ai-edge-torch-nightly 0.3.0.dev20250114__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- ai_edge_torch/__init__.py +32 -0
- ai_edge_torch/_config.py +69 -0
- ai_edge_torch/_convert/__init__.py +14 -0
- ai_edge_torch/_convert/conversion.py +153 -0
- ai_edge_torch/_convert/conversion_utils.py +64 -0
- ai_edge_torch/_convert/converter.py +270 -0
- ai_edge_torch/_convert/fx_passes/__init__.py +23 -0
- ai_edge_torch/_convert/fx_passes/build_aten_composite_pass.py +288 -0
- ai_edge_torch/_convert/fx_passes/build_interpolate_composite_pass.py +131 -0
- ai_edge_torch/_convert/fx_passes/inject_mlir_debuginfo_pass.py +73 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/__init__.py +16 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_check.py +258 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_mark.py +50 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +18 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +68 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +216 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +449 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +30 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/pass_body.py +303 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/utils.py +64 -0
- ai_edge_torch/_convert/fx_passes/remove_non_user_outputs_pass.py +52 -0
- ai_edge_torch/_convert/signature.py +66 -0
- ai_edge_torch/_convert/test/__init__.py +14 -0
- ai_edge_torch/_convert/test/test_convert.py +558 -0
- ai_edge_torch/_convert/test/test_convert_composites.py +234 -0
- ai_edge_torch/_convert/test/test_convert_multisig.py +189 -0
- ai_edge_torch/_convert/test/test_to_channel_last_io.py +96 -0
- ai_edge_torch/_convert/to_channel_last_io.py +92 -0
- ai_edge_torch/conftest.py +20 -0
- ai_edge_torch/debug/__init__.py +17 -0
- ai_edge_torch/debug/culprit.py +496 -0
- ai_edge_torch/debug/test/__init__.py +14 -0
- ai_edge_torch/debug/test/test_culprit.py +140 -0
- ai_edge_torch/debug/test/test_search_model.py +51 -0
- ai_edge_torch/debug/utils.py +59 -0
- ai_edge_torch/experimental/__init__.py +14 -0
- ai_edge_torch/fx_pass_base.py +110 -0
- ai_edge_torch/generative/__init__.py +14 -0
- ai_edge_torch/generative/examples/__init__.py +14 -0
- ai_edge_torch/generative/examples/amd_llama_135m/__init__.py +14 -0
- ai_edge_torch/generative/examples/amd_llama_135m/amd_llama_135m.py +87 -0
- ai_edge_torch/generative/examples/amd_llama_135m/convert_to_tflite.py +70 -0
- ai_edge_torch/generative/examples/amd_llama_135m/verify.py +72 -0
- ai_edge_torch/generative/examples/gemma/__init__.py +14 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/gemma/gemma1.py +107 -0
- ai_edge_torch/generative/examples/gemma/gemma2.py +295 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma1.py +56 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma2.py +43 -0
- ai_edge_torch/generative/examples/gemma/verify_util.py +157 -0
- ai_edge_torch/generative/examples/llama/__init__.py +14 -0
- ai_edge_torch/generative/examples/llama/convert_to_tflite.py +91 -0
- ai_edge_torch/generative/examples/llama/llama.py +196 -0
- ai_edge_torch/generative/examples/llama/verify.py +88 -0
- ai_edge_torch/generative/examples/moonshine/__init__.py +14 -0
- ai_edge_torch/generative/examples/moonshine/convert_moonshine_to_tflite.py +50 -0
- ai_edge_torch/generative/examples/moonshine/moonshine.py +103 -0
- ai_edge_torch/generative/examples/openelm/__init__.py +14 -0
- ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/openelm/openelm.py +127 -0
- ai_edge_torch/generative/examples/openelm/verify.py +71 -0
- ai_edge_torch/generative/examples/paligemma/__init__.py +14 -0
- ai_edge_torch/generative/examples/paligemma/convert_to_tflite.py +95 -0
- ai_edge_torch/generative/examples/paligemma/decoder.py +151 -0
- ai_edge_torch/generative/examples/paligemma/decoder2.py +177 -0
- ai_edge_torch/generative/examples/paligemma/image_encoder.py +160 -0
- ai_edge_torch/generative/examples/paligemma/paligemma.py +179 -0
- ai_edge_torch/generative/examples/paligemma/verify.py +161 -0
- ai_edge_torch/generative/examples/paligemma/verify_decoder.py +75 -0
- ai_edge_torch/generative/examples/paligemma/verify_decoder2.py +72 -0
- ai_edge_torch/generative/examples/paligemma/verify_image_encoder.py +99 -0
- ai_edge_torch/generative/examples/phi/__init__.py +14 -0
- ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/phi/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/phi/phi2.py +107 -0
- ai_edge_torch/generative/examples/phi/phi3.py +219 -0
- ai_edge_torch/generative/examples/phi/verify.py +64 -0
- ai_edge_torch/generative/examples/phi/verify_phi3.py +69 -0
- ai_edge_torch/generative/examples/qwen/__init__.py +14 -0
- ai_edge_torch/generative/examples/qwen/convert_to_tflite.py +93 -0
- ai_edge_torch/generative/examples/qwen/qwen.py +134 -0
- ai_edge_torch/generative/examples/qwen/verify.py +88 -0
- ai_edge_torch/generative/examples/smollm/__init__.py +14 -0
- ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/smollm/convert_v2_to_tflite.py +71 -0
- ai_edge_torch/generative/examples/smollm/smollm.py +125 -0
- ai_edge_torch/generative/examples/smollm/verify.py +86 -0
- ai_edge_torch/generative/examples/stable_diffusion/__init__.py +14 -0
- ai_edge_torch/generative/examples/stable_diffusion/attention.py +108 -0
- ai_edge_torch/generative/examples/stable_diffusion/clip.py +185 -0
- ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +173 -0
- ai_edge_torch/generative/examples/stable_diffusion/decoder.py +398 -0
- ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +749 -0
- ai_edge_torch/generative/examples/stable_diffusion/encoder.py +119 -0
- ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +254 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/__init__.py +19 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +62 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +66 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +74 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +39 -0
- ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +111 -0
- ai_edge_torch/generative/examples/stable_diffusion/util.py +77 -0
- ai_edge_torch/generative/examples/t5/__init__.py +14 -0
- ai_edge_torch/generative/examples/t5/convert_to_tflite.py +138 -0
- ai_edge_torch/generative/examples/t5/t5.py +655 -0
- ai_edge_torch/generative/examples/t5/t5_attention.py +246 -0
- ai_edge_torch/generative/examples/test_models/__init__.py +14 -0
- ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
- ai_edge_torch/generative/examples/test_models/toy_model.py +156 -0
- ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +138 -0
- ai_edge_torch/generative/examples/tiny_llama/__init__.py +14 -0
- ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +88 -0
- ai_edge_torch/generative/examples/tiny_llama/verify.py +72 -0
- ai_edge_torch/generative/fx_passes/__init__.py +30 -0
- ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +50 -0
- ai_edge_torch/generative/layers/__init__.py +14 -0
- ai_edge_torch/generative/layers/attention.py +399 -0
- ai_edge_torch/generative/layers/attention_utils.py +210 -0
- ai_edge_torch/generative/layers/builder.py +160 -0
- ai_edge_torch/generative/layers/feed_forward.py +120 -0
- ai_edge_torch/generative/layers/kv_cache.py +204 -0
- ai_edge_torch/generative/layers/lora.py +557 -0
- ai_edge_torch/generative/layers/model_config.py +238 -0
- ai_edge_torch/generative/layers/normalization.py +222 -0
- ai_edge_torch/generative/layers/rotary_position_embedding.py +94 -0
- ai_edge_torch/generative/layers/scaled_dot_product_attention.py +144 -0
- ai_edge_torch/generative/layers/unet/__init__.py +14 -0
- ai_edge_torch/generative/layers/unet/blocks_2d.py +806 -0
- ai_edge_torch/generative/layers/unet/builder.py +50 -0
- ai_edge_torch/generative/layers/unet/model_config.py +282 -0
- ai_edge_torch/generative/quantize/__init__.py +14 -0
- ai_edge_torch/generative/quantize/example.py +47 -0
- ai_edge_torch/generative/quantize/quant_attrs.py +68 -0
- ai_edge_torch/generative/quantize/quant_recipe.py +154 -0
- ai_edge_torch/generative/quantize/quant_recipe_utils.py +62 -0
- ai_edge_torch/generative/quantize/quant_recipes.py +56 -0
- ai_edge_torch/generative/quantize/supported_schemes.py +32 -0
- ai_edge_torch/generative/test/__init__.py +14 -0
- ai_edge_torch/generative/test/test_custom_dus.py +107 -0
- ai_edge_torch/generative/test/test_kv_cache.py +120 -0
- ai_edge_torch/generative/test/test_loader.py +83 -0
- ai_edge_torch/generative/test/test_lora.py +147 -0
- ai_edge_torch/generative/test/test_model_conversion.py +191 -0
- ai_edge_torch/generative/test/test_model_conversion_large.py +362 -0
- ai_edge_torch/generative/test/test_quantize.py +183 -0
- ai_edge_torch/generative/test/utils.py +82 -0
- ai_edge_torch/generative/utilities/__init__.py +15 -0
- ai_edge_torch/generative/utilities/converter.py +215 -0
- ai_edge_torch/generative/utilities/dynamic_update_slice.py +56 -0
- ai_edge_torch/generative/utilities/loader.py +398 -0
- ai_edge_torch/generative/utilities/model_builder.py +180 -0
- ai_edge_torch/generative/utilities/moonshine_loader.py +154 -0
- ai_edge_torch/generative/utilities/stable_diffusion_loader.py +1032 -0
- ai_edge_torch/generative/utilities/t5_loader.py +512 -0
- ai_edge_torch/generative/utilities/transformers_verifier.py +42 -0
- ai_edge_torch/generative/utilities/verifier.py +335 -0
- ai_edge_torch/hlfb/__init__.py +16 -0
- ai_edge_torch/hlfb/mark_pattern/__init__.py +153 -0
- ai_edge_torch/hlfb/mark_pattern/fx_utils.py +69 -0
- ai_edge_torch/hlfb/mark_pattern/pattern.py +288 -0
- ai_edge_torch/hlfb/test/__init__.py +14 -0
- ai_edge_torch/hlfb/test/test_mark_pattern.py +185 -0
- ai_edge_torch/lowertools/__init__.py +18 -0
- ai_edge_torch/lowertools/_shim.py +86 -0
- ai_edge_torch/lowertools/common_utils.py +142 -0
- ai_edge_torch/lowertools/odml_torch_utils.py +260 -0
- ai_edge_torch/lowertools/test_utils.py +62 -0
- ai_edge_torch/lowertools/torch_xla_utils.py +301 -0
- ai_edge_torch/lowertools/translate_recipe.py +163 -0
- ai_edge_torch/model.py +177 -0
- ai_edge_torch/odml_torch/__init__.py +20 -0
- ai_edge_torch/odml_torch/_torch_future.py +88 -0
- ai_edge_torch/odml_torch/_torch_library.py +19 -0
- ai_edge_torch/odml_torch/composite/__init__.py +16 -0
- ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
- ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
- ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
- ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
- ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
- ai_edge_torch/odml_torch/export.py +403 -0
- ai_edge_torch/odml_torch/export_utils.py +157 -0
- ai_edge_torch/odml_torch/jax_bridge/__init__.py +18 -0
- ai_edge_torch/odml_torch/jax_bridge/_wrap.py +180 -0
- ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
- ai_edge_torch/odml_torch/lowerings/__init__.py +27 -0
- ai_edge_torch/odml_torch/lowerings/_basic.py +294 -0
- ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
- ai_edge_torch/odml_torch/lowerings/_convolution.py +243 -0
- ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +285 -0
- ai_edge_torch/odml_torch/lowerings/_layer_norm.py +87 -0
- ai_edge_torch/odml_torch/lowerings/_quantized_decomposed.py +177 -0
- ai_edge_torch/odml_torch/lowerings/_rand.py +142 -0
- ai_edge_torch/odml_torch/lowerings/context.py +42 -0
- ai_edge_torch/odml_torch/lowerings/decomp.py +69 -0
- ai_edge_torch/odml_torch/lowerings/registry.py +65 -0
- ai_edge_torch/odml_torch/lowerings/utils.py +201 -0
- ai_edge_torch/odml_torch/passes/__init__.py +38 -0
- ai_edge_torch/odml_torch/tf_integration.py +156 -0
- ai_edge_torch/quantize/__init__.py +16 -0
- ai_edge_torch/quantize/pt2e_quantizer.py +466 -0
- ai_edge_torch/quantize/pt2e_quantizer_utils.py +1061 -0
- ai_edge_torch/quantize/quant_config.py +85 -0
- ai_edge_torch/testing/__init__.py +14 -0
- ai_edge_torch/testing/model_coverage/__init__.py +16 -0
- ai_edge_torch/testing/model_coverage/model_coverage.py +145 -0
- ai_edge_torch/version.py +16 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/LICENSE +202 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/METADATA +44 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/RECORD +213 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/WHEEL +5 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/top_level.txt +1 -0
@@ -0,0 +1,449 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
"""Layout rewrite for the optimized layout transposes pass."""
|
16
|
+
|
17
|
+
import operator
|
18
|
+
|
19
|
+
import ai_edge_torch
|
20
|
+
from ai_edge_torch._convert.fx_passes.optimize_layout_transposes_pass import layout_mark
|
21
|
+
from ai_edge_torch._convert.fx_passes.optimize_layout_transposes_pass import op_func_registry
|
22
|
+
from ai_edge_torch._convert.fx_passes.optimize_layout_transposes_pass import utils
|
23
|
+
import torch
|
24
|
+
import torch.utils._pytree as pytree
|
25
|
+
|
26
|
+
aten = torch.ops.aten
|
27
|
+
StableHLOCompositeBuilder = ai_edge_torch.hlfb.StableHLOCompositeBuilder
|
28
|
+
|
29
|
+
__all__ = ["rewrite_nhwc_node", "has_nhwc_rewriter"]
|
30
|
+
|
31
|
+
|
32
|
+
class NHWCNodeRewritersRegistry(op_func_registry.OpFuncRegistry):
|
33
|
+
|
34
|
+
def __missing__(self, op):
|
35
|
+
def _rewriter(node):
|
36
|
+
raise RuntimeError(f"NHWC node rewriter not found: {str(node)}")
|
37
|
+
|
38
|
+
return _rewriter
|
39
|
+
|
40
|
+
|
41
|
+
rewriters = NHWCNodeRewritersRegistry()
|
42
|
+
|
43
|
+
|
44
|
+
def rewrite_nhwc_node(node: torch.fx.Node):
|
45
|
+
if not layout_mark.is_nhwc_node(node):
|
46
|
+
return
|
47
|
+
|
48
|
+
rewriters[node.target](node)
|
49
|
+
|
50
|
+
|
51
|
+
def has_nhwc_rewriter(node: torch.fx.Node):
|
52
|
+
return node.target in rewriters
|
53
|
+
|
54
|
+
|
55
|
+
# ======= Quantize ops
|
56
|
+
|
57
|
+
|
58
|
+
@rewriters.register(torch.ops.quantized_decomposed.dequantize_per_tensor)
|
59
|
+
@rewriters.register(torch.ops.quantized_decomposed.quantize_per_tensor)
|
60
|
+
def noop(node: torch.fx.Node):
|
61
|
+
pass
|
62
|
+
|
63
|
+
|
64
|
+
@rewriters.register(torch.ops.quantized_decomposed.dequantize_per_channel)
|
65
|
+
@rewriters.register(torch.ops.quantized_decomposed.quantize_per_channel)
|
66
|
+
def _qdq_per_channel_rewriter(node: torch.fx.Node):
|
67
|
+
new_args = []
|
68
|
+
new_kwargs = {}
|
69
|
+
|
70
|
+
def axis_nchw_to_nhwc(axis: int):
|
71
|
+
axis = axis if axis >= 0 else 4 + axis
|
72
|
+
return {3: 2, 2: 1, 1: 3}.get(axis, axis)
|
73
|
+
|
74
|
+
for arg, spec in zip(node.args, op._schema.arguments):
|
75
|
+
if spec.name == "axis":
|
76
|
+
new_args.append(axis_nchw_to_nhwc(arg))
|
77
|
+
else:
|
78
|
+
new_args.append(arg)
|
79
|
+
|
80
|
+
for spec in op._schema.arguments[len(node.args) :]:
|
81
|
+
if spec.name not in node.kwargs:
|
82
|
+
continue
|
83
|
+
|
84
|
+
if spec.name == "axis":
|
85
|
+
new_kwargs[spec.name] = axis_nchw_to_nhwc(node.kwargs[spec.name])
|
86
|
+
else:
|
87
|
+
new_kwargs[spec.name] = node.kwargs[spec.name]
|
88
|
+
|
89
|
+
node.args = tuple(new_args)
|
90
|
+
node.kwargs = new_kwargs
|
91
|
+
|
92
|
+
|
93
|
+
# ======= Noop ops (layout insensitive ops)
|
94
|
+
|
95
|
+
|
96
|
+
@rewriters.register(utils.tensor_to_nhwc)
|
97
|
+
@rewriters.register(utils.tensor_to_nchw)
|
98
|
+
@rewriters.register(operator.getitem)
|
99
|
+
@rewriters.register("output")
|
100
|
+
@rewriters.register(aten.add.Tensor)
|
101
|
+
@rewriters.register(aten.add.Scalar)
|
102
|
+
@rewriters.register(aten.atan2.default)
|
103
|
+
@rewriters.register(aten.atan2.out)
|
104
|
+
@rewriters.register(aten.bitwise_and.Tensor)
|
105
|
+
@rewriters.register(aten.bitwise_and.Scalar)
|
106
|
+
@rewriters.register(aten.bitwise_or.Tensor)
|
107
|
+
@rewriters.register(aten.bitwise_or.Scalar)
|
108
|
+
@rewriters.register(aten.bitwise_xor.Tensor)
|
109
|
+
@rewriters.register(aten.bitwise_xor.Scalar)
|
110
|
+
@rewriters.register(aten.div.Tensor)
|
111
|
+
@rewriters.register(aten.div.Scalar)
|
112
|
+
@rewriters.register(aten.div.Tensor_mode)
|
113
|
+
@rewriters.register(aten.div.Scalar_mode)
|
114
|
+
@rewriters.register(aten.fmod.Tensor)
|
115
|
+
@rewriters.register(aten.fmod.Scalar)
|
116
|
+
@rewriters.register(aten.mul.Tensor)
|
117
|
+
@rewriters.register(aten.mul.Scalar)
|
118
|
+
@rewriters.register(aten.remainder.Tensor)
|
119
|
+
@rewriters.register(aten.remainder.Scalar)
|
120
|
+
@rewriters.register(aten.sub.Tensor)
|
121
|
+
@rewriters.register(aten.sub.Scalar)
|
122
|
+
@rewriters.register(aten.eq.Tensor)
|
123
|
+
@rewriters.register(aten.eq.Scalar)
|
124
|
+
@rewriters.register(aten.ne.Tensor)
|
125
|
+
@rewriters.register(aten.ne.Scalar)
|
126
|
+
@rewriters.register(aten.le.Tensor)
|
127
|
+
@rewriters.register(aten.le.Scalar)
|
128
|
+
@rewriters.register(aten.ge.Tensor)
|
129
|
+
@rewriters.register(aten.ge.Scalar)
|
130
|
+
@rewriters.register(aten.gt.Tensor)
|
131
|
+
@rewriters.register(aten.gt.Scalar)
|
132
|
+
@rewriters.register(aten.lt.Tensor)
|
133
|
+
@rewriters.register(aten.lt.Scalar)
|
134
|
+
@rewriters.register(aten.maximum.default)
|
135
|
+
@rewriters.register(aten.minimum.default)
|
136
|
+
@rewriters.register(aten.mean.default)
|
137
|
+
@rewriters.register(aten.prod.default)
|
138
|
+
@rewriters.register(aten.abs.default)
|
139
|
+
@rewriters.register(aten.acos.default)
|
140
|
+
@rewriters.register(aten.acosh.default)
|
141
|
+
@rewriters.register(aten.asin.default)
|
142
|
+
@rewriters.register(aten.asinh.default)
|
143
|
+
@rewriters.register(aten.atan.default)
|
144
|
+
@rewriters.register(aten.atanh.default)
|
145
|
+
@rewriters.register(aten.bitwise_not.default)
|
146
|
+
@rewriters.register(aten.ceil.default)
|
147
|
+
@rewriters.register(aten.clamp.default)
|
148
|
+
@rewriters.register(aten.clamp.Tensor)
|
149
|
+
@rewriters.register(aten.cos.default)
|
150
|
+
@rewriters.register(aten.cosh.default)
|
151
|
+
@rewriters.register(aten.erf.default)
|
152
|
+
@rewriters.register(aten.exp.default)
|
153
|
+
@rewriters.register(aten.expm1.default)
|
154
|
+
@rewriters.register(aten.floor.default)
|
155
|
+
@rewriters.register(aten.log.default)
|
156
|
+
@rewriters.register(aten.log10.default)
|
157
|
+
@rewriters.register(aten.log1p.default)
|
158
|
+
@rewriters.register(aten.log2.default)
|
159
|
+
@rewriters.register(aten.isnan.default)
|
160
|
+
@rewriters.register(aten.neg.default)
|
161
|
+
@rewriters.register(aten.pow.Tensor_Tensor)
|
162
|
+
@rewriters.register(aten.pow.Tensor_Scalar)
|
163
|
+
@rewriters.register(aten.pow.Scalar)
|
164
|
+
@rewriters.register(aten.reciprocal.default)
|
165
|
+
@rewriters.register(aten.round.default)
|
166
|
+
@rewriters.register(aten.rsqrt.default)
|
167
|
+
@rewriters.register(aten.sigmoid.default)
|
168
|
+
@rewriters.register(aten.sign.default)
|
169
|
+
@rewriters.register(aten.sin.default)
|
170
|
+
@rewriters.register(aten.sinh.default)
|
171
|
+
@rewriters.register(aten.sqrt.default)
|
172
|
+
@rewriters.register(aten.tan.default)
|
173
|
+
@rewriters.register(aten.tanh.default)
|
174
|
+
@rewriters.register(aten.trunc.default)
|
175
|
+
@rewriters.register(aten.nonzero.default)
|
176
|
+
@rewriters.register(aten.copy.default)
|
177
|
+
@rewriters.register(aten.mm.default)
|
178
|
+
@rewriters.register(aten.fill.Scalar)
|
179
|
+
@rewriters.register(aten.col2im.default)
|
180
|
+
@rewriters.register(aten.addmm.default)
|
181
|
+
@rewriters.register(aten.gelu.default)
|
182
|
+
@rewriters.register(aten.hardtanh.default)
|
183
|
+
@rewriters.register(aten.leaky_relu.default)
|
184
|
+
@rewriters.register(aten.relu.default)
|
185
|
+
@rewriters.register(aten.arange.start_step)
|
186
|
+
@rewriters.register(aten.isinf.default)
|
187
|
+
@rewriters.register(aten.logical_and.default)
|
188
|
+
@rewriters.register(aten.logical_not.default)
|
189
|
+
@rewriters.register(aten.logical_or.default)
|
190
|
+
@rewriters.register(aten.logical_xor.default)
|
191
|
+
@rewriters.register(aten.where.self)
|
192
|
+
@rewriters.register(aten.clone.default)
|
193
|
+
@rewriters.register(aten.any.default)
|
194
|
+
@rewriters.register(aten.repeat.default)
|
195
|
+
@rewriters.register(aten.alias.default)
|
196
|
+
@rewriters.register(aten._pdist_forward.default)
|
197
|
+
@rewriters.register(aten._cdist_forward.default)
|
198
|
+
@rewriters.register(aten.bmm.default)
|
199
|
+
@rewriters.register(aten.hardswish)
|
200
|
+
@rewriters.register(aten.hardsigmoid)
|
201
|
+
@rewriters.register(aten._to_copy)
|
202
|
+
@rewriters.register(aten._prelu_kernel)
|
203
|
+
@rewriters.register(aten.softplus)
|
204
|
+
@rewriters.register(aten.silu)
|
205
|
+
def noop(node: torch.fx.Node):
|
206
|
+
pass
|
207
|
+
|
208
|
+
|
209
|
+
# ======= Add transposes before and after NCHW-only ops (T-aten-T)
|
210
|
+
|
211
|
+
|
212
|
+
@rewriters.register(aten.upsample_bilinear2d)
|
213
|
+
@rewriters.register(aten.upsample_nearest2d)
|
214
|
+
@rewriters.register(aten.max_pool2d)
|
215
|
+
@rewriters.register(aten.max_pool2d_with_indices)
|
216
|
+
@rewriters.register(aten.avg_pool2d)
|
217
|
+
@rewriters.register(aten._adaptive_avg_pool2d.default)
|
218
|
+
def transpose_first_arg_rewriter(node: torch.fx.Node):
|
219
|
+
op = node.target
|
220
|
+
|
221
|
+
def nhwc_op(x, *args, **kwargs):
|
222
|
+
nonlocal op
|
223
|
+
x = utils.tensor_to_nchw(x)
|
224
|
+
res = pytree.tree_map_only(
|
225
|
+
torch.Tensor,
|
226
|
+
utils.tensor_to_nhwc,
|
227
|
+
op(x, *args, **kwargs),
|
228
|
+
)
|
229
|
+
return res
|
230
|
+
|
231
|
+
node.target = nhwc_op
|
232
|
+
|
233
|
+
|
234
|
+
@rewriters.register(aten.conv2d)
|
235
|
+
@rewriters.register(aten.convolution)
|
236
|
+
def _aten_convolution_rewriter(node: torch.fx.Node):
|
237
|
+
op = node.target
|
238
|
+
|
239
|
+
def conv_nhwc(input, weight, bias=None, *args, **kwargs):
|
240
|
+
nonlocal op
|
241
|
+
nhwc_bias = None
|
242
|
+
if bias is not None and len(bias.shape) == 1:
|
243
|
+
nhwc_bias = bias
|
244
|
+
bias = None
|
245
|
+
|
246
|
+
input = utils.tensor_to_nchw(input)
|
247
|
+
res = pytree.tree_map_only(
|
248
|
+
torch.Tensor,
|
249
|
+
utils.tensor_to_nhwc,
|
250
|
+
op(input, weight, bias, *args, **kwargs),
|
251
|
+
)
|
252
|
+
|
253
|
+
if nhwc_bias is not None:
|
254
|
+
res += nhwc_bias
|
255
|
+
return res
|
256
|
+
|
257
|
+
node.target = conv_nhwc
|
258
|
+
|
259
|
+
|
260
|
+
# ======= Rewrite dim attribute(s)
|
261
|
+
|
262
|
+
|
263
|
+
@rewriters.register(aten._softmax.default)
|
264
|
+
@rewriters.register(aten.select.int)
|
265
|
+
@rewriters.register(aten.slice.Tensor)
|
266
|
+
@rewriters.register(aten.sum.dim_IntList)
|
267
|
+
@rewriters.register(aten.mean.dim)
|
268
|
+
@rewriters.register(aten.prod.dim_int)
|
269
|
+
@rewriters.register(aten.var.dim)
|
270
|
+
@rewriters.register(aten.var.correction)
|
271
|
+
@rewriters.register(aten.slice_scatter.default)
|
272
|
+
@rewriters.register(aten.diagonal.default)
|
273
|
+
@rewriters.register(aten.select_scatter.default)
|
274
|
+
@rewriters.register(aten.sym_size.int)
|
275
|
+
@rewriters.register(aten.sym_stride.int)
|
276
|
+
@rewriters.register(aten._log_softmax.default)
|
277
|
+
@rewriters.register(aten.split_with_sizes.default)
|
278
|
+
@rewriters.register(aten.squeeze.dim)
|
279
|
+
@rewriters.register(aten.squeeze.dims)
|
280
|
+
@rewriters.register(aten.scatter.value)
|
281
|
+
@rewriters.register(aten.scatter.src)
|
282
|
+
@rewriters.register(aten.scatter_add.default)
|
283
|
+
@rewriters.register(aten.scatter_reduce.two)
|
284
|
+
@rewriters.register(aten.any.dim)
|
285
|
+
@rewriters.register(aten.any.dims)
|
286
|
+
@rewriters.register(aten.flip.default)
|
287
|
+
@rewriters.register(aten.index_select.default)
|
288
|
+
@rewriters.register(aten.cumsum.default)
|
289
|
+
@rewriters.register(aten.max.dim)
|
290
|
+
@rewriters.register(aten.min.dim)
|
291
|
+
@rewriters.register(aten.gather.default)
|
292
|
+
@rewriters.register(aten.sort.default)
|
293
|
+
@rewriters.register(aten.topk.default)
|
294
|
+
@rewriters.register(aten.cat.default)
|
295
|
+
def dim_attr_rewriter(node: torch.fx.Node):
|
296
|
+
op = node.target
|
297
|
+
|
298
|
+
new_args = []
|
299
|
+
new_kwargs = {}
|
300
|
+
|
301
|
+
def dims_nchw_to_nhwc(dims: list[int]):
|
302
|
+
def convert(dim: int):
|
303
|
+
dim = dim if dim >= 0 else 4 + dim
|
304
|
+
return {3: 2, 2: 1, 1: 3}.get(dim, dim)
|
305
|
+
|
306
|
+
dims = pytree.tree_map_only(int, convert, dims)
|
307
|
+
dims = pytree.tree_map_only(torch.SymInt, convert, dims)
|
308
|
+
return dims
|
309
|
+
|
310
|
+
for arg, spec in zip(node.args, op._schema.arguments):
|
311
|
+
if spec.name.startswith("dim"):
|
312
|
+
new_args.append(dims_nchw_to_nhwc(arg))
|
313
|
+
else:
|
314
|
+
new_args.append(arg)
|
315
|
+
|
316
|
+
for spec in op._schema.arguments[len(node.args) :]:
|
317
|
+
if spec.name not in node.kwargs:
|
318
|
+
continue
|
319
|
+
|
320
|
+
if spec.name.startswith("dim"):
|
321
|
+
new_kwargs[spec.name] = dims_nchw_to_nhwc(node.kwargs[spec.name])
|
322
|
+
else:
|
323
|
+
new_kwargs[spec.name] = node.kwargs[spec.name]
|
324
|
+
|
325
|
+
node.args = tuple(new_args)
|
326
|
+
node.kwargs = new_kwargs
|
327
|
+
|
328
|
+
|
329
|
+
# ======= Others
|
330
|
+
|
331
|
+
|
332
|
+
@rewriters.register(aten._native_batch_norm_legit_no_training.default)
|
333
|
+
def _aten__native_batch_norm_legit_no_training(node):
|
334
|
+
def batch_norm(input, weight, bias, running_mean, running_var, momentum, eps):
|
335
|
+
a = input - running_mean
|
336
|
+
b = torch.sqrt(running_var + eps)
|
337
|
+
out = a / b
|
338
|
+
if weight is not None:
|
339
|
+
out = out * weight
|
340
|
+
if bias is not None:
|
341
|
+
out = out + bias
|
342
|
+
return out, None, None
|
343
|
+
|
344
|
+
node.target = batch_norm
|
345
|
+
|
346
|
+
|
347
|
+
@rewriters.register(aten.group_norm.default)
|
348
|
+
def _aten_group_norm(node):
|
349
|
+
def group_norm(input, num_groups: int, weight=None, bias=None, eps=1e-5):
|
350
|
+
is_composite_supported = (
|
351
|
+
ai_edge_torch.config.enable_group_norm_composite
|
352
|
+
and weight is not None
|
353
|
+
and bias is not None
|
354
|
+
)
|
355
|
+
|
356
|
+
builder = None
|
357
|
+
if is_composite_supported:
|
358
|
+
builder = StableHLOCompositeBuilder(
|
359
|
+
name="odml.group_norm",
|
360
|
+
attr={
|
361
|
+
"num_groups": num_groups,
|
362
|
+
"epsilon": eps,
|
363
|
+
"reduction_axes": [3],
|
364
|
+
"channel_axis": 3,
|
365
|
+
},
|
366
|
+
)
|
367
|
+
input, weight, bias = builder.mark_inputs(input, weight, bias)
|
368
|
+
|
369
|
+
input = utils.tensor_to_nchw(input)
|
370
|
+
output = aten.group_norm.default(input, num_groups, weight, bias, eps=eps)
|
371
|
+
output = utils.tensor_to_nhwc(output)
|
372
|
+
|
373
|
+
if builder is not None:
|
374
|
+
output = builder.mark_outputs(output)
|
375
|
+
return output
|
376
|
+
|
377
|
+
node.target = group_norm
|
378
|
+
|
379
|
+
|
380
|
+
@rewriters.register(aten.native_group_norm.default)
|
381
|
+
def _aten_native_group_norm(node):
|
382
|
+
|
383
|
+
def native_group_norm(
|
384
|
+
input,
|
385
|
+
weight,
|
386
|
+
bias,
|
387
|
+
batch_size: int,
|
388
|
+
num_channels: int,
|
389
|
+
flattened_inner_size: int,
|
390
|
+
num_groups: int,
|
391
|
+
eps: float,
|
392
|
+
**kwargs,
|
393
|
+
):
|
394
|
+
input_reshaped = torch.reshape(
|
395
|
+
input,
|
396
|
+
[
|
397
|
+
batch_size,
|
398
|
+
flattened_inner_size,
|
399
|
+
num_groups,
|
400
|
+
num_channels // num_groups,
|
401
|
+
],
|
402
|
+
)
|
403
|
+
reduction_dims = [1, 3]
|
404
|
+
|
405
|
+
biased_var, mean = torch.var_mean(
|
406
|
+
input_reshaped, dim=reduction_dims, unbiased=False, keepdim=True
|
407
|
+
)
|
408
|
+
rstd = torch.rsqrt(biased_var + eps)
|
409
|
+
|
410
|
+
out = (input_reshaped - mean) * rstd
|
411
|
+
out = torch.reshape(out, input.shape)
|
412
|
+
|
413
|
+
if weight is not None:
|
414
|
+
out = out * weight
|
415
|
+
if bias is not None:
|
416
|
+
out = out + bias
|
417
|
+
|
418
|
+
mean = torch.squeeze(mean, reduction_dims)
|
419
|
+
rstd = torch.squeeze(rstd, reduction_dims)
|
420
|
+
|
421
|
+
return out, mean, rstd
|
422
|
+
|
423
|
+
node.target = native_group_norm
|
424
|
+
|
425
|
+
|
426
|
+
@rewriters.register(aten.index)
|
427
|
+
@rewriters.register(aten._unsafe_index)
|
428
|
+
def _aten_index(node):
|
429
|
+
op = node.target
|
430
|
+
|
431
|
+
def index_nhwc(x, indices=[], *args, **kwargs):
|
432
|
+
nonlocal op
|
433
|
+
indices = list(indices)
|
434
|
+
if len(indices) < 4:
|
435
|
+
indices += [None] * (4 - len(indices))
|
436
|
+
|
437
|
+
indices[1:4] = indices[2], indices[3], indices[1]
|
438
|
+
return op(x, indices, *args, **kwargs)
|
439
|
+
|
440
|
+
node.target = index_nhwc
|
441
|
+
|
442
|
+
|
443
|
+
@rewriters.register(aten.reflection_pad2d.default)
|
444
|
+
def _aten_reflection_pad2d(node):
|
445
|
+
def reflection_pad2d_nhwc(x, padding):
|
446
|
+
padding = [0, 0] + padding
|
447
|
+
return torch.nn.functional.pad(x, padding, mode="reflect")
|
448
|
+
|
449
|
+
node.target = reflection_pad2d_nhwc
|
@@ -0,0 +1,30 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
"""Op function registry for the optimized layout transposes pass."""
|
16
|
+
|
17
|
+
from ai_edge_torch._convert.fx_passes.optimize_layout_transposes_pass import utils
|
18
|
+
|
19
|
+
|
20
|
+
class OpFuncRegistry(dict):
|
21
|
+
|
22
|
+
def register(self, op):
|
23
|
+
ops = utils.flatten_torch_op_overloads(op)
|
24
|
+
|
25
|
+
def inner(func):
|
26
|
+
for op in ops:
|
27
|
+
self[op] = func
|
28
|
+
return func
|
29
|
+
|
30
|
+
return inner
|