ai-edge-torch-nightly 0.3.0.dev20250114__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (213) hide show
  1. ai_edge_torch/__init__.py +32 -0
  2. ai_edge_torch/_config.py +69 -0
  3. ai_edge_torch/_convert/__init__.py +14 -0
  4. ai_edge_torch/_convert/conversion.py +153 -0
  5. ai_edge_torch/_convert/conversion_utils.py +64 -0
  6. ai_edge_torch/_convert/converter.py +270 -0
  7. ai_edge_torch/_convert/fx_passes/__init__.py +23 -0
  8. ai_edge_torch/_convert/fx_passes/build_aten_composite_pass.py +288 -0
  9. ai_edge_torch/_convert/fx_passes/build_interpolate_composite_pass.py +131 -0
  10. ai_edge_torch/_convert/fx_passes/inject_mlir_debuginfo_pass.py +73 -0
  11. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/__init__.py +16 -0
  12. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_check.py +258 -0
  13. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_mark.py +50 -0
  14. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +18 -0
  15. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +68 -0
  16. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +216 -0
  17. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +449 -0
  18. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +30 -0
  19. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/pass_body.py +303 -0
  20. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/utils.py +64 -0
  21. ai_edge_torch/_convert/fx_passes/remove_non_user_outputs_pass.py +52 -0
  22. ai_edge_torch/_convert/signature.py +66 -0
  23. ai_edge_torch/_convert/test/__init__.py +14 -0
  24. ai_edge_torch/_convert/test/test_convert.py +558 -0
  25. ai_edge_torch/_convert/test/test_convert_composites.py +234 -0
  26. ai_edge_torch/_convert/test/test_convert_multisig.py +189 -0
  27. ai_edge_torch/_convert/test/test_to_channel_last_io.py +96 -0
  28. ai_edge_torch/_convert/to_channel_last_io.py +92 -0
  29. ai_edge_torch/conftest.py +20 -0
  30. ai_edge_torch/debug/__init__.py +17 -0
  31. ai_edge_torch/debug/culprit.py +496 -0
  32. ai_edge_torch/debug/test/__init__.py +14 -0
  33. ai_edge_torch/debug/test/test_culprit.py +140 -0
  34. ai_edge_torch/debug/test/test_search_model.py +51 -0
  35. ai_edge_torch/debug/utils.py +59 -0
  36. ai_edge_torch/experimental/__init__.py +14 -0
  37. ai_edge_torch/fx_pass_base.py +110 -0
  38. ai_edge_torch/generative/__init__.py +14 -0
  39. ai_edge_torch/generative/examples/__init__.py +14 -0
  40. ai_edge_torch/generative/examples/amd_llama_135m/__init__.py +14 -0
  41. ai_edge_torch/generative/examples/amd_llama_135m/amd_llama_135m.py +87 -0
  42. ai_edge_torch/generative/examples/amd_llama_135m/convert_to_tflite.py +70 -0
  43. ai_edge_torch/generative/examples/amd_llama_135m/verify.py +72 -0
  44. ai_edge_torch/generative/examples/gemma/__init__.py +14 -0
  45. ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +80 -0
  46. ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +80 -0
  47. ai_edge_torch/generative/examples/gemma/gemma1.py +107 -0
  48. ai_edge_torch/generative/examples/gemma/gemma2.py +295 -0
  49. ai_edge_torch/generative/examples/gemma/verify_gemma1.py +56 -0
  50. ai_edge_torch/generative/examples/gemma/verify_gemma2.py +43 -0
  51. ai_edge_torch/generative/examples/gemma/verify_util.py +157 -0
  52. ai_edge_torch/generative/examples/llama/__init__.py +14 -0
  53. ai_edge_torch/generative/examples/llama/convert_to_tflite.py +91 -0
  54. ai_edge_torch/generative/examples/llama/llama.py +196 -0
  55. ai_edge_torch/generative/examples/llama/verify.py +88 -0
  56. ai_edge_torch/generative/examples/moonshine/__init__.py +14 -0
  57. ai_edge_torch/generative/examples/moonshine/convert_moonshine_to_tflite.py +50 -0
  58. ai_edge_torch/generative/examples/moonshine/moonshine.py +103 -0
  59. ai_edge_torch/generative/examples/openelm/__init__.py +14 -0
  60. ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +80 -0
  61. ai_edge_torch/generative/examples/openelm/openelm.py +127 -0
  62. ai_edge_torch/generative/examples/openelm/verify.py +71 -0
  63. ai_edge_torch/generative/examples/paligemma/__init__.py +14 -0
  64. ai_edge_torch/generative/examples/paligemma/convert_to_tflite.py +95 -0
  65. ai_edge_torch/generative/examples/paligemma/decoder.py +151 -0
  66. ai_edge_torch/generative/examples/paligemma/decoder2.py +177 -0
  67. ai_edge_torch/generative/examples/paligemma/image_encoder.py +160 -0
  68. ai_edge_torch/generative/examples/paligemma/paligemma.py +179 -0
  69. ai_edge_torch/generative/examples/paligemma/verify.py +161 -0
  70. ai_edge_torch/generative/examples/paligemma/verify_decoder.py +75 -0
  71. ai_edge_torch/generative/examples/paligemma/verify_decoder2.py +72 -0
  72. ai_edge_torch/generative/examples/paligemma/verify_image_encoder.py +99 -0
  73. ai_edge_torch/generative/examples/phi/__init__.py +14 -0
  74. ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +80 -0
  75. ai_edge_torch/generative/examples/phi/convert_to_tflite.py +80 -0
  76. ai_edge_torch/generative/examples/phi/phi2.py +107 -0
  77. ai_edge_torch/generative/examples/phi/phi3.py +219 -0
  78. ai_edge_torch/generative/examples/phi/verify.py +64 -0
  79. ai_edge_torch/generative/examples/phi/verify_phi3.py +69 -0
  80. ai_edge_torch/generative/examples/qwen/__init__.py +14 -0
  81. ai_edge_torch/generative/examples/qwen/convert_to_tflite.py +93 -0
  82. ai_edge_torch/generative/examples/qwen/qwen.py +134 -0
  83. ai_edge_torch/generative/examples/qwen/verify.py +88 -0
  84. ai_edge_torch/generative/examples/smollm/__init__.py +14 -0
  85. ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +80 -0
  86. ai_edge_torch/generative/examples/smollm/convert_v2_to_tflite.py +71 -0
  87. ai_edge_torch/generative/examples/smollm/smollm.py +125 -0
  88. ai_edge_torch/generative/examples/smollm/verify.py +86 -0
  89. ai_edge_torch/generative/examples/stable_diffusion/__init__.py +14 -0
  90. ai_edge_torch/generative/examples/stable_diffusion/attention.py +108 -0
  91. ai_edge_torch/generative/examples/stable_diffusion/clip.py +185 -0
  92. ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +173 -0
  93. ai_edge_torch/generative/examples/stable_diffusion/decoder.py +398 -0
  94. ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +749 -0
  95. ai_edge_torch/generative/examples/stable_diffusion/encoder.py +119 -0
  96. ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +254 -0
  97. ai_edge_torch/generative/examples/stable_diffusion/samplers/__init__.py +19 -0
  98. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +62 -0
  99. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +66 -0
  100. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +74 -0
  101. ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +39 -0
  102. ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +111 -0
  103. ai_edge_torch/generative/examples/stable_diffusion/util.py +77 -0
  104. ai_edge_torch/generative/examples/t5/__init__.py +14 -0
  105. ai_edge_torch/generative/examples/t5/convert_to_tflite.py +138 -0
  106. ai_edge_torch/generative/examples/t5/t5.py +655 -0
  107. ai_edge_torch/generative/examples/t5/t5_attention.py +246 -0
  108. ai_edge_torch/generative/examples/test_models/__init__.py +14 -0
  109. ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
  110. ai_edge_torch/generative/examples/test_models/toy_model.py +156 -0
  111. ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +138 -0
  112. ai_edge_torch/generative/examples/tiny_llama/__init__.py +14 -0
  113. ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +80 -0
  114. ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +88 -0
  115. ai_edge_torch/generative/examples/tiny_llama/verify.py +72 -0
  116. ai_edge_torch/generative/fx_passes/__init__.py +30 -0
  117. ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +50 -0
  118. ai_edge_torch/generative/layers/__init__.py +14 -0
  119. ai_edge_torch/generative/layers/attention.py +399 -0
  120. ai_edge_torch/generative/layers/attention_utils.py +210 -0
  121. ai_edge_torch/generative/layers/builder.py +160 -0
  122. ai_edge_torch/generative/layers/feed_forward.py +120 -0
  123. ai_edge_torch/generative/layers/kv_cache.py +204 -0
  124. ai_edge_torch/generative/layers/lora.py +557 -0
  125. ai_edge_torch/generative/layers/model_config.py +238 -0
  126. ai_edge_torch/generative/layers/normalization.py +222 -0
  127. ai_edge_torch/generative/layers/rotary_position_embedding.py +94 -0
  128. ai_edge_torch/generative/layers/scaled_dot_product_attention.py +144 -0
  129. ai_edge_torch/generative/layers/unet/__init__.py +14 -0
  130. ai_edge_torch/generative/layers/unet/blocks_2d.py +806 -0
  131. ai_edge_torch/generative/layers/unet/builder.py +50 -0
  132. ai_edge_torch/generative/layers/unet/model_config.py +282 -0
  133. ai_edge_torch/generative/quantize/__init__.py +14 -0
  134. ai_edge_torch/generative/quantize/example.py +47 -0
  135. ai_edge_torch/generative/quantize/quant_attrs.py +68 -0
  136. ai_edge_torch/generative/quantize/quant_recipe.py +154 -0
  137. ai_edge_torch/generative/quantize/quant_recipe_utils.py +62 -0
  138. ai_edge_torch/generative/quantize/quant_recipes.py +56 -0
  139. ai_edge_torch/generative/quantize/supported_schemes.py +32 -0
  140. ai_edge_torch/generative/test/__init__.py +14 -0
  141. ai_edge_torch/generative/test/test_custom_dus.py +107 -0
  142. ai_edge_torch/generative/test/test_kv_cache.py +120 -0
  143. ai_edge_torch/generative/test/test_loader.py +83 -0
  144. ai_edge_torch/generative/test/test_lora.py +147 -0
  145. ai_edge_torch/generative/test/test_model_conversion.py +191 -0
  146. ai_edge_torch/generative/test/test_model_conversion_large.py +362 -0
  147. ai_edge_torch/generative/test/test_quantize.py +183 -0
  148. ai_edge_torch/generative/test/utils.py +82 -0
  149. ai_edge_torch/generative/utilities/__init__.py +15 -0
  150. ai_edge_torch/generative/utilities/converter.py +215 -0
  151. ai_edge_torch/generative/utilities/dynamic_update_slice.py +56 -0
  152. ai_edge_torch/generative/utilities/loader.py +398 -0
  153. ai_edge_torch/generative/utilities/model_builder.py +180 -0
  154. ai_edge_torch/generative/utilities/moonshine_loader.py +154 -0
  155. ai_edge_torch/generative/utilities/stable_diffusion_loader.py +1032 -0
  156. ai_edge_torch/generative/utilities/t5_loader.py +512 -0
  157. ai_edge_torch/generative/utilities/transformers_verifier.py +42 -0
  158. ai_edge_torch/generative/utilities/verifier.py +335 -0
  159. ai_edge_torch/hlfb/__init__.py +16 -0
  160. ai_edge_torch/hlfb/mark_pattern/__init__.py +153 -0
  161. ai_edge_torch/hlfb/mark_pattern/fx_utils.py +69 -0
  162. ai_edge_torch/hlfb/mark_pattern/pattern.py +288 -0
  163. ai_edge_torch/hlfb/test/__init__.py +14 -0
  164. ai_edge_torch/hlfb/test/test_mark_pattern.py +185 -0
  165. ai_edge_torch/lowertools/__init__.py +18 -0
  166. ai_edge_torch/lowertools/_shim.py +86 -0
  167. ai_edge_torch/lowertools/common_utils.py +142 -0
  168. ai_edge_torch/lowertools/odml_torch_utils.py +260 -0
  169. ai_edge_torch/lowertools/test_utils.py +62 -0
  170. ai_edge_torch/lowertools/torch_xla_utils.py +301 -0
  171. ai_edge_torch/lowertools/translate_recipe.py +163 -0
  172. ai_edge_torch/model.py +177 -0
  173. ai_edge_torch/odml_torch/__init__.py +20 -0
  174. ai_edge_torch/odml_torch/_torch_future.py +88 -0
  175. ai_edge_torch/odml_torch/_torch_library.py +19 -0
  176. ai_edge_torch/odml_torch/composite/__init__.py +16 -0
  177. ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
  178. ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
  179. ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
  180. ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
  181. ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
  182. ai_edge_torch/odml_torch/export.py +403 -0
  183. ai_edge_torch/odml_torch/export_utils.py +157 -0
  184. ai_edge_torch/odml_torch/jax_bridge/__init__.py +18 -0
  185. ai_edge_torch/odml_torch/jax_bridge/_wrap.py +180 -0
  186. ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
  187. ai_edge_torch/odml_torch/lowerings/__init__.py +27 -0
  188. ai_edge_torch/odml_torch/lowerings/_basic.py +294 -0
  189. ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
  190. ai_edge_torch/odml_torch/lowerings/_convolution.py +243 -0
  191. ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +285 -0
  192. ai_edge_torch/odml_torch/lowerings/_layer_norm.py +87 -0
  193. ai_edge_torch/odml_torch/lowerings/_quantized_decomposed.py +177 -0
  194. ai_edge_torch/odml_torch/lowerings/_rand.py +142 -0
  195. ai_edge_torch/odml_torch/lowerings/context.py +42 -0
  196. ai_edge_torch/odml_torch/lowerings/decomp.py +69 -0
  197. ai_edge_torch/odml_torch/lowerings/registry.py +65 -0
  198. ai_edge_torch/odml_torch/lowerings/utils.py +201 -0
  199. ai_edge_torch/odml_torch/passes/__init__.py +38 -0
  200. ai_edge_torch/odml_torch/tf_integration.py +156 -0
  201. ai_edge_torch/quantize/__init__.py +16 -0
  202. ai_edge_torch/quantize/pt2e_quantizer.py +466 -0
  203. ai_edge_torch/quantize/pt2e_quantizer_utils.py +1061 -0
  204. ai_edge_torch/quantize/quant_config.py +85 -0
  205. ai_edge_torch/testing/__init__.py +14 -0
  206. ai_edge_torch/testing/model_coverage/__init__.py +16 -0
  207. ai_edge_torch/testing/model_coverage/model_coverage.py +145 -0
  208. ai_edge_torch/version.py +16 -0
  209. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/LICENSE +202 -0
  210. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/METADATA +44 -0
  211. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/RECORD +213 -0
  212. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/WHEEL +5 -0
  213. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/top_level.txt +1 -0
@@ -0,0 +1,288 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ from typing import Any, Callable
17
+ from ai_edge_torch import fx_pass_base
18
+ from ai_edge_torch import lowertools
19
+ import torch
20
+ import torch.utils._pytree as pytree
21
+
22
+ _composite_builders: dict[
23
+ Callable, Callable[[torch.fx.GraphModule, torch.fx.Node], None]
24
+ ] = {}
25
+
26
+
27
+ def _register_composite_builder(op):
28
+ def inner(func):
29
+ if isinstance(op, torch._ops.OpOverloadPacket):
30
+ for overload in op.overloads():
31
+ _composite_builders[getattr(op, overload)] = func
32
+ else:
33
+ _composite_builders[op] = func
34
+ return func
35
+
36
+ return inner
37
+
38
+
39
+ def _tree_map_to_composite_attr_values(
40
+ values, *, stringify_incompatible_values=True
41
+ ):
42
+ """Convert a tree of values to a tree of composite attribute values.
43
+
44
+ This is used for pre-processing op attributes before passing them to
45
+ the composite op as attributes.
46
+
47
+ Args:
48
+ values: A tree of values.
49
+ stringify_incompatible_values: If True, stringify values that are not
50
+ compatible with composite attributes.
51
+
52
+ Returns:
53
+ A tree of composite attribute values.
54
+ """
55
+
56
+ def convert(value):
57
+ nonlocal stringify_incompatible_values
58
+ if value is None:
59
+ return "py_None"
60
+ if isinstance(value, (str, int, float, bool)):
61
+ return value
62
+
63
+ if stringify_incompatible_values:
64
+ return str(value)
65
+ return value
66
+
67
+ return pytree.tree_map(convert, values)
68
+
69
+
70
+ class TorchOpArgumentsMapper:
71
+ """A helper class to map op arguments to kwargs.
72
+
73
+ This is mainly used to extract the default values for op arguments and present
74
+ all arguments as kwargs.
75
+ """
76
+
77
+ def __init__(self, op):
78
+ if isinstance(op, torch._ops.OpOverloadPacket):
79
+ op = op.default
80
+
81
+ assert hasattr(op, "_schema")
82
+ self.op = op
83
+ self.arg_specs = [
84
+ (spec.name, spec.default_value) for spec in op._schema.arguments
85
+ ]
86
+
87
+ def get_full_kwargs(self, args, kwargs=None) -> dict[str, Any]:
88
+ """Extracts all arguments of the op as kwargs.
89
+
90
+ Inspect the op's schema and extract all its args and kwargs into one single
91
+ kwargs dict, with default values for those unspecified args and kwargs.
92
+
93
+ Args:
94
+ args: The op's arguments.
95
+ kwargs: The op's kwargs.
96
+
97
+ Returns:
98
+ A kwargs dict with all args and kwargs.
99
+ """
100
+ full_kwargs = {**(kwargs or {})}
101
+
102
+ for arg, (name, _) in zip(args, self.arg_specs):
103
+ full_kwargs[name] = arg
104
+
105
+ for name, default_value in self.arg_specs[len(args) :]:
106
+ if name not in full_kwargs:
107
+ full_kwargs[name] = default_value
108
+
109
+ return full_kwargs
110
+
111
+
112
+ @_register_composite_builder(torch.ops.aten.hardswish.default)
113
+ def _aten_hardswish(_: torch.fx.GraphModule, node: torch.fx.Node):
114
+ """Build a composite for aten.hardswish.default."""
115
+ op = node.target
116
+
117
+ def hardswish(self: torch.Tensor):
118
+ nonlocal op
119
+ builder = lowertools.StableHLOCompositeBuilder("aten.hardswish.default")
120
+ self = builder.mark_inputs(self)
121
+ output = op(self)
122
+ output = builder.mark_outputs(output)
123
+ return output
124
+
125
+ node.target = hardswish
126
+
127
+
128
+ @_register_composite_builder(torch.ops.aten.gelu.default)
129
+ def _aten_gelu(_: torch.fx.GraphModule, node: torch.fx.Node):
130
+ """Build a composite for aten.gelu.default."""
131
+ op = node.target
132
+ args_mapper = TorchOpArgumentsMapper(op)
133
+
134
+ def gelu(*args, **kwargs):
135
+ nonlocal op, args_mapper
136
+
137
+ full_kwargs = args_mapper.get_full_kwargs(args, kwargs)
138
+
139
+ # TFLite supports exact and tanh approximate.
140
+ if (
141
+ full_kwargs["approximate"] != "none"
142
+ and full_kwargs["approximate"] != "tanh"
143
+ ):
144
+ return op(*args, **kwargs)
145
+
146
+ builder = lowertools.StableHLOCompositeBuilder(
147
+ "aten.gelu.default",
148
+ attr=_tree_map_to_composite_attr_values({
149
+ "approximate": full_kwargs["approximate"],
150
+ }),
151
+ )
152
+ full_kwargs["self"] = builder.mark_inputs(full_kwargs["self"])
153
+ output = op(full_kwargs["self"])
154
+ output = builder.mark_outputs(output)
155
+ return output
156
+
157
+ node.target = gelu
158
+
159
+
160
+ @_register_composite_builder(torch.ops.aten.avg_pool2d.default)
161
+ def _aten_avg_pool2d(_: torch.fx.GraphModule, node: torch.fx.Node):
162
+ """Build a composite for aten.avg_pool2d.default."""
163
+ op = node.target
164
+ args_mapper = TorchOpArgumentsMapper(op)
165
+
166
+ def avg_pool2d(*args, **kwargs):
167
+ nonlocal op, args_mapper
168
+
169
+ full_kwargs = args_mapper.get_full_kwargs(args, kwargs)
170
+
171
+ def is_same_padding(
172
+ input_shape: list[int],
173
+ kernel_size: list[int],
174
+ stride: list[int],
175
+ padding: list[int],
176
+ ):
177
+ for dim_input_size, dim_kernel_size, dim_stride, dim_padding in zip(
178
+ input_shape, kernel_size, stride, padding
179
+ ):
180
+ dim_output_size = int((dim_input_size + dim_stride - 1) / dim_stride)
181
+ padding_needed = max(
182
+ 0,
183
+ (dim_output_size - 1) * dim_stride
184
+ + dim_kernel_size
185
+ - dim_input_size,
186
+ )
187
+ if padding_needed % 2 != 0:
188
+ return False
189
+
190
+ if padding_needed // 2 != dim_padding:
191
+ return False
192
+ return True
193
+
194
+ def is_valid_padding(padding: list[int]):
195
+ return not any(padding)
196
+
197
+ # We prefer to avoid passing empty arrays to composite attributes
198
+ # as they will be lowered to an ArrayAttr so canonicalizing according
199
+ # to the default behaviour here.
200
+ if not full_kwargs["stride"]:
201
+ full_kwargs["stride"] = full_kwargs["kernel_size"]
202
+
203
+ # Only wrap in a composite when the underlying converter can handle it.
204
+ # TODO We should be able to remove this if the converter can inline composites when it can not handle them.
205
+
206
+ # We don't cover any cases where the divisor_override is set.
207
+ if full_kwargs["divisor_override"] is not None:
208
+ return op(*args, **kwargs)
209
+
210
+ if full_kwargs["ceil_mode"] and not full_kwargs["count_include_pad"]:
211
+ return op(*args, **kwargs)
212
+
213
+ # We also can not cover a case where count_include_pad is False but the padding is custom.
214
+ if (
215
+ not full_kwargs["count_include_pad"]
216
+ and not is_valid_padding(full_kwargs["padding"])
217
+ and not is_same_padding(
218
+ list(full_kwargs["self"].shape)[2:],
219
+ full_kwargs["kernel_size"],
220
+ full_kwargs["stride"],
221
+ full_kwargs["padding"],
222
+ )
223
+ ):
224
+ return op(*args, **kwargs)
225
+
226
+ builder = lowertools.StableHLOCompositeBuilder(
227
+ "aten.avg_pool2d.default",
228
+ attr=_tree_map_to_composite_attr_values({
229
+ "kernel_size": full_kwargs["kernel_size"],
230
+ "stride": full_kwargs["stride"],
231
+ "padding": full_kwargs["padding"],
232
+ "ceil_mode": full_kwargs["ceil_mode"],
233
+ "count_include_pad": full_kwargs["count_include_pad"],
234
+ "divisor_override": full_kwargs["divisor_override"],
235
+ }),
236
+ )
237
+
238
+ full_kwargs["self"] = builder.mark_inputs(full_kwargs["self"])
239
+ output = op(**full_kwargs)
240
+ output = builder.mark_outputs(output)
241
+ return output
242
+
243
+ node.target = avg_pool2d
244
+
245
+
246
+ @_register_composite_builder(torch.ops.aten.embedding.default)
247
+ def _aten_embedding(gm: torch.fx.GraphModule, node: torch.fx.Node):
248
+ op = node.target
249
+ args_mapper = TorchOpArgumentsMapper(op)
250
+
251
+ def embedding(*args, **kwargs):
252
+ nonlocal op, args_mapper
253
+ full_kwargs = args_mapper.get_full_kwargs(args, kwargs)
254
+ _, embedding_dim = full_kwargs["weight"].size()
255
+ idx = full_kwargs["indices"]
256
+
257
+ # Explicitly cast to INT32. This places the CastOp outside of the HLFB.
258
+ idx = idx.type(torch.int)
259
+ original_idx_shape = idx.size()
260
+
261
+ # Explicitly reshape to 1D. This places the ReshapeOp outside of the HLFB.
262
+ idx = torch.reshape(idx, (idx.numel(),))
263
+
264
+ builder = lowertools.StableHLOCompositeBuilder("odml.embedding_lookup")
265
+ full_kwargs["indices"], full_kwargs["weight"] = builder.mark_inputs(
266
+ idx,
267
+ full_kwargs["weight"],
268
+ )
269
+ output = op(**full_kwargs)
270
+ output = builder.mark_outputs(output)
271
+
272
+ # Explicitly reshape back to the original shape. This places the ReshapeOp outside of the HLFB.
273
+ output = torch.reshape(output, (*(original_idx_shape), embedding_dim))
274
+ return output
275
+
276
+ node.target = embedding
277
+
278
+
279
+ class BuildAtenCompositePass(fx_pass_base.PassBase):
280
+
281
+ def call(self, graph_module: torch.fx.GraphModule):
282
+ for node in graph_module.graph.nodes:
283
+ if node.target in _composite_builders:
284
+ _composite_builders[node.target](graph_module, node)
285
+
286
+ graph_module.graph.lint()
287
+ graph_module.recompile()
288
+ return fx_pass_base.PassResult(graph_module, True)
@@ -0,0 +1,131 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ """Build interpolate composite pass."""
16
+
17
+ import functools
18
+
19
+ from ai_edge_torch import fx_pass_base
20
+ from ai_edge_torch.hlfb import mark_pattern
21
+ from ai_edge_torch.hlfb.mark_pattern import pattern as pattern_module
22
+ import torch
23
+
24
+ # For torch nightly released after mid June 2024,
25
+ # torch.nn.functional.interpolate no longer gets exported into decomposed graph
26
+ # but a single aten op:
27
+ # torch.ops.aten.upsample_nearest2d.vec/torch.ops.aten.upsample_bilinear2d.vec.
28
+ # This would interefere with our pattern matching based composite builder.
29
+ # Here we register the now missing decompositions first.
30
+ _INTERPOLATE_DECOMPOSITIONS = torch._decomp.get_decompositions([
31
+ torch.ops.aten.upsample_bilinear2d.vec,
32
+ torch.ops.aten.upsample_nearest2d.vec,
33
+ ])
34
+
35
+
36
+ @functools.cache
37
+ def _get_upsample_bilinear2d_pattern():
38
+ pattern = pattern_module.Pattern(
39
+ "odml.upsample_bilinear2d",
40
+ lambda x: torch.nn.functional.interpolate(
41
+ x, scale_factor=2, mode="bilinear", align_corners=False
42
+ ),
43
+ export_args=(torch.rand(1, 3, 100, 100),),
44
+ decomp_table=_INTERPOLATE_DECOMPOSITIONS,
45
+ )
46
+
47
+ @pattern.register_attr_builder
48
+ def attr_builder(pattern, graph_module, internal_match):
49
+ output = internal_match.returning_nodes[0]
50
+ output_h, output_w = output.meta["val"].shape[-2:]
51
+ return {
52
+ "size": (int(output_h), int(output_w)),
53
+ "align_corners": False,
54
+ "is_nchw_op": True,
55
+ }
56
+
57
+ return pattern
58
+
59
+
60
+ @functools.cache
61
+ def _get_upsample_bilinear2d_align_corners_pattern():
62
+ pattern = pattern_module.Pattern(
63
+ "odml.upsample_bilinear2d",
64
+ lambda x: torch.nn.functional.interpolate(
65
+ x, scale_factor=2, mode="bilinear", align_corners=True
66
+ ),
67
+ export_args=(torch.rand(1, 3, 100, 100),),
68
+ decomp_table=_INTERPOLATE_DECOMPOSITIONS,
69
+ )
70
+
71
+ @pattern.register_attr_builder
72
+ def attr_builder(graph_module, pattern, internal_match):
73
+ output = internal_match.returning_nodes[0]
74
+ output_h, output_w = output.meta["val"].shape[-2:]
75
+ return {
76
+ "size": (int(output_h), int(output_w)),
77
+ "align_corners": True,
78
+ "is_nchw_op": True,
79
+ }
80
+
81
+ return pattern
82
+
83
+
84
+ @functools.cache
85
+ def _get_interpolate_nearest2d_pattern():
86
+ pattern = pattern_module.Pattern(
87
+ "tfl.resize_nearest_neighbor",
88
+ lambda x: torch.nn.functional.interpolate(
89
+ x, scale_factor=2, mode="nearest"
90
+ ),
91
+ export_args=(torch.rand(1, 3, 100, 100),),
92
+ decomp_table=_INTERPOLATE_DECOMPOSITIONS,
93
+ )
94
+
95
+ @pattern.register_attr_builder
96
+ def attr_builder(pattern, graph_module, internal_match):
97
+ output = internal_match.returning_nodes[0]
98
+ output_h, output_w = output.meta["val"].shape[-2:]
99
+ return {
100
+ "size": (int(output_h), int(output_w)),
101
+ "is_nchw_op": True,
102
+ }
103
+
104
+ return pattern
105
+
106
+
107
+ class BuildInterpolateCompositePass(fx_pass_base.ExportedProgramPassBase):
108
+
109
+ def __init__(self):
110
+ super().__init__()
111
+ self._patterns = [
112
+ _get_upsample_bilinear2d_pattern(),
113
+ _get_upsample_bilinear2d_align_corners_pattern(),
114
+ _get_interpolate_nearest2d_pattern(),
115
+ ]
116
+
117
+ def call(self, exported_program: torch.export.ExportedProgram):
118
+ exported_program = fx_pass_base.run_passes(
119
+ exported_program, [fx_pass_base.CanonicalizePass()]
120
+ )
121
+ exported_program = exported_program.run_decompositions(
122
+ _INTERPOLATE_DECOMPOSITIONS
123
+ )
124
+
125
+ graph_module = exported_program.graph_module
126
+ for pattern in self._patterns:
127
+ graph_module = mark_pattern.mark_pattern(graph_module, pattern)
128
+
129
+ graph_module.graph.lint()
130
+ graph_module.recompile()
131
+ return fx_pass_base.ExportedProgramPassResult(exported_program, True)
@@ -0,0 +1,73 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ from ai_edge_torch import fx_pass_base
17
+ from ai_edge_torch import lowertools
18
+ import torch
19
+ import torch.utils._pytree as pytree
20
+
21
+
22
+ def _get_mlir_debuginfo(node: torch.fx.Node):
23
+ def class_fullname(cls):
24
+ module = cls.__module__
25
+ if module == "builtins":
26
+ return cls.__qualname__
27
+ return module + "." + cls.__qualname__
28
+
29
+ def get_hierarchy(node: torch.fx.Node):
30
+ nn_module_stack = node.meta.get("nn_module_stack", {})
31
+ layers = []
32
+ for name, layer in nn_module_stack.values():
33
+ iid = ("_" + name.split(".")[-1]) if name else ""
34
+ layer_str = layer if isinstance(layer, str) else class_fullname(layer)
35
+ layers.append(layer_str + iid)
36
+
37
+ hierachy_str = "/".join(layers) + ";"
38
+ return hierachy_str
39
+
40
+ # TODO(yijieyang): Encode aten op and attrs.
41
+ return get_hierarchy(node)
42
+
43
+
44
+ def _wrap_call_function_node_with_debuginfo_writer(node: torch.fx.GraphModule):
45
+ if not node.op.startswith("call_function"):
46
+ return
47
+
48
+ target = node.target
49
+ debuginfo = _get_mlir_debuginfo(node)
50
+
51
+ def debuginfo_writer(*args, **kwargs):
52
+ nonlocal target, debuginfo
53
+ outputs = target(*args, **kwargs)
54
+ outputs = pytree.tree_map_only(
55
+ torch.Tensor,
56
+ lambda x: lowertools.write_mlir_debuginfo_op(x, debuginfo),
57
+ outputs,
58
+ )
59
+ return outputs
60
+
61
+ node.target = debuginfo_writer
62
+
63
+
64
+ class InjectMlirDebuginfoPass(fx_pass_base.PassBase):
65
+ """DEPRECATED: Debuginfo is injected automatically by odml_torch."""
66
+
67
+ def call(self, graph_module: torch.fx.GraphModule):
68
+ for node in graph_module.graph.nodes:
69
+ _wrap_call_function_node_with_debuginfo_writer(node)
70
+
71
+ graph_module.graph.lint()
72
+ graph_module.recompile()
73
+ return fx_pass_base.PassResult(graph_module, True)
@@ -0,0 +1,16 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ from ai_edge_torch._convert.fx_passes.optimize_layout_transposes_pass.pass_body import OptimizeLayoutTransposesPass # NOQA