ai-edge-torch-nightly 0.3.0.dev20250114__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (213) hide show
  1. ai_edge_torch/__init__.py +32 -0
  2. ai_edge_torch/_config.py +69 -0
  3. ai_edge_torch/_convert/__init__.py +14 -0
  4. ai_edge_torch/_convert/conversion.py +153 -0
  5. ai_edge_torch/_convert/conversion_utils.py +64 -0
  6. ai_edge_torch/_convert/converter.py +270 -0
  7. ai_edge_torch/_convert/fx_passes/__init__.py +23 -0
  8. ai_edge_torch/_convert/fx_passes/build_aten_composite_pass.py +288 -0
  9. ai_edge_torch/_convert/fx_passes/build_interpolate_composite_pass.py +131 -0
  10. ai_edge_torch/_convert/fx_passes/inject_mlir_debuginfo_pass.py +73 -0
  11. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/__init__.py +16 -0
  12. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_check.py +258 -0
  13. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_mark.py +50 -0
  14. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +18 -0
  15. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +68 -0
  16. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +216 -0
  17. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +449 -0
  18. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +30 -0
  19. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/pass_body.py +303 -0
  20. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/utils.py +64 -0
  21. ai_edge_torch/_convert/fx_passes/remove_non_user_outputs_pass.py +52 -0
  22. ai_edge_torch/_convert/signature.py +66 -0
  23. ai_edge_torch/_convert/test/__init__.py +14 -0
  24. ai_edge_torch/_convert/test/test_convert.py +558 -0
  25. ai_edge_torch/_convert/test/test_convert_composites.py +234 -0
  26. ai_edge_torch/_convert/test/test_convert_multisig.py +189 -0
  27. ai_edge_torch/_convert/test/test_to_channel_last_io.py +96 -0
  28. ai_edge_torch/_convert/to_channel_last_io.py +92 -0
  29. ai_edge_torch/conftest.py +20 -0
  30. ai_edge_torch/debug/__init__.py +17 -0
  31. ai_edge_torch/debug/culprit.py +496 -0
  32. ai_edge_torch/debug/test/__init__.py +14 -0
  33. ai_edge_torch/debug/test/test_culprit.py +140 -0
  34. ai_edge_torch/debug/test/test_search_model.py +51 -0
  35. ai_edge_torch/debug/utils.py +59 -0
  36. ai_edge_torch/experimental/__init__.py +14 -0
  37. ai_edge_torch/fx_pass_base.py +110 -0
  38. ai_edge_torch/generative/__init__.py +14 -0
  39. ai_edge_torch/generative/examples/__init__.py +14 -0
  40. ai_edge_torch/generative/examples/amd_llama_135m/__init__.py +14 -0
  41. ai_edge_torch/generative/examples/amd_llama_135m/amd_llama_135m.py +87 -0
  42. ai_edge_torch/generative/examples/amd_llama_135m/convert_to_tflite.py +70 -0
  43. ai_edge_torch/generative/examples/amd_llama_135m/verify.py +72 -0
  44. ai_edge_torch/generative/examples/gemma/__init__.py +14 -0
  45. ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +80 -0
  46. ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +80 -0
  47. ai_edge_torch/generative/examples/gemma/gemma1.py +107 -0
  48. ai_edge_torch/generative/examples/gemma/gemma2.py +295 -0
  49. ai_edge_torch/generative/examples/gemma/verify_gemma1.py +56 -0
  50. ai_edge_torch/generative/examples/gemma/verify_gemma2.py +43 -0
  51. ai_edge_torch/generative/examples/gemma/verify_util.py +157 -0
  52. ai_edge_torch/generative/examples/llama/__init__.py +14 -0
  53. ai_edge_torch/generative/examples/llama/convert_to_tflite.py +91 -0
  54. ai_edge_torch/generative/examples/llama/llama.py +196 -0
  55. ai_edge_torch/generative/examples/llama/verify.py +88 -0
  56. ai_edge_torch/generative/examples/moonshine/__init__.py +14 -0
  57. ai_edge_torch/generative/examples/moonshine/convert_moonshine_to_tflite.py +50 -0
  58. ai_edge_torch/generative/examples/moonshine/moonshine.py +103 -0
  59. ai_edge_torch/generative/examples/openelm/__init__.py +14 -0
  60. ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +80 -0
  61. ai_edge_torch/generative/examples/openelm/openelm.py +127 -0
  62. ai_edge_torch/generative/examples/openelm/verify.py +71 -0
  63. ai_edge_torch/generative/examples/paligemma/__init__.py +14 -0
  64. ai_edge_torch/generative/examples/paligemma/convert_to_tflite.py +95 -0
  65. ai_edge_torch/generative/examples/paligemma/decoder.py +151 -0
  66. ai_edge_torch/generative/examples/paligemma/decoder2.py +177 -0
  67. ai_edge_torch/generative/examples/paligemma/image_encoder.py +160 -0
  68. ai_edge_torch/generative/examples/paligemma/paligemma.py +179 -0
  69. ai_edge_torch/generative/examples/paligemma/verify.py +161 -0
  70. ai_edge_torch/generative/examples/paligemma/verify_decoder.py +75 -0
  71. ai_edge_torch/generative/examples/paligemma/verify_decoder2.py +72 -0
  72. ai_edge_torch/generative/examples/paligemma/verify_image_encoder.py +99 -0
  73. ai_edge_torch/generative/examples/phi/__init__.py +14 -0
  74. ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +80 -0
  75. ai_edge_torch/generative/examples/phi/convert_to_tflite.py +80 -0
  76. ai_edge_torch/generative/examples/phi/phi2.py +107 -0
  77. ai_edge_torch/generative/examples/phi/phi3.py +219 -0
  78. ai_edge_torch/generative/examples/phi/verify.py +64 -0
  79. ai_edge_torch/generative/examples/phi/verify_phi3.py +69 -0
  80. ai_edge_torch/generative/examples/qwen/__init__.py +14 -0
  81. ai_edge_torch/generative/examples/qwen/convert_to_tflite.py +93 -0
  82. ai_edge_torch/generative/examples/qwen/qwen.py +134 -0
  83. ai_edge_torch/generative/examples/qwen/verify.py +88 -0
  84. ai_edge_torch/generative/examples/smollm/__init__.py +14 -0
  85. ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +80 -0
  86. ai_edge_torch/generative/examples/smollm/convert_v2_to_tflite.py +71 -0
  87. ai_edge_torch/generative/examples/smollm/smollm.py +125 -0
  88. ai_edge_torch/generative/examples/smollm/verify.py +86 -0
  89. ai_edge_torch/generative/examples/stable_diffusion/__init__.py +14 -0
  90. ai_edge_torch/generative/examples/stable_diffusion/attention.py +108 -0
  91. ai_edge_torch/generative/examples/stable_diffusion/clip.py +185 -0
  92. ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +173 -0
  93. ai_edge_torch/generative/examples/stable_diffusion/decoder.py +398 -0
  94. ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +749 -0
  95. ai_edge_torch/generative/examples/stable_diffusion/encoder.py +119 -0
  96. ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +254 -0
  97. ai_edge_torch/generative/examples/stable_diffusion/samplers/__init__.py +19 -0
  98. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +62 -0
  99. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +66 -0
  100. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +74 -0
  101. ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +39 -0
  102. ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +111 -0
  103. ai_edge_torch/generative/examples/stable_diffusion/util.py +77 -0
  104. ai_edge_torch/generative/examples/t5/__init__.py +14 -0
  105. ai_edge_torch/generative/examples/t5/convert_to_tflite.py +138 -0
  106. ai_edge_torch/generative/examples/t5/t5.py +655 -0
  107. ai_edge_torch/generative/examples/t5/t5_attention.py +246 -0
  108. ai_edge_torch/generative/examples/test_models/__init__.py +14 -0
  109. ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
  110. ai_edge_torch/generative/examples/test_models/toy_model.py +156 -0
  111. ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +138 -0
  112. ai_edge_torch/generative/examples/tiny_llama/__init__.py +14 -0
  113. ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +80 -0
  114. ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +88 -0
  115. ai_edge_torch/generative/examples/tiny_llama/verify.py +72 -0
  116. ai_edge_torch/generative/fx_passes/__init__.py +30 -0
  117. ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +50 -0
  118. ai_edge_torch/generative/layers/__init__.py +14 -0
  119. ai_edge_torch/generative/layers/attention.py +399 -0
  120. ai_edge_torch/generative/layers/attention_utils.py +210 -0
  121. ai_edge_torch/generative/layers/builder.py +160 -0
  122. ai_edge_torch/generative/layers/feed_forward.py +120 -0
  123. ai_edge_torch/generative/layers/kv_cache.py +204 -0
  124. ai_edge_torch/generative/layers/lora.py +557 -0
  125. ai_edge_torch/generative/layers/model_config.py +238 -0
  126. ai_edge_torch/generative/layers/normalization.py +222 -0
  127. ai_edge_torch/generative/layers/rotary_position_embedding.py +94 -0
  128. ai_edge_torch/generative/layers/scaled_dot_product_attention.py +144 -0
  129. ai_edge_torch/generative/layers/unet/__init__.py +14 -0
  130. ai_edge_torch/generative/layers/unet/blocks_2d.py +806 -0
  131. ai_edge_torch/generative/layers/unet/builder.py +50 -0
  132. ai_edge_torch/generative/layers/unet/model_config.py +282 -0
  133. ai_edge_torch/generative/quantize/__init__.py +14 -0
  134. ai_edge_torch/generative/quantize/example.py +47 -0
  135. ai_edge_torch/generative/quantize/quant_attrs.py +68 -0
  136. ai_edge_torch/generative/quantize/quant_recipe.py +154 -0
  137. ai_edge_torch/generative/quantize/quant_recipe_utils.py +62 -0
  138. ai_edge_torch/generative/quantize/quant_recipes.py +56 -0
  139. ai_edge_torch/generative/quantize/supported_schemes.py +32 -0
  140. ai_edge_torch/generative/test/__init__.py +14 -0
  141. ai_edge_torch/generative/test/test_custom_dus.py +107 -0
  142. ai_edge_torch/generative/test/test_kv_cache.py +120 -0
  143. ai_edge_torch/generative/test/test_loader.py +83 -0
  144. ai_edge_torch/generative/test/test_lora.py +147 -0
  145. ai_edge_torch/generative/test/test_model_conversion.py +191 -0
  146. ai_edge_torch/generative/test/test_model_conversion_large.py +362 -0
  147. ai_edge_torch/generative/test/test_quantize.py +183 -0
  148. ai_edge_torch/generative/test/utils.py +82 -0
  149. ai_edge_torch/generative/utilities/__init__.py +15 -0
  150. ai_edge_torch/generative/utilities/converter.py +215 -0
  151. ai_edge_torch/generative/utilities/dynamic_update_slice.py +56 -0
  152. ai_edge_torch/generative/utilities/loader.py +398 -0
  153. ai_edge_torch/generative/utilities/model_builder.py +180 -0
  154. ai_edge_torch/generative/utilities/moonshine_loader.py +154 -0
  155. ai_edge_torch/generative/utilities/stable_diffusion_loader.py +1032 -0
  156. ai_edge_torch/generative/utilities/t5_loader.py +512 -0
  157. ai_edge_torch/generative/utilities/transformers_verifier.py +42 -0
  158. ai_edge_torch/generative/utilities/verifier.py +335 -0
  159. ai_edge_torch/hlfb/__init__.py +16 -0
  160. ai_edge_torch/hlfb/mark_pattern/__init__.py +153 -0
  161. ai_edge_torch/hlfb/mark_pattern/fx_utils.py +69 -0
  162. ai_edge_torch/hlfb/mark_pattern/pattern.py +288 -0
  163. ai_edge_torch/hlfb/test/__init__.py +14 -0
  164. ai_edge_torch/hlfb/test/test_mark_pattern.py +185 -0
  165. ai_edge_torch/lowertools/__init__.py +18 -0
  166. ai_edge_torch/lowertools/_shim.py +86 -0
  167. ai_edge_torch/lowertools/common_utils.py +142 -0
  168. ai_edge_torch/lowertools/odml_torch_utils.py +260 -0
  169. ai_edge_torch/lowertools/test_utils.py +62 -0
  170. ai_edge_torch/lowertools/torch_xla_utils.py +301 -0
  171. ai_edge_torch/lowertools/translate_recipe.py +163 -0
  172. ai_edge_torch/model.py +177 -0
  173. ai_edge_torch/odml_torch/__init__.py +20 -0
  174. ai_edge_torch/odml_torch/_torch_future.py +88 -0
  175. ai_edge_torch/odml_torch/_torch_library.py +19 -0
  176. ai_edge_torch/odml_torch/composite/__init__.py +16 -0
  177. ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
  178. ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
  179. ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
  180. ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
  181. ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
  182. ai_edge_torch/odml_torch/export.py +403 -0
  183. ai_edge_torch/odml_torch/export_utils.py +157 -0
  184. ai_edge_torch/odml_torch/jax_bridge/__init__.py +18 -0
  185. ai_edge_torch/odml_torch/jax_bridge/_wrap.py +180 -0
  186. ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
  187. ai_edge_torch/odml_torch/lowerings/__init__.py +27 -0
  188. ai_edge_torch/odml_torch/lowerings/_basic.py +294 -0
  189. ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
  190. ai_edge_torch/odml_torch/lowerings/_convolution.py +243 -0
  191. ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +285 -0
  192. ai_edge_torch/odml_torch/lowerings/_layer_norm.py +87 -0
  193. ai_edge_torch/odml_torch/lowerings/_quantized_decomposed.py +177 -0
  194. ai_edge_torch/odml_torch/lowerings/_rand.py +142 -0
  195. ai_edge_torch/odml_torch/lowerings/context.py +42 -0
  196. ai_edge_torch/odml_torch/lowerings/decomp.py +69 -0
  197. ai_edge_torch/odml_torch/lowerings/registry.py +65 -0
  198. ai_edge_torch/odml_torch/lowerings/utils.py +201 -0
  199. ai_edge_torch/odml_torch/passes/__init__.py +38 -0
  200. ai_edge_torch/odml_torch/tf_integration.py +156 -0
  201. ai_edge_torch/quantize/__init__.py +16 -0
  202. ai_edge_torch/quantize/pt2e_quantizer.py +466 -0
  203. ai_edge_torch/quantize/pt2e_quantizer_utils.py +1061 -0
  204. ai_edge_torch/quantize/quant_config.py +85 -0
  205. ai_edge_torch/testing/__init__.py +14 -0
  206. ai_edge_torch/testing/model_coverage/__init__.py +16 -0
  207. ai_edge_torch/testing/model_coverage/model_coverage.py +145 -0
  208. ai_edge_torch/version.py +16 -0
  209. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/LICENSE +202 -0
  210. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/METADATA +44 -0
  211. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/RECORD +213 -0
  212. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/WHEEL +5 -0
  213. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/top_level.txt +1 -0
@@ -0,0 +1,160 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ """Example of building an image encoder of PaliGemma model which is Siglip."""
17
+
18
+ from ai_edge_torch.generative.layers import attention
19
+ from ai_edge_torch.generative.layers import builder
20
+ import ai_edge_torch.generative.layers.model_config as cfg
21
+ import ai_edge_torch.generative.utilities.loader as loading_utils
22
+ import torch
23
+ from torch import nn
24
+
25
+ TENSOR_NAMES = loading_utils.ModelLoader.TensorNames(
26
+ ff_up_proj="vision_tower.vision_model.encoder.layers.{}.mlp.fc1",
27
+ ff_down_proj="vision_tower.vision_model.encoder.layers.{}.mlp.fc2",
28
+ attn_query_proj=(
29
+ "vision_tower.vision_model.encoder.layers.{}.self_attn.q_proj"
30
+ ),
31
+ attn_key_proj=(
32
+ "vision_tower.vision_model.encoder.layers.{}.self_attn.k_proj"
33
+ ),
34
+ attn_value_proj=(
35
+ "vision_tower.vision_model.encoder.layers.{}.self_attn.v_proj"
36
+ ),
37
+ attn_output_proj=(
38
+ "vision_tower.vision_model.encoder.layers.{}.self_attn.out_proj"
39
+ ),
40
+ pre_attn_norm="vision_tower.vision_model.encoder.layers.{}.layer_norm1",
41
+ post_attn_norm="vision_tower.vision_model.encoder.layers.{}.layer_norm2",
42
+ embedding="vision_tower.vision_model.embeddings.patch_embedding",
43
+ embedding_position=(
44
+ "vision_tower.vision_model.embeddings.position_embedding.weight"
45
+ ),
46
+ final_norm="vision_tower.vision_model.post_layernorm",
47
+ )
48
+
49
+
50
+ class SiglipVisionEncoder(nn.Module):
51
+ """Signlip vision encoder from the Edge Generative API."""
52
+
53
+ def __init__(self, config: cfg.ModelConfig):
54
+ super().__init__()
55
+
56
+ # Construct model layers.
57
+ self.tok_embedding = nn.Conv2d(
58
+ in_channels=config.image_embedding.channels,
59
+ out_channels=config.embedding_dim,
60
+ kernel_size=config.image_embedding.patch_size,
61
+ stride=config.image_embedding.patch_size,
62
+ padding=0,
63
+ )
64
+ num_patches = (
65
+ config.image_embedding.image_size // config.image_embedding.patch_size
66
+ ) ** 2
67
+ self.tok_embedding_position = nn.Parameter(
68
+ torch.zeros((num_patches, config.embedding_dim))
69
+ )
70
+
71
+ self.transformer_blocks = nn.ModuleList(
72
+ attention.TransformerBlock(config.block_config(idx), config)
73
+ for idx in range(config.num_layers)
74
+ )
75
+ self.final_norm = builder.build_norm(
76
+ config.embedding_dim,
77
+ config.final_norm_config,
78
+ )
79
+ self.config = config
80
+
81
+ @torch.inference_mode
82
+ def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
83
+ # Embed the image according to SiplipVisionEmbeddings.
84
+ x = self.tok_embedding(pixel_values)
85
+ x = x.flatten(2).transpose(1, 2) + self.tok_embedding_position
86
+
87
+ # Pass a dummy mask because SDPA attention impl expects non-None mask.
88
+ mask = torch.zeros(x.shape[:2])
89
+ for _, block in enumerate(self.transformer_blocks):
90
+ x = block(x, mask=mask)
91
+ return self.final_norm(x)
92
+
93
+
94
+ def get_image_encoder_config() -> cfg.ModelConfig:
95
+ """Returns the model config for the image encoder of a PaliGemma 3B-224 model.
96
+
97
+ Returns:
98
+ The model config for the image encoder of a PaliGemma 3B model.
99
+ """
100
+ image_embedding_config = cfg.ImageEmbeddingConfig(
101
+ channels=3,
102
+ image_size=224,
103
+ patch_size=14,
104
+ )
105
+ attn_config = cfg.AttentionConfig(
106
+ num_heads=16,
107
+ head_dim=72,
108
+ num_query_groups=16,
109
+ qkv_use_bias=True,
110
+ output_proj_use_bias=True,
111
+ )
112
+ ff_config = cfg.FeedForwardConfig(
113
+ type=cfg.FeedForwardType.SEQUENTIAL,
114
+ activation=cfg.ActivationConfig(cfg.ActivationType.GELU_TANH),
115
+ intermediate_size=4304,
116
+ use_bias=True,
117
+ )
118
+ norm_config = cfg.NormalizationConfig(
119
+ type=cfg.NormalizationType.LAYER_NORM,
120
+ epsilon=1e-6,
121
+ enable_hlfb=True,
122
+ )
123
+ block_config = cfg.TransformerBlockConfig(
124
+ attn_config=attn_config,
125
+ ff_config=ff_config,
126
+ pre_attention_norm_config=norm_config,
127
+ post_attention_norm_config=norm_config,
128
+ )
129
+ config = cfg.ModelConfig(
130
+ vocab_size=0, # Not used in image encoder.
131
+ num_layers=27,
132
+ max_seq_len=0, # Not used in image encoder.
133
+ embedding_dim=1152,
134
+ embedding_use_bias=True,
135
+ image_embedding=image_embedding_config,
136
+ block_configs=block_config,
137
+ final_norm_config=norm_config,
138
+ enable_hlfb=True,
139
+ )
140
+ return config
141
+
142
+
143
+ def get_fake_image_encoder_config() -> cfg.ModelConfig:
144
+ config = get_image_encoder_config()
145
+ # PaliGemma image encoder has only one block config.
146
+ config.block_config(0).ff_config.intermediate_size = 128
147
+ config.image_embedding.image_size = 8
148
+ config.image_embedding.patch_size = 2
149
+ config.num_layers = 2
150
+ return config
151
+
152
+
153
+ def build_image_encoder(checkpoint_path: str) -> SiglipVisionEncoder:
154
+ config = get_image_encoder_config()
155
+ encoder = SiglipVisionEncoder(config)
156
+ loader = loading_utils.ModelLoader(checkpoint_path, TENSOR_NAMES)
157
+ # Loose the strictness because only image encoder is being loaded.
158
+ loader.load(encoder, strict=False)
159
+ encoder.eval()
160
+ return encoder
@@ -0,0 +1,179 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ """Example of building a full-stack of PaliGemma model."""
17
+
18
+ from dataclasses import dataclass
19
+ from typing import Optional
20
+
21
+ from ai_edge_torch.generative.examples.paligemma import decoder
22
+ from ai_edge_torch.generative.examples.paligemma import decoder2
23
+ from ai_edge_torch.generative.examples.paligemma import image_encoder
24
+ import ai_edge_torch.generative.layers.kv_cache as kv_utils
25
+ import ai_edge_torch.generative.layers.model_config as cfg
26
+ from ai_edge_torch.generative.utilities import model_builder
27
+ import ai_edge_torch.generative.utilities.loader as loading_utils
28
+ import torch
29
+ from torch import nn
30
+
31
+ PROJECTION_TENSOR_NAME = "multi_modal_projector.linear"
32
+
33
+
34
+ @dataclass
35
+ class PaliGemmaConfig:
36
+ """PaliGemma model configurations."""
37
+
38
+ image_encoder_config: cfg.ModelConfig
39
+ decoder_config: cfg.ModelConfig
40
+
41
+ image_token_id: int
42
+ image_projection_scale: float
43
+ image_projection_use_bias: bool = False
44
+
45
+
46
+ class PaliGemma(nn.Module):
47
+ """PaliGemma model from the Edge Generative API."""
48
+
49
+ def __init__(self, config: PaliGemmaConfig, decoder_class: nn.Module):
50
+ super().__init__()
51
+
52
+ self.image_encoder = image_encoder.SiglipVisionEncoder(
53
+ config.image_encoder_config
54
+ )
55
+ self.image_projection = nn.Linear(
56
+ config.image_encoder_config.embedding_dim,
57
+ config.decoder_config.embedding_dim,
58
+ bias=config.image_projection_use_bias,
59
+ )
60
+ self.decoder = decoder_class(config.decoder_config)
61
+ image_embedding_config = config.image_encoder_config.image_embedding
62
+ self.num_patches = (
63
+ image_embedding_config.image_size // image_embedding_config.patch_size
64
+ ) ** 2
65
+ self.config = config
66
+
67
+ @torch.inference_mode
68
+ def forward(
69
+ self,
70
+ tokens: torch.Tensor,
71
+ input_pos: torch.Tensor,
72
+ kv_cache: kv_utils.KVCache,
73
+ mask: Optional[torch.Tensor] = None,
74
+ pixel_values: torch.Tensor = None,
75
+ export_config: Optional[model_builder.ExportConfig] = None,
76
+ called_by_generate: bool = True,
77
+ ) -> dict[torch.Tensor, kv_utils.KVCache]:
78
+ if pixel_values is None:
79
+ return self.decoder(
80
+ tokens=tokens,
81
+ input_pos=input_pos,
82
+ kv_cache=kv_cache,
83
+ mask=mask,
84
+ input_embeds=None,
85
+ export_config=export_config,
86
+ called_by_generate=called_by_generate,
87
+ )
88
+
89
+ input_embeds = self.decoder.tok_embedding(tokens)
90
+
91
+ image_encoded = self.image_encoder(pixel_values=pixel_values)
92
+ image_embeds = self.image_projection(image_encoded)
93
+ image_embeds = image_embeds / self.config.image_projection_scale
94
+
95
+ # Merging image_embeds into text_embeds as PaliGemmaForConditionalGeneration
96
+ # can be done like:
97
+ #
98
+ # image_mask = tokens == self.config.image_token_id
99
+ # image_mask = image_mask.unsqueeze(-1).expand_as(input_embeds)
100
+ # input_embeds = input_embeds.masked_scatter(image_mask, image_embeds)
101
+ #
102
+ # Unfortunately, torch.Tensor.masked_scatter can't be lowered on CPU.
103
+ # Since PaliGemma token embedder reserves the first [num_patches] tokens
104
+ # for image tokens, we can use this property to merge image_embeds into
105
+ # input_embeds by concatenating them.
106
+ assert image_embeds.shape[1] == self.num_patches
107
+ assert input_embeds.shape[1] >= self.num_patches
108
+ input_embeds = torch.cat(
109
+ (image_embeds, input_embeds[:, self.num_patches:, :]), dim=1
110
+ )
111
+
112
+ return self.decoder(
113
+ tokens=None,
114
+ input_pos=input_pos,
115
+ kv_cache=kv_cache,
116
+ mask=mask,
117
+ input_embeds=input_embeds,
118
+ export_config=export_config,
119
+ called_by_generate=called_by_generate,
120
+ )
121
+
122
+
123
+ def get_model_config(get_decoder_config, **kwargs) -> PaliGemmaConfig:
124
+ """Returns the model config for a PaliGemma 3B-224 model.
125
+
126
+ Returns:
127
+ The model config for a PaliGemma 3B model.
128
+ """
129
+ return PaliGemmaConfig(
130
+ image_encoder_config=image_encoder.get_image_encoder_config(),
131
+ decoder_config=get_decoder_config(**kwargs),
132
+ image_token_id=257152,
133
+ image_projection_scale=2048**0.5,
134
+ image_projection_use_bias=True,
135
+ )
136
+
137
+
138
+ def get_fake_model_config(get_decoder_config, **kwargs) -> PaliGemmaConfig:
139
+ return PaliGemmaConfig(
140
+ image_encoder_config=image_encoder.get_fake_image_encoder_config(),
141
+ decoder_config=get_decoder_config(**kwargs),
142
+ image_token_id=127,
143
+ image_projection_scale=128**0.5,
144
+ image_projection_use_bias=True,
145
+ )
146
+
147
+
148
+ def build_model(checkpoint_path: str, version: int = 2, **kwargs) -> PaliGemma:
149
+ if version == 1:
150
+ decoder_class = decoder.Decoder
151
+ decoder_tensor_names = decoder.TENSOR_NAMES
152
+ get_decoder_config = decoder.get_decoder_config
153
+ else:
154
+ decoder_class = decoder2.Decoder2
155
+ decoder_tensor_names = decoder2.TENSOR_NAMES
156
+ get_decoder_config = decoder2.get_decoder2_config
157
+
158
+ config = get_model_config(get_decoder_config, **kwargs)
159
+ model = PaliGemma(config, decoder_class)
160
+ # Load the parameters of image encoder.
161
+ loader = loading_utils.ModelLoader(
162
+ checkpoint_path, image_encoder.TENSOR_NAMES
163
+ )
164
+ loader.load(model.image_encoder, strict=False)
165
+ # Load the parameters of decoder.
166
+ loader = loading_utils.ModelLoader(checkpoint_path, decoder_tensor_names)
167
+ loader.load(model.decoder, strict=False)
168
+
169
+ # Load the parameters of image projection.
170
+ loader = loading_utils.ModelLoader(checkpoint_path, None)
171
+ state = loader.get_state()
172
+ converted_state = dict()
173
+ converted_state["weight"] = state.pop(f"{PROJECTION_TENSOR_NAME}.weight")
174
+ if config.image_projection_use_bias:
175
+ converted_state["bias"] = state.pop(f"{PROJECTION_TENSOR_NAME}.bias")
176
+ model.image_projection.load_state_dict(converted_state)
177
+
178
+ model.eval()
179
+ return model
@@ -0,0 +1,161 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ """Verifies the reauthored PaliGemma 3B model."""
17
+
18
+ import logging
19
+ import pathlib
20
+ from absl import app
21
+ from absl import flags
22
+ from ai_edge_torch.generative.examples.paligemma import paligemma
23
+ from ai_edge_torch.generative.layers import kv_cache
24
+ from ai_edge_torch.generative.utilities import verifier
25
+ import kagglehub
26
+ from PIL import Image
27
+ import requests
28
+ import torch
29
+ import transformers
30
+
31
+ _VERSION = flags.DEFINE_enum(
32
+ "version",
33
+ "2",
34
+ ["1", "2"],
35
+ "The version of PaliGemma model to verify.",
36
+ )
37
+ _IMAGE_URL = flags.DEFINE_string(
38
+ "image_url",
39
+ "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true",
40
+ "The image URI to encode.",
41
+ )
42
+ _PROMPTS = flags.DEFINE_string(
43
+ "prompts",
44
+ "describe en",
45
+ "The input prompts to generate answers.",
46
+ )
47
+ _MAX_NEW_TOKENS = flags.DEFINE_integer(
48
+ "max_new_tokens",
49
+ 30,
50
+ "The maximum size of the generated tokens.",
51
+ )
52
+
53
+ _CHECKPOINT = {
54
+ "1": "google/paligemma-3b-mix-224",
55
+ "2": "google/paligemma-2/transformers/paligemma2-3b-pt-224",
56
+ }
57
+
58
+
59
+ class ReauthoredPaliGemmaWrapper(verifier.ReauthoredModelWrapper):
60
+ """Reauthored PaliGemma model wrapper."""
61
+
62
+ def __init__(self, model: torch.nn.Module):
63
+ super().__init__(model)
64
+ self.forward_called_by_generate = False
65
+
66
+ def _init_kv_cache(self):
67
+ return kv_cache.KVCache.from_model_config(self.model.config.decoder_config)
68
+
69
+ def _get_extra_args_for_forward(self):
70
+ return {"called_by_generate": self.forward_called_by_generate}
71
+
72
+
73
+ def main(_):
74
+ if _VERSION.value == "1":
75
+ checkpoint = _CHECKPOINT[_VERSION.value]
76
+ # Locate the cached dir.
77
+ cached_config_file = transformers.utils.cached_file(
78
+ checkpoint, transformers.utils.CONFIG_NAME
79
+ )
80
+ reauthored_checkpoint = pathlib.Path(cached_config_file).parent
81
+ else:
82
+ checkpoint = kagglehub.model_download(_CHECKPOINT[_VERSION.value])
83
+ reauthored_checkpoint = checkpoint
84
+
85
+ logging.info("Loading the original model from: %s", checkpoint)
86
+ original_model = (
87
+ transformers.PaliGemmaForConditionalGeneration.from_pretrained(checkpoint)
88
+ )
89
+
90
+ logging.info("Building the reauthored model from: %s", reauthored_checkpoint)
91
+ reauthored_model = paligemma.build_model(
92
+ reauthored_checkpoint, version=int(_VERSION.value)
93
+ )
94
+
95
+ logging.info("Loading the processor from: %s", checkpoint)
96
+ # It works only when GemmaTokenizerFast is available. In some environments,
97
+ # use_fast=False doeesn't work either if the tokenizer cannot load the
98
+ # sentencepiece model file properly.
99
+ processor = transformers.AutoProcessor.from_pretrained(checkpoint)
100
+
101
+ logging.info("Loading the image from: %s", _IMAGE_URL.value)
102
+ image = Image.open(requests.get(_IMAGE_URL.value, stream=True).raw)
103
+ inputs = processor(text=_PROMPTS.value, images=image, return_tensors="pt")
104
+
105
+ logging.info("Verifying the reauthored model with model.forward()...")
106
+ logging.info("Forwarding the original model...")
107
+ outputs_original = original_model.forward(
108
+ input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"]
109
+ )
110
+ outputs_original = outputs_original.logits
111
+ logging.info("outputs_original: %s", outputs_original)
112
+
113
+ logging.info("Forwarding the reauthored model...")
114
+ wrapped_reauthored_model = ReauthoredPaliGemmaWrapper(reauthored_model)
115
+ outputs_reauthored = wrapped_reauthored_model.forward(
116
+ tokens=inputs["input_ids"],
117
+ pixel_values=inputs["pixel_values"],
118
+ )
119
+ logging.info("outputs_reauthored: %s", outputs_reauthored)
120
+
121
+ try:
122
+ assert torch.allclose(outputs_original, outputs_reauthored, atol=1e-02)
123
+ except AssertionError as e:
124
+ logging.error("*** FAILED *** verify with forward()")
125
+ raise e
126
+ else:
127
+ logging.info("*** PASSED *** verify with forward()")
128
+
129
+ logging.info("Verifying the reauthored model with model.generate()...")
130
+ logging.info("Generating answer with the original model...")
131
+ outputs_original = original_model.generate(
132
+ **inputs, max_new_tokens=_MAX_NEW_TOKENS.value, do_sample=False
133
+ )
134
+ response_original = processor.decode(
135
+ outputs_original[0], skip_special_tokens=True
136
+ )
137
+ logging.info("outputs_from_original_model: [[%s]]", response_original)
138
+
139
+ logging.info("Generating answer with the reauthored model...")
140
+ wrapped_reauthored_model.forward_called_by_generate = True
141
+ outputs_reauthored = wrapped_reauthored_model.generate(
142
+ prompts=inputs["input_ids"],
143
+ pixel_values=inputs["pixel_values"],
144
+ max_new_tokens=_MAX_NEW_TOKENS.value,
145
+ )
146
+ response_reauthored = processor.decode(
147
+ outputs_reauthored[0], skip_special_tokens=True
148
+ )
149
+ logging.info("outputs from reauthored model: [[%s]]", response_reauthored)
150
+
151
+ try:
152
+ assert response_original == response_reauthored
153
+ except AssertionError as e:
154
+ logging.error("*** FAILED *** verify with generate()")
155
+ raise e
156
+ else:
157
+ logging.info("*** PASSED *** verify with generate()")
158
+
159
+
160
+ if __name__ == "__main__":
161
+ app.run(main)
@@ -0,0 +1,75 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ """Verifies the reauthored decoder of PaliGemma 3B model."""
17
+
18
+ import logging
19
+ import pathlib
20
+
21
+ from absl import app
22
+ from absl import flags
23
+ from ai_edge_torch.generative.examples.paligemma import decoder
24
+ from ai_edge_torch.generative.utilities import transformers_verifier
25
+ from ai_edge_torch.generative.utilities import verifier
26
+ import transformers
27
+
28
+ _PROMPTS = flags.DEFINE_multi_string(
29
+ "prompts",
30
+ "What is the meaning of life?",
31
+ "The input prompts to generate answers.",
32
+ )
33
+ _MAX_NEW_TOKENS = flags.DEFINE_integer(
34
+ "max_new_tokens",
35
+ 30,
36
+ "The maximum size of the generated tokens.",
37
+ )
38
+
39
+
40
+ def main(_):
41
+ checkpoint = "google/paligemma-3b-mix-224"
42
+ logging.info("Loading the original model from: %s", checkpoint)
43
+ original_full_model = (
44
+ transformers.PaliGemmaForConditionalGeneration.from_pretrained(checkpoint)
45
+ )
46
+ original_language_model = original_full_model.eval().language_model
47
+
48
+ # Locate the cached dir.
49
+ cached_config_file = transformers.utils.cached_file(
50
+ checkpoint, transformers.utils.CONFIG_NAME
51
+ )
52
+ reauthored_checkpoint = pathlib.Path(cached_config_file).parent
53
+ logging.info("Building the reauthored model from: %s", reauthored_checkpoint)
54
+ reauthored_model = decoder.build_decoder(reauthored_checkpoint)
55
+
56
+ logging.info("Loading the tokenizer from: %s", checkpoint)
57
+ # It works only when GemmaTokenizerFast is available. In some environments,
58
+ # use_fast=False doeesn't work either if the tokenizer cannot load the
59
+ # sentencepiece model file properly.
60
+ processor = transformers.AutoProcessor.from_pretrained(checkpoint)
61
+
62
+ verifier.verify_reauthored_model(
63
+ original_model=transformers_verifier.TransformersModelWrapper(
64
+ original_language_model
65
+ ),
66
+ reauthored_model=verifier.ReauthoredModelWrapper(reauthored_model),
67
+ tokenizer=verifier.TokenizerWrapper(processor.tokenizer),
68
+ generate_prompts=_PROMPTS.value,
69
+ max_new_tokens=_MAX_NEW_TOKENS.value,
70
+ atol=1e-04,
71
+ )
72
+
73
+
74
+ if __name__ == "__main__":
75
+ app.run(main)
@@ -0,0 +1,72 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ """Verifies the reauthored decoder of PaliGemma2 3B model."""
17
+
18
+ import logging
19
+
20
+ from absl import app
21
+ from absl import flags
22
+ from ai_edge_torch.generative.examples.paligemma import decoder2
23
+ from ai_edge_torch.generative.utilities import transformers_verifier
24
+ from ai_edge_torch.generative.utilities import verifier
25
+ import kagglehub
26
+ import transformers
27
+
28
+ _PROMPTS = flags.DEFINE_multi_string(
29
+ "prompts",
30
+ "What is the meaning of life?",
31
+ "The input prompts to generate answers.",
32
+ )
33
+ _MAX_NEW_TOKENS = flags.DEFINE_integer(
34
+ "max_new_tokens",
35
+ 30,
36
+ "The maximum size of the generated tokens.",
37
+ )
38
+
39
+
40
+ def main(_):
41
+ checkpoint = kagglehub.model_download(
42
+ "google/paligemma-2/transformers/paligemma2-3b-pt-224"
43
+ )
44
+ logging.info("Loading the original model from: %s", checkpoint)
45
+ original_full_model = (
46
+ transformers.PaliGemmaForConditionalGeneration.from_pretrained(checkpoint)
47
+ )
48
+ original_language_model = original_full_model.eval().language_model
49
+
50
+ logging.info("Building the reauthored model from: %s", checkpoint)
51
+ reauthored_model = decoder2.build_decoder2(checkpoint)
52
+
53
+ logging.info("Loading the tokenizer from: %s", checkpoint)
54
+ # It works only when GemmaTokenizerFast is available. In some environments,
55
+ # use_fast=False doeesn't work either if the tokenizer cannot load the
56
+ # sentencepiece model file properly.
57
+ processor = transformers.AutoProcessor.from_pretrained(checkpoint)
58
+
59
+ verifier.verify_reauthored_model(
60
+ original_model=transformers_verifier.TransformersModelWrapper(
61
+ original_language_model
62
+ ),
63
+ reauthored_model=verifier.ReauthoredModelWrapper(reauthored_model),
64
+ tokenizer=verifier.TokenizerWrapper(processor.tokenizer),
65
+ generate_prompts=_PROMPTS.value,
66
+ max_new_tokens=_MAX_NEW_TOKENS.value,
67
+ atol=1e-04,
68
+ )
69
+
70
+
71
+ if __name__ == "__main__":
72
+ app.run(main)