ai-edge-torch-nightly 0.3.0.dev20250114__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- ai_edge_torch/__init__.py +32 -0
- ai_edge_torch/_config.py +69 -0
- ai_edge_torch/_convert/__init__.py +14 -0
- ai_edge_torch/_convert/conversion.py +153 -0
- ai_edge_torch/_convert/conversion_utils.py +64 -0
- ai_edge_torch/_convert/converter.py +270 -0
- ai_edge_torch/_convert/fx_passes/__init__.py +23 -0
- ai_edge_torch/_convert/fx_passes/build_aten_composite_pass.py +288 -0
- ai_edge_torch/_convert/fx_passes/build_interpolate_composite_pass.py +131 -0
- ai_edge_torch/_convert/fx_passes/inject_mlir_debuginfo_pass.py +73 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/__init__.py +16 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_check.py +258 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_mark.py +50 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +18 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +68 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +216 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +449 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +30 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/pass_body.py +303 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/utils.py +64 -0
- ai_edge_torch/_convert/fx_passes/remove_non_user_outputs_pass.py +52 -0
- ai_edge_torch/_convert/signature.py +66 -0
- ai_edge_torch/_convert/test/__init__.py +14 -0
- ai_edge_torch/_convert/test/test_convert.py +558 -0
- ai_edge_torch/_convert/test/test_convert_composites.py +234 -0
- ai_edge_torch/_convert/test/test_convert_multisig.py +189 -0
- ai_edge_torch/_convert/test/test_to_channel_last_io.py +96 -0
- ai_edge_torch/_convert/to_channel_last_io.py +92 -0
- ai_edge_torch/conftest.py +20 -0
- ai_edge_torch/debug/__init__.py +17 -0
- ai_edge_torch/debug/culprit.py +496 -0
- ai_edge_torch/debug/test/__init__.py +14 -0
- ai_edge_torch/debug/test/test_culprit.py +140 -0
- ai_edge_torch/debug/test/test_search_model.py +51 -0
- ai_edge_torch/debug/utils.py +59 -0
- ai_edge_torch/experimental/__init__.py +14 -0
- ai_edge_torch/fx_pass_base.py +110 -0
- ai_edge_torch/generative/__init__.py +14 -0
- ai_edge_torch/generative/examples/__init__.py +14 -0
- ai_edge_torch/generative/examples/amd_llama_135m/__init__.py +14 -0
- ai_edge_torch/generative/examples/amd_llama_135m/amd_llama_135m.py +87 -0
- ai_edge_torch/generative/examples/amd_llama_135m/convert_to_tflite.py +70 -0
- ai_edge_torch/generative/examples/amd_llama_135m/verify.py +72 -0
- ai_edge_torch/generative/examples/gemma/__init__.py +14 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/gemma/gemma1.py +107 -0
- ai_edge_torch/generative/examples/gemma/gemma2.py +295 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma1.py +56 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma2.py +43 -0
- ai_edge_torch/generative/examples/gemma/verify_util.py +157 -0
- ai_edge_torch/generative/examples/llama/__init__.py +14 -0
- ai_edge_torch/generative/examples/llama/convert_to_tflite.py +91 -0
- ai_edge_torch/generative/examples/llama/llama.py +196 -0
- ai_edge_torch/generative/examples/llama/verify.py +88 -0
- ai_edge_torch/generative/examples/moonshine/__init__.py +14 -0
- ai_edge_torch/generative/examples/moonshine/convert_moonshine_to_tflite.py +50 -0
- ai_edge_torch/generative/examples/moonshine/moonshine.py +103 -0
- ai_edge_torch/generative/examples/openelm/__init__.py +14 -0
- ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/openelm/openelm.py +127 -0
- ai_edge_torch/generative/examples/openelm/verify.py +71 -0
- ai_edge_torch/generative/examples/paligemma/__init__.py +14 -0
- ai_edge_torch/generative/examples/paligemma/convert_to_tflite.py +95 -0
- ai_edge_torch/generative/examples/paligemma/decoder.py +151 -0
- ai_edge_torch/generative/examples/paligemma/decoder2.py +177 -0
- ai_edge_torch/generative/examples/paligemma/image_encoder.py +160 -0
- ai_edge_torch/generative/examples/paligemma/paligemma.py +179 -0
- ai_edge_torch/generative/examples/paligemma/verify.py +161 -0
- ai_edge_torch/generative/examples/paligemma/verify_decoder.py +75 -0
- ai_edge_torch/generative/examples/paligemma/verify_decoder2.py +72 -0
- ai_edge_torch/generative/examples/paligemma/verify_image_encoder.py +99 -0
- ai_edge_torch/generative/examples/phi/__init__.py +14 -0
- ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/phi/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/phi/phi2.py +107 -0
- ai_edge_torch/generative/examples/phi/phi3.py +219 -0
- ai_edge_torch/generative/examples/phi/verify.py +64 -0
- ai_edge_torch/generative/examples/phi/verify_phi3.py +69 -0
- ai_edge_torch/generative/examples/qwen/__init__.py +14 -0
- ai_edge_torch/generative/examples/qwen/convert_to_tflite.py +93 -0
- ai_edge_torch/generative/examples/qwen/qwen.py +134 -0
- ai_edge_torch/generative/examples/qwen/verify.py +88 -0
- ai_edge_torch/generative/examples/smollm/__init__.py +14 -0
- ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/smollm/convert_v2_to_tflite.py +71 -0
- ai_edge_torch/generative/examples/smollm/smollm.py +125 -0
- ai_edge_torch/generative/examples/smollm/verify.py +86 -0
- ai_edge_torch/generative/examples/stable_diffusion/__init__.py +14 -0
- ai_edge_torch/generative/examples/stable_diffusion/attention.py +108 -0
- ai_edge_torch/generative/examples/stable_diffusion/clip.py +185 -0
- ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +173 -0
- ai_edge_torch/generative/examples/stable_diffusion/decoder.py +398 -0
- ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +749 -0
- ai_edge_torch/generative/examples/stable_diffusion/encoder.py +119 -0
- ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +254 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/__init__.py +19 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +62 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +66 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +74 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +39 -0
- ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +111 -0
- ai_edge_torch/generative/examples/stable_diffusion/util.py +77 -0
- ai_edge_torch/generative/examples/t5/__init__.py +14 -0
- ai_edge_torch/generative/examples/t5/convert_to_tflite.py +138 -0
- ai_edge_torch/generative/examples/t5/t5.py +655 -0
- ai_edge_torch/generative/examples/t5/t5_attention.py +246 -0
- ai_edge_torch/generative/examples/test_models/__init__.py +14 -0
- ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
- ai_edge_torch/generative/examples/test_models/toy_model.py +156 -0
- ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +138 -0
- ai_edge_torch/generative/examples/tiny_llama/__init__.py +14 -0
- ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +88 -0
- ai_edge_torch/generative/examples/tiny_llama/verify.py +72 -0
- ai_edge_torch/generative/fx_passes/__init__.py +30 -0
- ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +50 -0
- ai_edge_torch/generative/layers/__init__.py +14 -0
- ai_edge_torch/generative/layers/attention.py +399 -0
- ai_edge_torch/generative/layers/attention_utils.py +210 -0
- ai_edge_torch/generative/layers/builder.py +160 -0
- ai_edge_torch/generative/layers/feed_forward.py +120 -0
- ai_edge_torch/generative/layers/kv_cache.py +204 -0
- ai_edge_torch/generative/layers/lora.py +557 -0
- ai_edge_torch/generative/layers/model_config.py +238 -0
- ai_edge_torch/generative/layers/normalization.py +222 -0
- ai_edge_torch/generative/layers/rotary_position_embedding.py +94 -0
- ai_edge_torch/generative/layers/scaled_dot_product_attention.py +144 -0
- ai_edge_torch/generative/layers/unet/__init__.py +14 -0
- ai_edge_torch/generative/layers/unet/blocks_2d.py +806 -0
- ai_edge_torch/generative/layers/unet/builder.py +50 -0
- ai_edge_torch/generative/layers/unet/model_config.py +282 -0
- ai_edge_torch/generative/quantize/__init__.py +14 -0
- ai_edge_torch/generative/quantize/example.py +47 -0
- ai_edge_torch/generative/quantize/quant_attrs.py +68 -0
- ai_edge_torch/generative/quantize/quant_recipe.py +154 -0
- ai_edge_torch/generative/quantize/quant_recipe_utils.py +62 -0
- ai_edge_torch/generative/quantize/quant_recipes.py +56 -0
- ai_edge_torch/generative/quantize/supported_schemes.py +32 -0
- ai_edge_torch/generative/test/__init__.py +14 -0
- ai_edge_torch/generative/test/test_custom_dus.py +107 -0
- ai_edge_torch/generative/test/test_kv_cache.py +120 -0
- ai_edge_torch/generative/test/test_loader.py +83 -0
- ai_edge_torch/generative/test/test_lora.py +147 -0
- ai_edge_torch/generative/test/test_model_conversion.py +191 -0
- ai_edge_torch/generative/test/test_model_conversion_large.py +362 -0
- ai_edge_torch/generative/test/test_quantize.py +183 -0
- ai_edge_torch/generative/test/utils.py +82 -0
- ai_edge_torch/generative/utilities/__init__.py +15 -0
- ai_edge_torch/generative/utilities/converter.py +215 -0
- ai_edge_torch/generative/utilities/dynamic_update_slice.py +56 -0
- ai_edge_torch/generative/utilities/loader.py +398 -0
- ai_edge_torch/generative/utilities/model_builder.py +180 -0
- ai_edge_torch/generative/utilities/moonshine_loader.py +154 -0
- ai_edge_torch/generative/utilities/stable_diffusion_loader.py +1032 -0
- ai_edge_torch/generative/utilities/t5_loader.py +512 -0
- ai_edge_torch/generative/utilities/transformers_verifier.py +42 -0
- ai_edge_torch/generative/utilities/verifier.py +335 -0
- ai_edge_torch/hlfb/__init__.py +16 -0
- ai_edge_torch/hlfb/mark_pattern/__init__.py +153 -0
- ai_edge_torch/hlfb/mark_pattern/fx_utils.py +69 -0
- ai_edge_torch/hlfb/mark_pattern/pattern.py +288 -0
- ai_edge_torch/hlfb/test/__init__.py +14 -0
- ai_edge_torch/hlfb/test/test_mark_pattern.py +185 -0
- ai_edge_torch/lowertools/__init__.py +18 -0
- ai_edge_torch/lowertools/_shim.py +86 -0
- ai_edge_torch/lowertools/common_utils.py +142 -0
- ai_edge_torch/lowertools/odml_torch_utils.py +260 -0
- ai_edge_torch/lowertools/test_utils.py +62 -0
- ai_edge_torch/lowertools/torch_xla_utils.py +301 -0
- ai_edge_torch/lowertools/translate_recipe.py +163 -0
- ai_edge_torch/model.py +177 -0
- ai_edge_torch/odml_torch/__init__.py +20 -0
- ai_edge_torch/odml_torch/_torch_future.py +88 -0
- ai_edge_torch/odml_torch/_torch_library.py +19 -0
- ai_edge_torch/odml_torch/composite/__init__.py +16 -0
- ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
- ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
- ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
- ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
- ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
- ai_edge_torch/odml_torch/export.py +403 -0
- ai_edge_torch/odml_torch/export_utils.py +157 -0
- ai_edge_torch/odml_torch/jax_bridge/__init__.py +18 -0
- ai_edge_torch/odml_torch/jax_bridge/_wrap.py +180 -0
- ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
- ai_edge_torch/odml_torch/lowerings/__init__.py +27 -0
- ai_edge_torch/odml_torch/lowerings/_basic.py +294 -0
- ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
- ai_edge_torch/odml_torch/lowerings/_convolution.py +243 -0
- ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +285 -0
- ai_edge_torch/odml_torch/lowerings/_layer_norm.py +87 -0
- ai_edge_torch/odml_torch/lowerings/_quantized_decomposed.py +177 -0
- ai_edge_torch/odml_torch/lowerings/_rand.py +142 -0
- ai_edge_torch/odml_torch/lowerings/context.py +42 -0
- ai_edge_torch/odml_torch/lowerings/decomp.py +69 -0
- ai_edge_torch/odml_torch/lowerings/registry.py +65 -0
- ai_edge_torch/odml_torch/lowerings/utils.py +201 -0
- ai_edge_torch/odml_torch/passes/__init__.py +38 -0
- ai_edge_torch/odml_torch/tf_integration.py +156 -0
- ai_edge_torch/quantize/__init__.py +16 -0
- ai_edge_torch/quantize/pt2e_quantizer.py +466 -0
- ai_edge_torch/quantize/pt2e_quantizer_utils.py +1061 -0
- ai_edge_torch/quantize/quant_config.py +85 -0
- ai_edge_torch/testing/__init__.py +14 -0
- ai_edge_torch/testing/model_coverage/__init__.py +16 -0
- ai_edge_torch/testing/model_coverage/model_coverage.py +145 -0
- ai_edge_torch/version.py +16 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/LICENSE +202 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/METADATA +44 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/RECORD +213 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/WHEEL +5 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/top_level.txt +1 -0
@@ -0,0 +1,119 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
from ai_edge_torch.generative.examples.stable_diffusion.attention import SelfAttention # NOQA
|
17
|
+
import torch
|
18
|
+
from torch import nn
|
19
|
+
from torch.nn import functional as F
|
20
|
+
|
21
|
+
|
22
|
+
class AttentionBlock(nn.Module):
|
23
|
+
|
24
|
+
def __init__(self, channels):
|
25
|
+
super().__init__()
|
26
|
+
self.groupnorm = nn.GroupNorm(32, channels)
|
27
|
+
self.attention = SelfAttention(1, channels)
|
28
|
+
|
29
|
+
def forward(self, x):
|
30
|
+
residue = x
|
31
|
+
x = self.groupnorm(x)
|
32
|
+
|
33
|
+
n, c, h, w = x.shape
|
34
|
+
x = x.view((n, c, h * w))
|
35
|
+
x = x.transpose(-1, -2)
|
36
|
+
x = self.attention(x)
|
37
|
+
x = x.transpose(-1, -2)
|
38
|
+
x = x.view((n, c, h, w))
|
39
|
+
|
40
|
+
x += residue
|
41
|
+
return x
|
42
|
+
|
43
|
+
|
44
|
+
class ResidualBlock(nn.Module):
|
45
|
+
|
46
|
+
def __init__(self, in_channels, out_channels):
|
47
|
+
super().__init__()
|
48
|
+
self.groupnorm_1 = nn.GroupNorm(32, in_channels)
|
49
|
+
self.conv_1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1)
|
50
|
+
|
51
|
+
self.groupnorm_2 = nn.GroupNorm(32, out_channels)
|
52
|
+
self.conv_2 = nn.Conv2d(
|
53
|
+
out_channels, out_channels, kernel_size=3, padding=1
|
54
|
+
)
|
55
|
+
|
56
|
+
if in_channels == out_channels:
|
57
|
+
self.residual_layer = nn.Identity()
|
58
|
+
else:
|
59
|
+
self.residual_layer = nn.Conv2d(
|
60
|
+
in_channels, out_channels, kernel_size=1, padding=0
|
61
|
+
)
|
62
|
+
|
63
|
+
def forward(self, x):
|
64
|
+
residue = x
|
65
|
+
|
66
|
+
x = self.groupnorm_1(x)
|
67
|
+
x = F.silu(x)
|
68
|
+
x = self.conv_1(x)
|
69
|
+
|
70
|
+
x = self.groupnorm_2(x)
|
71
|
+
x = F.silu(x)
|
72
|
+
x = self.conv_2(x)
|
73
|
+
|
74
|
+
return x + self.residual_layer(residue)
|
75
|
+
|
76
|
+
|
77
|
+
class Encoder(nn.Sequential):
|
78
|
+
|
79
|
+
def __init__(self):
|
80
|
+
super().__init__(
|
81
|
+
nn.Conv2d(3, 128, kernel_size=3, padding=1),
|
82
|
+
ResidualBlock(128, 128),
|
83
|
+
ResidualBlock(128, 128),
|
84
|
+
nn.Conv2d(128, 128, kernel_size=3, stride=2, padding=0),
|
85
|
+
ResidualBlock(128, 256),
|
86
|
+
ResidualBlock(256, 256),
|
87
|
+
nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=0),
|
88
|
+
ResidualBlock(256, 512),
|
89
|
+
ResidualBlock(512, 512),
|
90
|
+
nn.Conv2d(512, 512, kernel_size=3, stride=2, padding=0),
|
91
|
+
ResidualBlock(512, 512),
|
92
|
+
ResidualBlock(512, 512),
|
93
|
+
ResidualBlock(512, 512),
|
94
|
+
AttentionBlock(512),
|
95
|
+
ResidualBlock(512, 512),
|
96
|
+
nn.GroupNorm(32, 512),
|
97
|
+
nn.SiLU(),
|
98
|
+
nn.Conv2d(512, 8, kernel_size=3, padding=1),
|
99
|
+
nn.Conv2d(8, 8, kernel_size=1, padding=0),
|
100
|
+
)
|
101
|
+
|
102
|
+
@torch.inference_mode
|
103
|
+
def forward(self, x, noise):
|
104
|
+
for module in self:
|
105
|
+
if getattr(module, 'stride', None) == (
|
106
|
+
2,
|
107
|
+
2,
|
108
|
+
): # Padding at downsampling should be asymmetric (see #8)
|
109
|
+
x = F.pad(x, (0, 1, 0, 1))
|
110
|
+
x = module(x)
|
111
|
+
|
112
|
+
mean, log_variance = torch.chunk(x, 2, dim=1)
|
113
|
+
log_variance = torch.clamp(log_variance, -30, 20)
|
114
|
+
variance = log_variance.exp()
|
115
|
+
stdev = variance.sqrt()
|
116
|
+
x = mean + stdev * noise
|
117
|
+
|
118
|
+
x *= 0.18215
|
119
|
+
return x
|
@@ -0,0 +1,254 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
import argparse
|
17
|
+
import os
|
18
|
+
import pathlib
|
19
|
+
from typing import Optional
|
20
|
+
|
21
|
+
import ai_edge_torch
|
22
|
+
from ai_edge_torch.generative.examples.stable_diffusion import samplers
|
23
|
+
from ai_edge_torch.generative.examples.stable_diffusion import tokenizer
|
24
|
+
from ai_edge_torch.generative.examples.stable_diffusion import util
|
25
|
+
import numpy as np
|
26
|
+
from PIL import Image
|
27
|
+
import tqdm
|
28
|
+
|
29
|
+
arg_parser = argparse.ArgumentParser()
|
30
|
+
arg_parser.add_argument(
|
31
|
+
'--tokenizer_vocab_dir',
|
32
|
+
type=str,
|
33
|
+
help=(
|
34
|
+
'Directory to the tokenizer vocabulary files, which include'
|
35
|
+
' `merges.txt` and `vocab.json`'
|
36
|
+
),
|
37
|
+
required=True,
|
38
|
+
)
|
39
|
+
arg_parser.add_argument(
|
40
|
+
'--clip_ckpt',
|
41
|
+
type=str,
|
42
|
+
help='Path to CLIP TFLite tflite file',
|
43
|
+
required=True,
|
44
|
+
)
|
45
|
+
arg_parser.add_argument(
|
46
|
+
'--diffusion_ckpt',
|
47
|
+
type=str,
|
48
|
+
help='Path to diffusion tflite file',
|
49
|
+
required=True,
|
50
|
+
)
|
51
|
+
arg_parser.add_argument(
|
52
|
+
'--decoder_ckpt',
|
53
|
+
type=str,
|
54
|
+
help='Path to decoder tflite file',
|
55
|
+
required=True,
|
56
|
+
)
|
57
|
+
arg_parser.add_argument(
|
58
|
+
'--output_path',
|
59
|
+
type=str,
|
60
|
+
help='Path to the output generated image file.',
|
61
|
+
required=True,
|
62
|
+
)
|
63
|
+
arg_parser.add_argument(
|
64
|
+
'--prompt',
|
65
|
+
default='a photograph of an astronaut riding a horse',
|
66
|
+
type=str,
|
67
|
+
help='The prompt to guide the image generation.',
|
68
|
+
)
|
69
|
+
arg_parser.add_argument(
|
70
|
+
'--n_inference_steps',
|
71
|
+
default=20,
|
72
|
+
type=int,
|
73
|
+
help='The number of denoising steps.',
|
74
|
+
)
|
75
|
+
arg_parser.add_argument(
|
76
|
+
'--sampler',
|
77
|
+
default='k_euler',
|
78
|
+
type=str,
|
79
|
+
choices=['k_euler', 'k_euler_ancestral', 'k_lms'],
|
80
|
+
help=(
|
81
|
+
'A sampler to be used to denoise the encoded image latents. Can be one'
|
82
|
+
' of `k_lms, `k_euler`, or `k_euler_ancestral`.'
|
83
|
+
),
|
84
|
+
)
|
85
|
+
arg_parser.add_argument(
|
86
|
+
'--seed',
|
87
|
+
default=None,
|
88
|
+
type=int,
|
89
|
+
help=(
|
90
|
+
'A seed to make generation deterministic. A random number is used if'
|
91
|
+
' unspecified.'
|
92
|
+
),
|
93
|
+
)
|
94
|
+
|
95
|
+
|
96
|
+
class StableDiffusion:
|
97
|
+
|
98
|
+
def __init__(
|
99
|
+
self,
|
100
|
+
*,
|
101
|
+
tokenizer_vocab_dir: str,
|
102
|
+
clip_ckpt: str,
|
103
|
+
encoder_ckpt: Optional[str] = None,
|
104
|
+
diffusion_ckpt: str,
|
105
|
+
decoder_ckpt: str
|
106
|
+
):
|
107
|
+
self.tokenizer = tokenizer.Tokenizer(tokenizer_vocab_dir)
|
108
|
+
self.clip = ai_edge_torch.model.TfLiteModel.load(clip_ckpt)
|
109
|
+
self.decoder = ai_edge_torch.model.TfLiteModel.load(decoder_ckpt)
|
110
|
+
self.diffusion = ai_edge_torch.model.TfLiteModel.load(diffusion_ckpt)
|
111
|
+
if encoder_ckpt is not None:
|
112
|
+
self.encoder = ai_edge_torch.model.TfLiteModel.load(encoder_ckpt)
|
113
|
+
|
114
|
+
|
115
|
+
def run_tflite_pipeline(
|
116
|
+
model: StableDiffusion,
|
117
|
+
prompt: str,
|
118
|
+
output_path: str,
|
119
|
+
uncond_prompt: Optional[str] = None,
|
120
|
+
cfg_scale: float = 7.5,
|
121
|
+
height: int = 512,
|
122
|
+
width: int = 512,
|
123
|
+
sampler: str = 'k_euler',
|
124
|
+
n_inference_steps: int = 20,
|
125
|
+
seed: Optional[int] = None,
|
126
|
+
strength: float = 0.8,
|
127
|
+
input_image: Optional[Image.Image] = None,
|
128
|
+
):
|
129
|
+
"""Run stable diffusion pipeline with tflite model.
|
130
|
+
|
131
|
+
Args:
|
132
|
+
model: StableDiffsuion model.
|
133
|
+
prompt: The prompt to guide the image generation.
|
134
|
+
output_path: The path to the generated output image.
|
135
|
+
uncond_prompt: The prompt not to guide the image generation.
|
136
|
+
cfg_scale: Guidance scale of classifier-free guidance. Higher guidance scale
|
137
|
+
encourages to generate images that are closely linked to the text
|
138
|
+
`prompt`, usually at the expense of lower image quality.
|
139
|
+
height: The height in pixels of the generated image.
|
140
|
+
width: The width in pixels of the generated image.
|
141
|
+
sampler: A sampler to be used to denoise the encoded image latents. Can be
|
142
|
+
one of `k_lms, `k_euler`, or `k_euler_ancestral`.
|
143
|
+
n_inference_steps: The number of denoising steps. More denoising steps
|
144
|
+
usually lead to a higher quality image at the expense of slower inference.
|
145
|
+
This parameter will be modulated by `strength`.
|
146
|
+
seed: A seed to make generation deterministic.
|
147
|
+
strength: Conceptually, indicates how much to transform the reference
|
148
|
+
`input_image`. Must be between 0 and 1. `input_image` will be used as a
|
149
|
+
starting point, adding more noise to it the larger the `strength`. The
|
150
|
+
number of denoising steps depends on the amount of noise initially added.
|
151
|
+
When `strength` is 1, added noise will be maximum and the denoising
|
152
|
+
process will run for the full number of iterations specified in
|
153
|
+
`n_inference_steps`. A value of 1, therefore, essentially ignores
|
154
|
+
`input_image`.
|
155
|
+
input_image: Image which is served as the starting point for the image
|
156
|
+
generation.
|
157
|
+
"""
|
158
|
+
if not 0 < strength < 1:
|
159
|
+
raise ValueError('strength must be between 0 and 1')
|
160
|
+
if height % 8 or width % 8:
|
161
|
+
raise ValueError('height and width must be a multiple of 8')
|
162
|
+
if seed is not None:
|
163
|
+
np.random.seed(seed)
|
164
|
+
if uncond_prompt is None:
|
165
|
+
uncond_prompt = ''
|
166
|
+
|
167
|
+
if sampler == 'k_lms':
|
168
|
+
sampler = samplers.KLMSSampler(n_inference_steps=n_inference_steps)
|
169
|
+
elif sampler == 'k_euler':
|
170
|
+
sampler = samplers.KEulerSampler(n_inference_steps=n_inference_steps)
|
171
|
+
elif sampler == 'k_euler_ancestral':
|
172
|
+
sampler = samplers.KEulerAncestralSampler(
|
173
|
+
n_inference_steps=n_inference_steps
|
174
|
+
)
|
175
|
+
else:
|
176
|
+
raise ValueError(
|
177
|
+
'Unknown sampler value %s. '
|
178
|
+
'Accepted values are {k_lms, k_euler, k_euler_ancestral}' % sampler
|
179
|
+
)
|
180
|
+
|
181
|
+
# Text embedding.
|
182
|
+
cond_tokens = model.tokenizer.encode(prompt)
|
183
|
+
cond_context = model.clip(
|
184
|
+
np.array(cond_tokens).astype(np.int32), signature_name='encode'
|
185
|
+
)
|
186
|
+
uncond_tokens = model.tokenizer.encode(uncond_prompt)
|
187
|
+
uncond_context = model.clip(
|
188
|
+
np.array(uncond_tokens).astype(np.int32), signature_name='encode'
|
189
|
+
)
|
190
|
+
context = np.concatenate([cond_context, uncond_context], axis=0)
|
191
|
+
noise_shape = (1, 4, height // 8, width // 8)
|
192
|
+
|
193
|
+
# Initialization starts from input_image if any, otherwise, starts from a
|
194
|
+
# random sampling.
|
195
|
+
if input_image:
|
196
|
+
if not hasattr(model, 'encoder'):
|
197
|
+
raise AttributeError(
|
198
|
+
'Stable Diffusion must be initialized with encoder to accept'
|
199
|
+
' input_image.'
|
200
|
+
)
|
201
|
+
input_image = input_image.resize((width, height))
|
202
|
+
input_image_np = util.rescale(input_image, (0, 255), (-1, 1))
|
203
|
+
input_image_np = util.move_channel(input_image_np, to='first')
|
204
|
+
encoder_noise = np.random.normal(size=noise_shape).astype(np.float32)
|
205
|
+
latents = model.encoder(input_image_np.astype(np.float32), encoder_noise)
|
206
|
+
latents_noise = np.random.normal(size=noise_shape).astype(np.float32)
|
207
|
+
sampler.set_strength(strength=strength)
|
208
|
+
latents += latents_noise * sampler.initial_scale
|
209
|
+
else:
|
210
|
+
latents = np.random.normal(size=noise_shape).astype(np.float32)
|
211
|
+
latents *= sampler.initial_scale
|
212
|
+
|
213
|
+
# Diffusion process.
|
214
|
+
timesteps = tqdm.tqdm(sampler.timesteps)
|
215
|
+
for _, timestep in enumerate(timesteps):
|
216
|
+
time_embedding = util.get_time_embedding(timestep)
|
217
|
+
|
218
|
+
input_latents = latents * sampler.get_input_scale()
|
219
|
+
input_latents = input_latents.repeat(2, axis=0)
|
220
|
+
output = model.diffusion(
|
221
|
+
input_latents.astype(np.float32),
|
222
|
+
context.astype(np.float32),
|
223
|
+
time_embedding,
|
224
|
+
signature_name='diffusion',
|
225
|
+
)
|
226
|
+
output_cond, output_uncond = np.split(output, 2, axis=0)
|
227
|
+
output = cfg_scale * (output_cond - output_uncond) + output_uncond
|
228
|
+
|
229
|
+
latents = sampler.step(latents, output)
|
230
|
+
|
231
|
+
# Image decoding.
|
232
|
+
images = model.decoder(latents.astype(np.float32), signature_name='decode')
|
233
|
+
images = util.rescale(images, (-1, 1), (0, 255), clamp=True)
|
234
|
+
images = util.move_channel(images, to='last')
|
235
|
+
if not os.path.exists(output_path):
|
236
|
+
pathlib.Path(output_path).parent.mkdir(parents=True, exist_ok=True)
|
237
|
+
Image.fromarray(images[0].astype(np.uint8)).save(output_path)
|
238
|
+
|
239
|
+
|
240
|
+
if __name__ == '__main__':
|
241
|
+
args = arg_parser.parse_args()
|
242
|
+
run_tflite_pipeline(
|
243
|
+
StableDiffusion(
|
244
|
+
tokenizer_vocab_dir=args.tokenizer_vocab_dir,
|
245
|
+
clip_ckpt=args.clip_ckpt,
|
246
|
+
diffusion_ckpt=args.diffusion_ckpt,
|
247
|
+
decoder_ckpt=args.decoder_ckpt,
|
248
|
+
),
|
249
|
+
prompt=args.prompt,
|
250
|
+
output_path=args.output_path,
|
251
|
+
sampler=args.sampler,
|
252
|
+
n_inference_steps=args.n_inference_steps,
|
253
|
+
seed=args.seed,
|
254
|
+
)
|
@@ -0,0 +1,19 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
from .k_euler import KEulerSampler
|
17
|
+
from .k_euler_ancestral import KEulerAncestralSampler
|
18
|
+
from .k_lms import KLMSSampler
|
19
|
+
from .sampler import SamplerInterface
|
@@ -0,0 +1,62 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
from ai_edge_torch.generative.examples.stable_diffusion import util
|
17
|
+
from ai_edge_torch.generative.examples.stable_diffusion.samplers.sampler import SamplerInterface # NOQA
|
18
|
+
import numpy as np
|
19
|
+
|
20
|
+
|
21
|
+
class KEulerSampler(SamplerInterface):
|
22
|
+
|
23
|
+
def __init__(self, n_inference_steps=50, n_training_steps=1000):
|
24
|
+
timesteps = np.linspace(n_training_steps - 1, 0, n_inference_steps)
|
25
|
+
|
26
|
+
alphas_cumprod = util.get_alphas_cumprod(n_training_steps=n_training_steps)
|
27
|
+
sigmas = ((1 - alphas_cumprod) / alphas_cumprod) ** 0.5
|
28
|
+
log_sigmas = np.log(sigmas)
|
29
|
+
log_sigmas = np.interp(timesteps, range(n_training_steps), log_sigmas)
|
30
|
+
sigmas = np.exp(log_sigmas)
|
31
|
+
sigmas = np.append(sigmas, 0)
|
32
|
+
|
33
|
+
self.sigmas = sigmas
|
34
|
+
self.initial_scale = sigmas.max()
|
35
|
+
self.timesteps = timesteps
|
36
|
+
self.n_inference_steps = n_inference_steps
|
37
|
+
self.n_training_steps = n_training_steps
|
38
|
+
self.step_count = 0
|
39
|
+
|
40
|
+
def get_input_scale(self, step_count=None):
|
41
|
+
if step_count is None:
|
42
|
+
step_count = self.step_count
|
43
|
+
sigma = self.sigmas[step_count]
|
44
|
+
return 1 / (sigma**2 + 1) ** 0.5
|
45
|
+
|
46
|
+
def set_strength(self, strength=1):
|
47
|
+
start_step = self.n_inference_steps - int(self.n_inference_steps * strength)
|
48
|
+
self.timesteps = np.linspace(
|
49
|
+
self.n_training_steps - 1, 0, self.n_inference_steps
|
50
|
+
)
|
51
|
+
self.timesteps = self.timesteps[start_step:]
|
52
|
+
self.initial_scale = self.sigmas[start_step]
|
53
|
+
self.step_count = start_step
|
54
|
+
|
55
|
+
def step(self, latents, output):
|
56
|
+
t = self.step_count
|
57
|
+
self.step_count += 1
|
58
|
+
|
59
|
+
sigma_from = self.sigmas[t]
|
60
|
+
sigma_to = self.sigmas[t + 1]
|
61
|
+
latents += output * (sigma_to - sigma_from)
|
62
|
+
return latents
|
@@ -0,0 +1,66 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
from ai_edge_torch.generative.examples.stable_diffusion import util
|
17
|
+
from ai_edge_torch.generative.examples.stable_diffusion.samplers.sampler import SamplerInterface # NOQA
|
18
|
+
import numpy as np
|
19
|
+
|
20
|
+
|
21
|
+
class KEulerAncestralSampler(SamplerInterface):
|
22
|
+
|
23
|
+
def __init__(self, n_inference_steps=50, n_training_steps=1000):
|
24
|
+
timesteps = np.linspace(n_training_steps - 1, 0, n_inference_steps)
|
25
|
+
|
26
|
+
alphas_cumprod = util.get_alphas_cumprod(n_training_steps=n_training_steps)
|
27
|
+
sigmas = ((1 - alphas_cumprod) / alphas_cumprod) ** 0.5
|
28
|
+
log_sigmas = np.log(sigmas)
|
29
|
+
log_sigmas = np.interp(timesteps, range(n_training_steps), log_sigmas)
|
30
|
+
sigmas = np.exp(log_sigmas)
|
31
|
+
sigmas = np.append(sigmas, 0)
|
32
|
+
|
33
|
+
self.sigmas = sigmas
|
34
|
+
self.initial_scale = sigmas.max()
|
35
|
+
self.timesteps = timesteps
|
36
|
+
self.n_inference_steps = n_inference_steps
|
37
|
+
self.n_training_steps = n_training_steps
|
38
|
+
self.step_count = 0
|
39
|
+
|
40
|
+
def get_input_scale(self, step_count=None):
|
41
|
+
if step_count is None:
|
42
|
+
step_count = self.step_count
|
43
|
+
sigma = self.sigmas[step_count]
|
44
|
+
return 1 / (sigma**2 + 1) ** 0.5
|
45
|
+
|
46
|
+
def set_strength(self, strength=1):
|
47
|
+
start_step = self.n_inference_steps - int(self.n_inference_steps * strength)
|
48
|
+
self.timesteps = np.linspace(
|
49
|
+
self.n_training_steps - 1, 0, self.n_inference_steps
|
50
|
+
)
|
51
|
+
self.timesteps = self.timesteps[start_step:]
|
52
|
+
self.initial_scale = self.sigmas[start_step]
|
53
|
+
self.step_count = start_step
|
54
|
+
|
55
|
+
def step(self, latents, output):
|
56
|
+
t = self.step_count
|
57
|
+
self.step_count += 1
|
58
|
+
|
59
|
+
sigma_from = self.sigmas[t]
|
60
|
+
sigma_to = self.sigmas[t + 1]
|
61
|
+
sigma_up = sigma_to * (1 - (sigma_to**2 / sigma_from**2)) ** 0.5
|
62
|
+
sigma_down = sigma_to**2 / sigma_from
|
63
|
+
latents += output * (sigma_down - sigma_from)
|
64
|
+
noise = np.random.normal(size=latents.shape)
|
65
|
+
latents += noise * sigma_up
|
66
|
+
return latents
|
@@ -0,0 +1,74 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
from ai_edge_torch.generative.examples.stable_diffusion import util
|
17
|
+
from ai_edge_torch.generative.examples.stable_diffusion.samplers.sampler import SamplerInterface # NOQA
|
18
|
+
import numpy as np
|
19
|
+
|
20
|
+
|
21
|
+
class KLMSSampler(SamplerInterface):
|
22
|
+
|
23
|
+
def __init__(self, n_inference_steps=50, n_training_steps=1000, lms_order=4):
|
24
|
+
timesteps = np.linspace(n_training_steps - 1, 0, n_inference_steps)
|
25
|
+
|
26
|
+
alphas_cumprod = util.get_alphas_cumprod(n_training_steps=n_training_steps)
|
27
|
+
sigmas = ((1 - alphas_cumprod) / alphas_cumprod) ** 0.5
|
28
|
+
log_sigmas = np.log(sigmas)
|
29
|
+
log_sigmas = np.interp(timesteps, range(n_training_steps), log_sigmas)
|
30
|
+
sigmas = np.exp(log_sigmas)
|
31
|
+
sigmas = np.append(sigmas, 0)
|
32
|
+
|
33
|
+
self.sigmas = sigmas
|
34
|
+
self.initial_scale = sigmas.max()
|
35
|
+
self.timesteps = timesteps
|
36
|
+
self.n_inference_steps = n_inference_steps
|
37
|
+
self.n_training_steps = n_training_steps
|
38
|
+
self.lms_order = lms_order
|
39
|
+
self.step_count = 0
|
40
|
+
self.outputs = []
|
41
|
+
|
42
|
+
def get_input_scale(self, step_count=None):
|
43
|
+
if step_count is None:
|
44
|
+
step_count = self.step_count
|
45
|
+
sigma = self.sigmas[step_count]
|
46
|
+
return 1 / (sigma**2 + 1) ** 0.5
|
47
|
+
|
48
|
+
def set_strength(self, strength=1):
|
49
|
+
start_step = self.n_inference_steps - int(self.n_inference_steps * strength)
|
50
|
+
self.timesteps = np.linspace(
|
51
|
+
self.n_training_steps - 1, 0, self.n_inference_steps
|
52
|
+
)
|
53
|
+
self.timesteps = self.timesteps[start_step:]
|
54
|
+
self.initial_scale = self.sigmas[start_step]
|
55
|
+
self.step_count = start_step
|
56
|
+
|
57
|
+
def step(self, latents, output):
|
58
|
+
t = self.step_count
|
59
|
+
self.step_count += 1
|
60
|
+
|
61
|
+
self.outputs = [output] + self.outputs[: self.lms_order - 1]
|
62
|
+
order = len(self.outputs)
|
63
|
+
for i, output in enumerate(self.outputs):
|
64
|
+
# Integrate polynomial by trapezoidal approx. method for 81 points.
|
65
|
+
x = np.linspace(self.sigmas[t], self.sigmas[t + 1], 81)
|
66
|
+
y = np.ones(81)
|
67
|
+
for j in range(order):
|
68
|
+
if i == j:
|
69
|
+
continue
|
70
|
+
y *= x - self.sigmas[t - j]
|
71
|
+
y /= self.sigmas[t - i] - self.sigmas[t - j]
|
72
|
+
lms_coeff = np.trapz(y=y, x=x)
|
73
|
+
latents += lms_coeff * output
|
74
|
+
return latents
|
@@ -0,0 +1,39 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
import abc
|
17
|
+
|
18
|
+
import numpy as np
|
19
|
+
|
20
|
+
|
21
|
+
class SamplerInterface(abc.ABC):
|
22
|
+
|
23
|
+
@abc.abstractmethod
|
24
|
+
def get_input_scale(self, step_count: int = 1) -> float:
|
25
|
+
"""Get the input scale of the random samples from sampled distribution"""
|
26
|
+
return NotImplemented
|
27
|
+
|
28
|
+
@abc.abstractmethod
|
29
|
+
def set_strength(self, strength: float = 1) -> None:
|
30
|
+
"""Set the strength of initial step.
|
31
|
+
|
32
|
+
Conceptually, indicates how much to transform the reference `input_images`.
|
33
|
+
"""
|
34
|
+
return NotImplemented
|
35
|
+
|
36
|
+
@abc.abstractmethod
|
37
|
+
def step(self, latents: np.ndarray, output: np.ndarray) -> np.ndarray:
|
38
|
+
"""Update latents from the diffusion output by a step"""
|
39
|
+
return NotImplemented
|