
|
168
|
+
|
169
|
+
# Load the parameters of image projection.
|
170
|
+
loader = loading_utils.ModelLoader(checkpoint_path, None)
|
171
|
+
state = loader.get_state()
|
172
|
+
converted_state = dict()
|
173
|
+
converted_state["weight"] = state.pop(f"{PROJECTION_TENSOR_NAME}.weight")
|
174
|
+
if config.image_projection_use_bias:
|
175
|
+
converted_state["bias"] = state.pop(f"{PROJECTION_TENSOR_NAME}.bias")
|
176
|
+
model.image_projection.load_state_dict(converted_state)
|
177
|
+
|
178
|
+
model.eval()
|
179
|
+
return model
|
@@ -0,0 +1,161 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Verifies the reauthored PaliGemma 3B model."""
|
17
|
+
|
18
|
+
import logging
|
19
|
+
import pathlib
|
20
|
+
from absl import app
|
21
|
+
from absl import flags
|
22
|
+
from ai_edge_torch.generative.examples.paligemma import paligemma
|
23
|
+
from ai_edge_torch.generative.layers import kv_cache
|
24
|
+
from ai_edge_torch.generative.utilities import verifier
|
25
|
+
import kagglehub
|
26
|
+
from PIL import Image
|
27
|
+
import requests
|
28
|
+
import torch
|
29
|
+
import transformers
|
30
|
+
|
31
|
+
_VERSION = flags.DEFINE_enum(
|
32
|
+
"version",
|
33
|
+
"2",
|
34
|
+
["1", "2"],
|
35
|
+
"The version of PaliGemma model to verify.",
|
36
|
+
)
|
37
|
+
_IMAGE_URL = flags.DEFINE_string(
|
38
|
+
"image_url",
|
39
|
+
"https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true",
|
40
|
+
"The image URI to encode.",
|
41
|
+
)
|
42
|
+
_PROMPTS = flags.DEFINE_string(
|
43
|
+
"prompts",
|
44
|
+
"describe en",
|
45
|
+
"The input prompts to generate answers.",
|
46
|
+
)
|
47
|
+
_MAX_NEW_TOKENS = flags.DEFINE_integer(
|
48
|
+
"max_new_tokens",
|
49
|
+
30,
|
50
|
+
"The maximum size of the generated tokens.",
|
51
|
+
)
|
52
|
+
|
53
|
+
_CHECKPOINT = {
|
54
|
+
"1": "google/paligemma-3b-mix-224",
|
55
|
+
"2": "google/paligemma-2/transformers/paligemma2-3b-pt-224",
|
56
|
+
}
|
57
|
+
|
58
|
+
|
59
|
+
class ReauthoredPaliGemmaWrapper(verifier.ReauthoredModelWrapper):
|
60
|
+
"""Reauthored PaliGemma model wrapper."""
|
61
|
+
|
62
|
+
def __init__(self, model: torch.nn.Module):
|
63
|
+
super().__init__(model)
|
64
|
+
self.forward_called_by_generate = False
|
65
|
+
|
66
|
+
def _init_kv_cache(self):
|
67
|
+
return kv_cache.KVCache.from_model_config(self.model.config.decoder_config)
|
68
|
+
|
69
|
+
def _get_extra_args_for_forward(self):
|
70
|
+
return {"called_by_generate": self.forward_called_by_generate}
|
71
|
+
|
72
|
+
|
73
|
+
def main(_):
|
74
|
+
if _VERSION.value == "1":
|
75
|
+
checkpoint = _CHECKPOINT[_VERSION.value]
|
76
|
+
# Locate the cached dir.
|
77
|
+
cached_config_file = transformers.utils.cached_file(
|
78
|
+
checkpoint, transformers.utils.CONFIG_NAME
|
79
|
+
)
|
80
|
+
reauthored_checkpoint = pathlib.Path(cached_config_file).parent
|
81
|
+
else:
|
82
|
+
checkpoint = kagglehub.model_download(_CHECKPOINT[_VERSION.value])
|
83
|
+
reauthored_checkpoint = checkpoint
|
84
|
+
|
85
|
+
logging.info("Loading the original model from: %s", checkpoint)
|
86
|
+
original_model = (
|
87
|
+
transformers.PaliGemmaForConditionalGeneration.from_pretrained(checkpoint)
|
88
|
+
)
|
89
|
+
|
90
|
+
logging.info("Building the reauthored model from: %s", reauthored_checkpoint)
|
91
|
+
reauthored_model = paligemma.build_model(
|
92
|
+
reauthored_checkpoint, version=int(_VERSION.value)
|
93
|
+
)
|
94
|
+
|
95
|
+
logging.info("Loading the processor from: %s", checkpoint)
|
96
|
+
# It works only when GemmaTokenizerFast is available. In some environments,
|
97
|
+
# use_fast=False doeesn't work either if the tokenizer cannot load the
|
98
|
+
# sentencepiece model file properly.
|
99
|
+
processor = transformers.AutoProcessor.from_pretrained(checkpoint)
|
100
|
+
|
101
|
+
logging.info("Loading the image from: %s", _IMAGE_URL.value)
|
102
|
+
image = Image.open(requests.get(_IMAGE_URL.value, stream=True).raw)
|
103
|
+
inputs = processor(text=_PROMPTS.value, images=image, return_tensors="pt")
|
104
|
+
|
105
|
+
logging.info("Verifying the reauthored model with model.forward()...")
|
106
|
+
logging.info("Forwarding the original model...")
|
107
|
+
outputs_original = original_model.forward(
|
108
|
+
input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"]
|
109
|
+
)
|
110
|
+
outputs_original = outputs_original.logits
|
111
|
+
logging.info("outputs_original: %s", outputs_original)
|
112
|
+
|
113
|
+
logging.info("Forwarding the reauthored model...")
|
114
|
+
wrapped_reauthored_model = ReauthoredPaliGemmaWrapper(reauthored_model)
|
115
|
+
outputs_reauthored = wrapped_reauthored_model.forward(
|
116
|
+
tokens=inputs["input_ids"],
|
117
|
+
pixel_values=inputs["pixel_values"],
|
118
|
+
)
|
119
|
+
logging.info("outputs_reauthored: %s", outputs_reauthored)
|
120
|
+
|
121
|
+
try:
|
122
|
+
assert torch.allclose(outputs_original, outputs_reauthored, atol=1e-02)
|
123
|
+
except AssertionError as e:
|
124
|
+
logging.error("*** FAILED *** verify with forward()")
|
125
|
+
raise e
|
126
|
+
else:
|
127
|
+
logging.info("*** PASSED *** verify with forward()")
|
128
|
+
|
129
|
+
logging.info("Verifying the reauthored model with model.generate()...")
|
130
|
+
logging.info("Generating answer with the original model...")
|
131
|
+
outputs_original = original_model.generate(
|
132
|
+
**inputs, max_new_tokens=_MAX_NEW_TOKENS.value, do_sample=False
|
133
|
+
)
|
134
|
+
response_original = processor.decode(
|
135
|
+
outputs_original[0], skip_special_tokens=True
|
136
|
+
)
|
137
|
+
logging.info("outputs_from_original_model: [[%s]]", response_original)
|
138
|
+
|
139
|
+
logging.info("Generating answer with the reauthored model...")
|
140
|
+
wrapped_reauthored_model.forward_called_by_generate = True
|
141
|
+
outputs_reauthored = wrapped_reauthored_model.generate(
|
142
|
+
prompts=inputs["input_ids"],
|
143
|
+
pixel_values=inputs["pixel_values"],
|
144
|
+
max_new_tokens=_MAX_NEW_TOKENS.value,
|
145
|
+
)
|
146
|
+
response_reauthored = processor.decode(
|
147
|
+
outputs_reauthored[0], skip_special_tokens=True
|
148
|
+
)
|
149
|
+
logging.info("outputs from reauthored model: [[%s]]", response_reauthored)
|
150
|
+
|
151
|
+
try:
|
152
|
+
assert response_original == response_reauthored
|
153
|
+
except AssertionError as e:
|
154
|
+
logging.error("*** FAILED *** verify with generate()")
|
155
|
+
raise e
|
156
|
+
else:
|
157
|
+
logging.info("*** PASSED *** verify with generate()")
|
158
|
+
|
159
|
+
|
160
|
+
if __name__ == "__main__":
|
161
|
+
app.run(main)
|
@@ -0,0 +1,75 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Verifies the reauthored decoder of PaliGemma 3B model."""
|
17
|
+
|
18
|
+
import logging
|
19
|
+
import pathlib
|
20
|
+
|
21
|
+
from absl import app
|
22
|
+
from absl import flags
|
23
|
+
from ai_edge_torch.generative.examples.paligemma import decoder
|
24
|
+
from ai_edge_torch.generative.utilities import transformers_verifier
|
25
|
+
from ai_edge_torch.generative.utilities import verifier
|
26
|
+
import transformers
|
27
|
+
|
28
|
+
_PROMPTS = flags.DEFINE_multi_string(
|
29
|
+
"prompts",
|
30
|
+
"What is the meaning of life?",
|
31
|
+
"The input prompts to generate answers.",
|
32
|
+
)
|
33
|
+
_MAX_NEW_TOKENS = flags.DEFINE_integer(
|
34
|
+
"max_new_tokens",
|
35
|
+
30,
|
36
|
+
"The maximum size of the generated tokens.",
|
37
|
+
)
|
38
|
+
|
39
|
+
|
40
|
+
def main(_):
|
41
|
+
checkpoint = "google/paligemma-3b-mix-224"
|
42
|
+
logging.info("Loading the original model from: %s", checkpoint)
|
43
|
+
original_full_model = (
|
44
|
+
transformers.PaliGemmaForConditionalGeneration.from_pretrained(checkpoint)
|
45
|
+
)
|
46
|
+
original_language_model = original_full_model.eval().language_model
|
47
|
+
|
48
|
+
# Locate the cached dir.
|
49
|
+
cached_config_file = transformers.utils.cached_file(
|
50
|
+
checkpoint, transformers.utils.CONFIG_NAME
|
51
|
+
)
|
52
|
+
reauthored_checkpoint = pathlib.Path(cached_config_file).parent
|
53
|
+
logging.info("Building the reauthored model from: %s", reauthored_checkpoint)
|
54
|
+
reauthored_model = decoder.build_decoder(reauthored_checkpoint)
|
55
|
+
|
56
|
+
logging.info("Loading the tokenizer from: %s", checkpoint)
|
57
|
+
# It works only when GemmaTokenizerFast is available. In some environments,
|
58
|
+
# use_fast=False doeesn't work either if the tokenizer cannot load the
|
59
|
+
# sentencepiece model file properly.
|
60
|
+
processor = transformers.AutoProcessor.from_pretrained(checkpoint)
|
61
|
+
|
62
|
+
verifier.verify_reauthored_model(
|
63
|
+
original_model=transformers_verifier.TransformersModelWrapper(
|
64
|
+
original_language_model
|
65
|
+
),
|
66
|
+
reauthored_model=verifier.ReauthoredModelWrapper(reauthored_model),
|
67
|
+
tokenizer=verifier.TokenizerWrapper(processor.tokenizer),
|
68
|
+
generate_prompts=_PROMPTS.value,
|
69
|
+
max_new_tokens=_MAX_NEW_TOKENS.value,
|
70
|
+
atol=1e-04,
|
71
|
+
)
|
72
|
+
|
73
|
+
|
74
|
+
if __name__ == "__main__":
|
75
|
+
app.run(main)
|
@@ -0,0 +1,72 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Verifies the reauthored decoder of PaliGemma2 3B model."""
|
17
|
+
|
18
|
+
import logging
|
19
|
+
|
20
|
+
from absl import app
|
21
|
+
from absl import flags
|
22
|
+
from ai_edge_torch.generative.examples.paligemma import decoder2
|
23
|
+
from ai_edge_torch.generative.utilities import transformers_verifier
|
24
|
+
from ai_edge_torch.generative.utilities import verifier
|
25
|
+
import kagglehub
|
26
|
+
import transformers
|
27
|
+
|
28
|
+
_PROMPTS = flags.DEFINE_multi_string(
|
29
|
+
"prompts",
|
30
|
+
"What is the meaning of life?",
|
31
|
+
"The input prompts to generate answers.",
|
32
|
+
)
|
33
|
+
_MAX_NEW_TOKENS = flags.DEFINE_integer(
|
34
|
+
"max_new_tokens",
|
35
|
+
30,
|
36
|
+
"The maximum size of the generated tokens.",
|
37
|
+
)
|
38
|
+
|
39
|
+
|
40
|
+
def main(_):
|
41
|
+
checkpoint = kagglehub.model_download(
|
42
|
+
"google/paligemma-2/transformers/paligemma2-3b-pt-224"
|
43
|
+
)
|
44
|
+
logging.info("Loading the original model from: %s", checkpoint)
|
45
|
+
original_full_model = (
|
46
|
+
transformers.PaliGemmaForConditionalGeneration.from_pretrained(checkpoint)
|
47
|
+
)
|
48
|
+
original_language_model = original_full_model.eval().language_model
|
49
|
+
|
50
|
+
logging.info("Building the reauthored model from: %s", checkpoint)
|
51
|
+
reauthored_model = decoder2.build_decoder2(checkpoint)
|
52
|
+
|
53
|
+
logging.info("Loading the tokenizer from: %s", checkpoint)
|
54
|
+
# It works only when GemmaTokenizerFast is available. In some environments,
|
55
|
+
# use_fast=False doeesn't work either if the tokenizer cannot load the
|
56
|
+
# sentencepiece model file properly.
|
57
|
+
processor = transformers.AutoProcessor.from_pretrained(checkpoint)
|
58
|
+
|
59
|
+
verifier.verify_reauthored_model(
|
60
|
+
original_model=transformers_verifier.TransformersModelWrapper(
|
61
|
+
original_language_model
|
62
|
+
),
|
63
|
+
reauthored_model=verifier.ReauthoredModelWrapper(reauthored_model),
|
64
|
+
tokenizer=verifier.TokenizerWrapper(processor.tokenizer),
|
65
|
+
generate_prompts=_PROMPTS.value,
|
66
|
+
max_new_tokens=_MAX_NEW_TOKENS.value,
|
67
|
+
atol=1e-04,
|
68
|
+
)
|
69
|
+
|
70
|
+
|
71
|
+
if __name__ == "__main__":
|
72
|
+
app.run(main)
|