ai-edge-torch-nightly 0.3.0.dev20250114__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- ai_edge_torch/__init__.py +32 -0
- ai_edge_torch/_config.py +69 -0
- ai_edge_torch/_convert/__init__.py +14 -0
- ai_edge_torch/_convert/conversion.py +153 -0
- ai_edge_torch/_convert/conversion_utils.py +64 -0
- ai_edge_torch/_convert/converter.py +270 -0
- ai_edge_torch/_convert/fx_passes/__init__.py +23 -0
- ai_edge_torch/_convert/fx_passes/build_aten_composite_pass.py +288 -0
- ai_edge_torch/_convert/fx_passes/build_interpolate_composite_pass.py +131 -0
- ai_edge_torch/_convert/fx_passes/inject_mlir_debuginfo_pass.py +73 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/__init__.py +16 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_check.py +258 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_mark.py +50 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +18 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +68 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +216 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +449 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +30 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/pass_body.py +303 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/utils.py +64 -0
- ai_edge_torch/_convert/fx_passes/remove_non_user_outputs_pass.py +52 -0
- ai_edge_torch/_convert/signature.py +66 -0
- ai_edge_torch/_convert/test/__init__.py +14 -0
- ai_edge_torch/_convert/test/test_convert.py +558 -0
- ai_edge_torch/_convert/test/test_convert_composites.py +234 -0
- ai_edge_torch/_convert/test/test_convert_multisig.py +189 -0
- ai_edge_torch/_convert/test/test_to_channel_last_io.py +96 -0
- ai_edge_torch/_convert/to_channel_last_io.py +92 -0
- ai_edge_torch/conftest.py +20 -0
- ai_edge_torch/debug/__init__.py +17 -0
- ai_edge_torch/debug/culprit.py +496 -0
- ai_edge_torch/debug/test/__init__.py +14 -0
- ai_edge_torch/debug/test/test_culprit.py +140 -0
- ai_edge_torch/debug/test/test_search_model.py +51 -0
- ai_edge_torch/debug/utils.py +59 -0
- ai_edge_torch/experimental/__init__.py +14 -0
- ai_edge_torch/fx_pass_base.py +110 -0
- ai_edge_torch/generative/__init__.py +14 -0
- ai_edge_torch/generative/examples/__init__.py +14 -0
- ai_edge_torch/generative/examples/amd_llama_135m/__init__.py +14 -0
- ai_edge_torch/generative/examples/amd_llama_135m/amd_llama_135m.py +87 -0
- ai_edge_torch/generative/examples/amd_llama_135m/convert_to_tflite.py +70 -0
- ai_edge_torch/generative/examples/amd_llama_135m/verify.py +72 -0
- ai_edge_torch/generative/examples/gemma/__init__.py +14 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/gemma/gemma1.py +107 -0
- ai_edge_torch/generative/examples/gemma/gemma2.py +295 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma1.py +56 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma2.py +43 -0
- ai_edge_torch/generative/examples/gemma/verify_util.py +157 -0
- ai_edge_torch/generative/examples/llama/__init__.py +14 -0
- ai_edge_torch/generative/examples/llama/convert_to_tflite.py +91 -0
- ai_edge_torch/generative/examples/llama/llama.py +196 -0
- ai_edge_torch/generative/examples/llama/verify.py +88 -0
- ai_edge_torch/generative/examples/moonshine/__init__.py +14 -0
- ai_edge_torch/generative/examples/moonshine/convert_moonshine_to_tflite.py +50 -0
- ai_edge_torch/generative/examples/moonshine/moonshine.py +103 -0
- ai_edge_torch/generative/examples/openelm/__init__.py +14 -0
- ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/openelm/openelm.py +127 -0
- ai_edge_torch/generative/examples/openelm/verify.py +71 -0
- ai_edge_torch/generative/examples/paligemma/__init__.py +14 -0
- ai_edge_torch/generative/examples/paligemma/convert_to_tflite.py +95 -0
- ai_edge_torch/generative/examples/paligemma/decoder.py +151 -0
- ai_edge_torch/generative/examples/paligemma/decoder2.py +177 -0
- ai_edge_torch/generative/examples/paligemma/image_encoder.py +160 -0
- ai_edge_torch/generative/examples/paligemma/paligemma.py +179 -0
- ai_edge_torch/generative/examples/paligemma/verify.py +161 -0
- ai_edge_torch/generative/examples/paligemma/verify_decoder.py +75 -0
- ai_edge_torch/generative/examples/paligemma/verify_decoder2.py +72 -0
- ai_edge_torch/generative/examples/paligemma/verify_image_encoder.py +99 -0
- ai_edge_torch/generative/examples/phi/__init__.py +14 -0
- ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/phi/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/phi/phi2.py +107 -0
- ai_edge_torch/generative/examples/phi/phi3.py +219 -0
- ai_edge_torch/generative/examples/phi/verify.py +64 -0
- ai_edge_torch/generative/examples/phi/verify_phi3.py +69 -0
- ai_edge_torch/generative/examples/qwen/__init__.py +14 -0
- ai_edge_torch/generative/examples/qwen/convert_to_tflite.py +93 -0
- ai_edge_torch/generative/examples/qwen/qwen.py +134 -0
- ai_edge_torch/generative/examples/qwen/verify.py +88 -0
- ai_edge_torch/generative/examples/smollm/__init__.py +14 -0
- ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/smollm/convert_v2_to_tflite.py +71 -0
- ai_edge_torch/generative/examples/smollm/smollm.py +125 -0
- ai_edge_torch/generative/examples/smollm/verify.py +86 -0
- ai_edge_torch/generative/examples/stable_diffusion/__init__.py +14 -0
- ai_edge_torch/generative/examples/stable_diffusion/attention.py +108 -0
- ai_edge_torch/generative/examples/stable_diffusion/clip.py +185 -0
- ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +173 -0
- ai_edge_torch/generative/examples/stable_diffusion/decoder.py +398 -0
- ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +749 -0
- ai_edge_torch/generative/examples/stable_diffusion/encoder.py +119 -0
- ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +254 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/__init__.py +19 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +62 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +66 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +74 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +39 -0
- ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +111 -0
- ai_edge_torch/generative/examples/stable_diffusion/util.py +77 -0
- ai_edge_torch/generative/examples/t5/__init__.py +14 -0
- ai_edge_torch/generative/examples/t5/convert_to_tflite.py +138 -0
- ai_edge_torch/generative/examples/t5/t5.py +655 -0
- ai_edge_torch/generative/examples/t5/t5_attention.py +246 -0
- ai_edge_torch/generative/examples/test_models/__init__.py +14 -0
- ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
- ai_edge_torch/generative/examples/test_models/toy_model.py +156 -0
- ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +138 -0
- ai_edge_torch/generative/examples/tiny_llama/__init__.py +14 -0
- ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +88 -0
- ai_edge_torch/generative/examples/tiny_llama/verify.py +72 -0
- ai_edge_torch/generative/fx_passes/__init__.py +30 -0
- ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +50 -0
- ai_edge_torch/generative/layers/__init__.py +14 -0
- ai_edge_torch/generative/layers/attention.py +399 -0
- ai_edge_torch/generative/layers/attention_utils.py +210 -0
- ai_edge_torch/generative/layers/builder.py +160 -0
- ai_edge_torch/generative/layers/feed_forward.py +120 -0
- ai_edge_torch/generative/layers/kv_cache.py +204 -0
- ai_edge_torch/generative/layers/lora.py +557 -0
- ai_edge_torch/generative/layers/model_config.py +238 -0
- ai_edge_torch/generative/layers/normalization.py +222 -0
- ai_edge_torch/generative/layers/rotary_position_embedding.py +94 -0
- ai_edge_torch/generative/layers/scaled_dot_product_attention.py +144 -0
- ai_edge_torch/generative/layers/unet/__init__.py +14 -0
- ai_edge_torch/generative/layers/unet/blocks_2d.py +806 -0
- ai_edge_torch/generative/layers/unet/builder.py +50 -0
- ai_edge_torch/generative/layers/unet/model_config.py +282 -0
- ai_edge_torch/generative/quantize/__init__.py +14 -0
- ai_edge_torch/generative/quantize/example.py +47 -0
- ai_edge_torch/generative/quantize/quant_attrs.py +68 -0
- ai_edge_torch/generative/quantize/quant_recipe.py +154 -0
- ai_edge_torch/generative/quantize/quant_recipe_utils.py +62 -0
- ai_edge_torch/generative/quantize/quant_recipes.py +56 -0
- ai_edge_torch/generative/quantize/supported_schemes.py +32 -0
- ai_edge_torch/generative/test/__init__.py +14 -0
- ai_edge_torch/generative/test/test_custom_dus.py +107 -0
- ai_edge_torch/generative/test/test_kv_cache.py +120 -0
- ai_edge_torch/generative/test/test_loader.py +83 -0
- ai_edge_torch/generative/test/test_lora.py +147 -0
- ai_edge_torch/generative/test/test_model_conversion.py +191 -0
- ai_edge_torch/generative/test/test_model_conversion_large.py +362 -0
- ai_edge_torch/generative/test/test_quantize.py +183 -0
- ai_edge_torch/generative/test/utils.py +82 -0
- ai_edge_torch/generative/utilities/__init__.py +15 -0
- ai_edge_torch/generative/utilities/converter.py +215 -0
- ai_edge_torch/generative/utilities/dynamic_update_slice.py +56 -0
- ai_edge_torch/generative/utilities/loader.py +398 -0
- ai_edge_torch/generative/utilities/model_builder.py +180 -0
- ai_edge_torch/generative/utilities/moonshine_loader.py +154 -0
- ai_edge_torch/generative/utilities/stable_diffusion_loader.py +1032 -0
- ai_edge_torch/generative/utilities/t5_loader.py +512 -0
- ai_edge_torch/generative/utilities/transformers_verifier.py +42 -0
- ai_edge_torch/generative/utilities/verifier.py +335 -0
- ai_edge_torch/hlfb/__init__.py +16 -0
- ai_edge_torch/hlfb/mark_pattern/__init__.py +153 -0
- ai_edge_torch/hlfb/mark_pattern/fx_utils.py +69 -0
- ai_edge_torch/hlfb/mark_pattern/pattern.py +288 -0
- ai_edge_torch/hlfb/test/__init__.py +14 -0
- ai_edge_torch/hlfb/test/test_mark_pattern.py +185 -0
- ai_edge_torch/lowertools/__init__.py +18 -0
- ai_edge_torch/lowertools/_shim.py +86 -0
- ai_edge_torch/lowertools/common_utils.py +142 -0
- ai_edge_torch/lowertools/odml_torch_utils.py +260 -0
- ai_edge_torch/lowertools/test_utils.py +62 -0
- ai_edge_torch/lowertools/torch_xla_utils.py +301 -0
- ai_edge_torch/lowertools/translate_recipe.py +163 -0
- ai_edge_torch/model.py +177 -0
- ai_edge_torch/odml_torch/__init__.py +20 -0
- ai_edge_torch/odml_torch/_torch_future.py +88 -0
- ai_edge_torch/odml_torch/_torch_library.py +19 -0
- ai_edge_torch/odml_torch/composite/__init__.py +16 -0
- ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
- ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
- ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
- ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
- ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
- ai_edge_torch/odml_torch/export.py +403 -0
- ai_edge_torch/odml_torch/export_utils.py +157 -0
- ai_edge_torch/odml_torch/jax_bridge/__init__.py +18 -0
- ai_edge_torch/odml_torch/jax_bridge/_wrap.py +180 -0
- ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
- ai_edge_torch/odml_torch/lowerings/__init__.py +27 -0
- ai_edge_torch/odml_torch/lowerings/_basic.py +294 -0
- ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
- ai_edge_torch/odml_torch/lowerings/_convolution.py +243 -0
- ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +285 -0
- ai_edge_torch/odml_torch/lowerings/_layer_norm.py +87 -0
- ai_edge_torch/odml_torch/lowerings/_quantized_decomposed.py +177 -0
- ai_edge_torch/odml_torch/lowerings/_rand.py +142 -0
- ai_edge_torch/odml_torch/lowerings/context.py +42 -0
- ai_edge_torch/odml_torch/lowerings/decomp.py +69 -0
- ai_edge_torch/odml_torch/lowerings/registry.py +65 -0
- ai_edge_torch/odml_torch/lowerings/utils.py +201 -0
- ai_edge_torch/odml_torch/passes/__init__.py +38 -0
- ai_edge_torch/odml_torch/tf_integration.py +156 -0
- ai_edge_torch/quantize/__init__.py +16 -0
- ai_edge_torch/quantize/pt2e_quantizer.py +466 -0
- ai_edge_torch/quantize/pt2e_quantizer_utils.py +1061 -0
- ai_edge_torch/quantize/quant_config.py +85 -0
- ai_edge_torch/testing/__init__.py +14 -0
- ai_edge_torch/testing/model_coverage/__init__.py +16 -0
- ai_edge_torch/testing/model_coverage/model_coverage.py +145 -0
- ai_edge_torch/version.py +16 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/LICENSE +202 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/METADATA +44 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/RECORD +213 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/WHEEL +5 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/top_level.txt +1 -0
@@ -0,0 +1,88 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
"""Wrappers for latest torch APIs/utilities to maintain backward compatibility with older torch releases."""
|
16
|
+
|
17
|
+
import torch
|
18
|
+
from torch.fx import _pytree as fx_pytree
|
19
|
+
|
20
|
+
|
21
|
+
def graph_module_flat_inputs(ep: torch.export.ExportedProgram, args, kwargs):
|
22
|
+
"""Transform args, kwargs of __call__ to args for graph_module.
|
23
|
+
|
24
|
+
self.graph_module takes stuff from state dict as inputs.
|
25
|
+
The invariant is for ep: ExportedProgram is
|
26
|
+
ep(args, kwargs) ==
|
27
|
+
ep.postprocess(ep.graph_module(ep.graph_module_flat_inputs(args, kwargs)))
|
28
|
+
"""
|
29
|
+
if hasattr(ep, "_graph_module_flat_inputs"):
|
30
|
+
return ep._graph_module_flat_inputs(args, kwargs)
|
31
|
+
|
32
|
+
if args is None:
|
33
|
+
args = tuple()
|
34
|
+
if kwargs is None:
|
35
|
+
kwargs = {}
|
36
|
+
|
37
|
+
flat_args = args
|
38
|
+
if (in_spec := ep.call_spec.in_spec) is not None:
|
39
|
+
if (
|
40
|
+
in_spec.type == tuple
|
41
|
+
and len(in_spec.children_specs) == 2
|
42
|
+
and in_spec.children_specs[0].type == tuple
|
43
|
+
and in_spec.children_specs[1].type == dict
|
44
|
+
):
|
45
|
+
# NOTE: this is the case where in_spec is for both args and kwargs
|
46
|
+
flat_args = fx_pytree.tree_flatten_spec((args, kwargs), in_spec)
|
47
|
+
else:
|
48
|
+
flat_args = fx_pytree.tree_flatten_spec(args, in_spec)
|
49
|
+
|
50
|
+
param_buffer_keys = ep.graph_signature.parameters + ep.graph_signature.buffers
|
51
|
+
param_buffer_values = tuple(ep.state_dict[key] for key in param_buffer_keys)
|
52
|
+
|
53
|
+
if hasattr(ep.graph_signature, "lifted_tensor_constants"):
|
54
|
+
ordered_tensor_constants = tuple(
|
55
|
+
ep.tensor_constants[name]
|
56
|
+
for name in ep.graph_signature.lifted_tensor_constants
|
57
|
+
)
|
58
|
+
else:
|
59
|
+
ordered_tensor_constants = tuple()
|
60
|
+
|
61
|
+
return (*param_buffer_values, *flat_args, *ordered_tensor_constants)
|
62
|
+
|
63
|
+
|
64
|
+
# TODO(b/331481564): Replace this with CanonicalizePass + run_decomposition
|
65
|
+
def safe_run_decompositions(exported_program, decomp_table=None):
|
66
|
+
for node in exported_program.graph.nodes:
|
67
|
+
if node.target == torch.ops.aten.view.default:
|
68
|
+
# Passes or torch.export may generate aten.view nodes not respecting the
|
69
|
+
# tensor memory format. Changes all the aten.view to torch.reshape
|
70
|
+
# for retracing. If the input memory format is already contiguous,
|
71
|
+
# retracing in run_decomposition below would decompose torch.reshape
|
72
|
+
# back to one aten.view.
|
73
|
+
node.target = lambda self, size: torch.reshape(self.contiguous(), size)
|
74
|
+
|
75
|
+
return exported_program.run_decompositions(decomp_table)
|
76
|
+
|
77
|
+
|
78
|
+
def dummy_decomp_table():
|
79
|
+
"""Build dummy decomp table for run_decompositions without any decompositions.
|
80
|
+
|
81
|
+
Compatible for torch<=2.5.
|
82
|
+
|
83
|
+
Returns:
|
84
|
+
Decomp table for ExportedProgram.run_decompositions.
|
85
|
+
"""
|
86
|
+
return {
|
87
|
+
torch._ops.OperatorBase(): lambda: None,
|
88
|
+
}
|
@@ -0,0 +1,19 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
"""Torch library for registering ODML Torch custom ops."""
|
16
|
+
|
17
|
+
import torch
|
18
|
+
|
19
|
+
ODML_TORCH_LIB = torch.library.Library("odml_torch", "DEF")
|
@@ -0,0 +1,16 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
from .mark_tensor import mark_tensor_op
|
16
|
+
from .stablehlo_composite_builder import StableHLOCompositeBuilder
|
@@ -0,0 +1,120 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
import json
|
16
|
+
from typing import Sequence, Union
|
17
|
+
|
18
|
+
from jax._src.lib.mlir import ir
|
19
|
+
from jax._src.lib.mlir.dialects import hlo as stablehlo
|
20
|
+
import torch
|
21
|
+
|
22
|
+
from .. import _torch_library
|
23
|
+
from .. import lowerings
|
24
|
+
|
25
|
+
CompositeAttrType = dict[
|
26
|
+
str,
|
27
|
+
Union[
|
28
|
+
int,
|
29
|
+
float,
|
30
|
+
bool,
|
31
|
+
str,
|
32
|
+
Sequence[int],
|
33
|
+
Sequence[float],
|
34
|
+
Sequence[bool],
|
35
|
+
],
|
36
|
+
]
|
37
|
+
|
38
|
+
|
39
|
+
def _assert_valid_composite_attr(attr: CompositeAttrType):
|
40
|
+
if attr is None:
|
41
|
+
return
|
42
|
+
if not isinstance(attr, dict):
|
43
|
+
raise ValueError("Composite attr must be a Python dictionary.")
|
44
|
+
|
45
|
+
for k, v in attr.items():
|
46
|
+
if not isinstance(k, str):
|
47
|
+
raise ValueError("Composite attr name must be a Python str.")
|
48
|
+
|
49
|
+
invalid_attr_value_error = ValueError(
|
50
|
+
"Composite attr value must be either Python str, float, int, bool,"
|
51
|
+
" list[int], list[float], list[bool]."
|
52
|
+
)
|
53
|
+
if isinstance(v, (list, tuple)):
|
54
|
+
eltys = {type(el) for el in v}
|
55
|
+
if len(eltys) > 1 or next(iter(eltys)) not in (int, float, bool):
|
56
|
+
raise invalid_attr_value_error
|
57
|
+
elif type(v) not in (str, float, int, bool):
|
58
|
+
raise invalid_attr_value_error
|
59
|
+
|
60
|
+
|
61
|
+
@torch._dynamo.assume_constant_result
|
62
|
+
def serialize_composite_attr(attr: Union[CompositeAttrType, None]):
|
63
|
+
"""Serialize the composite attr into a dynamo-tracable value."""
|
64
|
+
if attr is None:
|
65
|
+
return None
|
66
|
+
_assert_valid_composite_attr(attr)
|
67
|
+
return tuple(attr.items())
|
68
|
+
|
69
|
+
|
70
|
+
@torch._dynamo.assume_constant_result
|
71
|
+
def deserialize_composite_attr(serialized_attr) -> CompositeAttrType:
|
72
|
+
"""Deserialize dynamo-tracable composite attribute into its raw value."""
|
73
|
+
if serialized_attr is None:
|
74
|
+
return None
|
75
|
+
return dict(serialized_attr)
|
76
|
+
|
77
|
+
|
78
|
+
_torch_library.ODML_TORCH_LIB.define(
|
79
|
+
"mark_tensor(Tensor x, str name, int pos, str id, bool is_input, Any?"
|
80
|
+
" attr=None) -> Tensor"
|
81
|
+
)
|
82
|
+
|
83
|
+
mark_tensor_op = torch.ops.odml_torch.mark_tensor.default
|
84
|
+
|
85
|
+
|
86
|
+
@torch.library.impl(
|
87
|
+
_torch_library.ODML_TORCH_LIB, "mark_tensor", "CompositeExplicitAutograd"
|
88
|
+
)
|
89
|
+
def mark_tensor(
|
90
|
+
x: torch.Tensor, name: str, pos: int, id: str, is_input: bool, attr=None
|
91
|
+
):
|
92
|
+
return x
|
93
|
+
|
94
|
+
|
95
|
+
@torch.library.impl(_torch_library.ODML_TORCH_LIB, "mark_tensor", "Meta")
|
96
|
+
def mark_tensor_meta(
|
97
|
+
x: torch.Tensor, name: str, pos: int, id: str, is_input: bool, attr=None
|
98
|
+
):
|
99
|
+
return torch.empty_like(x)
|
100
|
+
|
101
|
+
|
102
|
+
@lowerings.lower(torch.ops.odml_torch.mark_tensor)
|
103
|
+
def mark_tensor_lowering(
|
104
|
+
lctx, x: ir.Value, name: str, pos: int, id: str, is_input: bool, attr=None
|
105
|
+
):
|
106
|
+
attr = deserialize_composite_attr(attr)
|
107
|
+
return stablehlo.custom_call(
|
108
|
+
[x.type],
|
109
|
+
inputs=[x],
|
110
|
+
call_target_name="mark_tensor",
|
111
|
+
backend_config=ir.StringAttr.get(
|
112
|
+
json.dumps({
|
113
|
+
"name": name,
|
114
|
+
"pos": pos,
|
115
|
+
"id": id,
|
116
|
+
"is_input": is_input,
|
117
|
+
"attr": attr,
|
118
|
+
})
|
119
|
+
),
|
120
|
+
)
|
@@ -0,0 +1,106 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
import uuid
|
16
|
+
|
17
|
+
import torch
|
18
|
+
|
19
|
+
from . import mark_tensor
|
20
|
+
|
21
|
+
|
22
|
+
@torch._dynamo.assume_constant_result
|
23
|
+
def _get_uuid() -> str:
|
24
|
+
return uuid.uuid4().hex
|
25
|
+
|
26
|
+
|
27
|
+
class StableHLOCompositeBuilder:
|
28
|
+
"""Builder class for building a StableHLO composite in the lowering."""
|
29
|
+
|
30
|
+
def __init__(self, name: str, attr: mark_tensor.CompositeAttrType = None):
|
31
|
+
"""Helper for building a StableHLO Composite by marking input and output tensors.
|
32
|
+
|
33
|
+
It should be used with the StableHLO converters from `torch_xla.stablehlo`.
|
34
|
+
|
35
|
+
Args:
|
36
|
+
name (str): The name of the built StableHLO Composite op.
|
37
|
+
attr (mark_tensor.CompositeAttrType): Attributes of the StableHLO
|
38
|
+
Composite op.
|
39
|
+
"""
|
40
|
+
|
41
|
+
self.attr = attr
|
42
|
+
self.name = name
|
43
|
+
self.id = _get_uuid()
|
44
|
+
self._inputs = []
|
45
|
+
self._outputs = []
|
46
|
+
|
47
|
+
def _mark_tensor(self, *tensors: torch.Tensor, is_input: bool):
|
48
|
+
"""Mark the input/output tensors of the StableHLO Composite."""
|
49
|
+
marked_tensors = []
|
50
|
+
serialized_attr = (
|
51
|
+
mark_tensor.serialize_composite_attr(self.attr)
|
52
|
+
if not is_input
|
53
|
+
else None
|
54
|
+
)
|
55
|
+
|
56
|
+
for pos, tensor in enumerate(tensors):
|
57
|
+
if not isinstance(tensor, torch.Tensor):
|
58
|
+
raise ValueError(f"input must be a torch tensor. Got {type(tensor)}.")
|
59
|
+
marked_tensors.append(
|
60
|
+
mark_tensor.mark_tensor_op(
|
61
|
+
tensor,
|
62
|
+
name=self.name,
|
63
|
+
pos=pos,
|
64
|
+
id=self.id,
|
65
|
+
is_input=is_input,
|
66
|
+
attr=serialized_attr,
|
67
|
+
)
|
68
|
+
)
|
69
|
+
|
70
|
+
if len(marked_tensors) == 1:
|
71
|
+
return marked_tensors[0]
|
72
|
+
return tuple(marked_tensors)
|
73
|
+
|
74
|
+
def mark_inputs(self, *tensors: torch.Tensor):
|
75
|
+
"""Mark the input tensors of the StableHLO Composite.
|
76
|
+
|
77
|
+
This method must only be called once per builder.
|
78
|
+
|
79
|
+
Args:
|
80
|
+
*tensors (torch.Tensor): Torch tensors to mark.
|
81
|
+
|
82
|
+
Returns:
|
83
|
+
marked_tensors (torch.Tensor or Tuple[torch.Tensor]):
|
84
|
+
Torch tensors marked as composite inputs. The tensor inputs of this
|
85
|
+
method
|
86
|
+
should be replaced by the marked tensors in later usages.
|
87
|
+
"""
|
88
|
+
|
89
|
+
return self._mark_tensor(*tensors, is_input=True)
|
90
|
+
|
91
|
+
def mark_outputs(self, *tensors: torch.Tensor):
|
92
|
+
"""Mark the output tensors of the StableHLO Composite.
|
93
|
+
|
94
|
+
This method must only be called once per builder.
|
95
|
+
|
96
|
+
Args:
|
97
|
+
*tensors (torch.Tensor): Torch tensors to mark.
|
98
|
+
|
99
|
+
Returns:
|
100
|
+
marked_tensors (torch.Tensor or Tuple[torch.Tensor]):
|
101
|
+
Torch tensors marked as composite outputs. The tensor inputs of this
|
102
|
+
method
|
103
|
+
should be replaced by the marked tensors in later usages.
|
104
|
+
"""
|
105
|
+
|
106
|
+
return self._mark_tensor(*tensors, is_input=False)
|
@@ -0,0 +1,16 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
from ._build import build_mlir_debuginfo
|
16
|
+
from ._op_polyfill import write_mlir_debuginfo_op
|
@@ -0,0 +1,43 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
import torch
|
16
|
+
|
17
|
+
|
18
|
+
def _class_fullname(cls):
|
19
|
+
module = cls.__module__
|
20
|
+
if module == "builtins":
|
21
|
+
return cls.__qualname__
|
22
|
+
return module + "." + cls.__qualname__
|
23
|
+
|
24
|
+
|
25
|
+
def _get_hierarchy(node: torch.fx.Node):
|
26
|
+
nn_module_stack = node.meta.get("nn_module_stack", {})
|
27
|
+
layers = []
|
28
|
+
for name, layer in nn_module_stack.values():
|
29
|
+
iid = ("_" + name.split(".")[-1]) if name else ""
|
30
|
+
layer_str = layer if isinstance(layer, str) else _class_fullname(layer)
|
31
|
+
layers.append(layer_str + iid)
|
32
|
+
|
33
|
+
hierachy_str = "/".join(layers) + ";"
|
34
|
+
return hierachy_str
|
35
|
+
|
36
|
+
|
37
|
+
def build_mlir_debuginfo(node: torch.fx.Node):
|
38
|
+
"""Build the debuginfo string for the given node's lowerings in MLIR."""
|
39
|
+
|
40
|
+
if not hasattr(node, "meta") or "nn_module_stack" not in node.meta:
|
41
|
+
return None
|
42
|
+
|
43
|
+
return _get_hierarchy(node)
|
@@ -0,0 +1,55 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
"""Polyfill op for torch.ops.xla.write_mlir_debuginfo.
|
16
|
+
|
17
|
+
In odml-torch, MLIR debuginfo is generated in the lowering framework directly
|
18
|
+
without the need of an additional torch op to write. This file register a no-op
|
19
|
+
placeholder torch op to replace torch.ops.xla.write_mlir_debuginfo in
|
20
|
+
ai-edge-torch.
|
21
|
+
"""
|
22
|
+
|
23
|
+
from jax._src.lib.mlir import ir
|
24
|
+
import torch
|
25
|
+
|
26
|
+
from .. import _torch_library
|
27
|
+
from .. import lowerings
|
28
|
+
|
29
|
+
|
30
|
+
_torch_library.ODML_TORCH_LIB.define(
|
31
|
+
"write_mlir_debuginfo(Tensor x, str data) -> Tensor"
|
32
|
+
)
|
33
|
+
|
34
|
+
write_mlir_debuginfo_op = torch.ops.odml_torch.write_mlir_debuginfo
|
35
|
+
|
36
|
+
|
37
|
+
@torch.library.impl(
|
38
|
+
_torch_library.ODML_TORCH_LIB,
|
39
|
+
"write_mlir_debuginfo",
|
40
|
+
"CompositeExplicitAutograd",
|
41
|
+
)
|
42
|
+
def write_mlir_debuginfo(x: torch.Tensor, _: str):
|
43
|
+
return x
|
44
|
+
|
45
|
+
|
46
|
+
@torch.library.impl(
|
47
|
+
_torch_library.ODML_TORCH_LIB, "write_mlir_debuginfo", "Meta"
|
48
|
+
)
|
49
|
+
def write_mlir_debuginfo_meta(x: torch.Tensor, _: str):
|
50
|
+
return torch.empty_like(x)
|
51
|
+
|
52
|
+
|
53
|
+
@lowerings.lower(torch.ops.odml_torch.write_mlir_debuginfo)
|
54
|
+
def write_mlir_debuginfo_lowering(lctx, x: ir.Value, _: str):
|
55
|
+
return x
|