ai-edge-torch-nightly 0.3.0.dev20250114__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (213) hide show
  1. ai_edge_torch/__init__.py +32 -0
  2. ai_edge_torch/_config.py +69 -0
  3. ai_edge_torch/_convert/__init__.py +14 -0
  4. ai_edge_torch/_convert/conversion.py +153 -0
  5. ai_edge_torch/_convert/conversion_utils.py +64 -0
  6. ai_edge_torch/_convert/converter.py +270 -0
  7. ai_edge_torch/_convert/fx_passes/__init__.py +23 -0
  8. ai_edge_torch/_convert/fx_passes/build_aten_composite_pass.py +288 -0
  9. ai_edge_torch/_convert/fx_passes/build_interpolate_composite_pass.py +131 -0
  10. ai_edge_torch/_convert/fx_passes/inject_mlir_debuginfo_pass.py +73 -0
  11. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/__init__.py +16 -0
  12. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_check.py +258 -0
  13. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_mark.py +50 -0
  14. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +18 -0
  15. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +68 -0
  16. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +216 -0
  17. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +449 -0
  18. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +30 -0
  19. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/pass_body.py +303 -0
  20. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/utils.py +64 -0
  21. ai_edge_torch/_convert/fx_passes/remove_non_user_outputs_pass.py +52 -0
  22. ai_edge_torch/_convert/signature.py +66 -0
  23. ai_edge_torch/_convert/test/__init__.py +14 -0
  24. ai_edge_torch/_convert/test/test_convert.py +558 -0
  25. ai_edge_torch/_convert/test/test_convert_composites.py +234 -0
  26. ai_edge_torch/_convert/test/test_convert_multisig.py +189 -0
  27. ai_edge_torch/_convert/test/test_to_channel_last_io.py +96 -0
  28. ai_edge_torch/_convert/to_channel_last_io.py +92 -0
  29. ai_edge_torch/conftest.py +20 -0
  30. ai_edge_torch/debug/__init__.py +17 -0
  31. ai_edge_torch/debug/culprit.py +496 -0
  32. ai_edge_torch/debug/test/__init__.py +14 -0
  33. ai_edge_torch/debug/test/test_culprit.py +140 -0
  34. ai_edge_torch/debug/test/test_search_model.py +51 -0
  35. ai_edge_torch/debug/utils.py +59 -0
  36. ai_edge_torch/experimental/__init__.py +14 -0
  37. ai_edge_torch/fx_pass_base.py +110 -0
  38. ai_edge_torch/generative/__init__.py +14 -0
  39. ai_edge_torch/generative/examples/__init__.py +14 -0
  40. ai_edge_torch/generative/examples/amd_llama_135m/__init__.py +14 -0
  41. ai_edge_torch/generative/examples/amd_llama_135m/amd_llama_135m.py +87 -0
  42. ai_edge_torch/generative/examples/amd_llama_135m/convert_to_tflite.py +70 -0
  43. ai_edge_torch/generative/examples/amd_llama_135m/verify.py +72 -0
  44. ai_edge_torch/generative/examples/gemma/__init__.py +14 -0
  45. ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +80 -0
  46. ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +80 -0
  47. ai_edge_torch/generative/examples/gemma/gemma1.py +107 -0
  48. ai_edge_torch/generative/examples/gemma/gemma2.py +295 -0
  49. ai_edge_torch/generative/examples/gemma/verify_gemma1.py +56 -0
  50. ai_edge_torch/generative/examples/gemma/verify_gemma2.py +43 -0
  51. ai_edge_torch/generative/examples/gemma/verify_util.py +157 -0
  52. ai_edge_torch/generative/examples/llama/__init__.py +14 -0
  53. ai_edge_torch/generative/examples/llama/convert_to_tflite.py +91 -0
  54. ai_edge_torch/generative/examples/llama/llama.py +196 -0
  55. ai_edge_torch/generative/examples/llama/verify.py +88 -0
  56. ai_edge_torch/generative/examples/moonshine/__init__.py +14 -0
  57. ai_edge_torch/generative/examples/moonshine/convert_moonshine_to_tflite.py +50 -0
  58. ai_edge_torch/generative/examples/moonshine/moonshine.py +103 -0
  59. ai_edge_torch/generative/examples/openelm/__init__.py +14 -0
  60. ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +80 -0
  61. ai_edge_torch/generative/examples/openelm/openelm.py +127 -0
  62. ai_edge_torch/generative/examples/openelm/verify.py +71 -0
  63. ai_edge_torch/generative/examples/paligemma/__init__.py +14 -0
  64. ai_edge_torch/generative/examples/paligemma/convert_to_tflite.py +95 -0
  65. ai_edge_torch/generative/examples/paligemma/decoder.py +151 -0
  66. ai_edge_torch/generative/examples/paligemma/decoder2.py +177 -0
  67. ai_edge_torch/generative/examples/paligemma/image_encoder.py +160 -0
  68. ai_edge_torch/generative/examples/paligemma/paligemma.py +179 -0
  69. ai_edge_torch/generative/examples/paligemma/verify.py +161 -0
  70. ai_edge_torch/generative/examples/paligemma/verify_decoder.py +75 -0
  71. ai_edge_torch/generative/examples/paligemma/verify_decoder2.py +72 -0
  72. ai_edge_torch/generative/examples/paligemma/verify_image_encoder.py +99 -0
  73. ai_edge_torch/generative/examples/phi/__init__.py +14 -0
  74. ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +80 -0
  75. ai_edge_torch/generative/examples/phi/convert_to_tflite.py +80 -0
  76. ai_edge_torch/generative/examples/phi/phi2.py +107 -0
  77. ai_edge_torch/generative/examples/phi/phi3.py +219 -0
  78. ai_edge_torch/generative/examples/phi/verify.py +64 -0
  79. ai_edge_torch/generative/examples/phi/verify_phi3.py +69 -0
  80. ai_edge_torch/generative/examples/qwen/__init__.py +14 -0
  81. ai_edge_torch/generative/examples/qwen/convert_to_tflite.py +93 -0
  82. ai_edge_torch/generative/examples/qwen/qwen.py +134 -0
  83. ai_edge_torch/generative/examples/qwen/verify.py +88 -0
  84. ai_edge_torch/generative/examples/smollm/__init__.py +14 -0
  85. ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +80 -0
  86. ai_edge_torch/generative/examples/smollm/convert_v2_to_tflite.py +71 -0
  87. ai_edge_torch/generative/examples/smollm/smollm.py +125 -0
  88. ai_edge_torch/generative/examples/smollm/verify.py +86 -0
  89. ai_edge_torch/generative/examples/stable_diffusion/__init__.py +14 -0
  90. ai_edge_torch/generative/examples/stable_diffusion/attention.py +108 -0
  91. ai_edge_torch/generative/examples/stable_diffusion/clip.py +185 -0
  92. ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +173 -0
  93. ai_edge_torch/generative/examples/stable_diffusion/decoder.py +398 -0
  94. ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +749 -0
  95. ai_edge_torch/generative/examples/stable_diffusion/encoder.py +119 -0
  96. ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +254 -0
  97. ai_edge_torch/generative/examples/stable_diffusion/samplers/__init__.py +19 -0
  98. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +62 -0
  99. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +66 -0
  100. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +74 -0
  101. ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +39 -0
  102. ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +111 -0
  103. ai_edge_torch/generative/examples/stable_diffusion/util.py +77 -0
  104. ai_edge_torch/generative/examples/t5/__init__.py +14 -0
  105. ai_edge_torch/generative/examples/t5/convert_to_tflite.py +138 -0
  106. ai_edge_torch/generative/examples/t5/t5.py +655 -0
  107. ai_edge_torch/generative/examples/t5/t5_attention.py +246 -0
  108. ai_edge_torch/generative/examples/test_models/__init__.py +14 -0
  109. ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
  110. ai_edge_torch/generative/examples/test_models/toy_model.py +156 -0
  111. ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +138 -0
  112. ai_edge_torch/generative/examples/tiny_llama/__init__.py +14 -0
  113. ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +80 -0
  114. ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +88 -0
  115. ai_edge_torch/generative/examples/tiny_llama/verify.py +72 -0
  116. ai_edge_torch/generative/fx_passes/__init__.py +30 -0
  117. ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +50 -0
  118. ai_edge_torch/generative/layers/__init__.py +14 -0
  119. ai_edge_torch/generative/layers/attention.py +399 -0
  120. ai_edge_torch/generative/layers/attention_utils.py +210 -0
  121. ai_edge_torch/generative/layers/builder.py +160 -0
  122. ai_edge_torch/generative/layers/feed_forward.py +120 -0
  123. ai_edge_torch/generative/layers/kv_cache.py +204 -0
  124. ai_edge_torch/generative/layers/lora.py +557 -0
  125. ai_edge_torch/generative/layers/model_config.py +238 -0
  126. ai_edge_torch/generative/layers/normalization.py +222 -0
  127. ai_edge_torch/generative/layers/rotary_position_embedding.py +94 -0
  128. ai_edge_torch/generative/layers/scaled_dot_product_attention.py +144 -0
  129. ai_edge_torch/generative/layers/unet/__init__.py +14 -0
  130. ai_edge_torch/generative/layers/unet/blocks_2d.py +806 -0
  131. ai_edge_torch/generative/layers/unet/builder.py +50 -0
  132. ai_edge_torch/generative/layers/unet/model_config.py +282 -0
  133. ai_edge_torch/generative/quantize/__init__.py +14 -0
  134. ai_edge_torch/generative/quantize/example.py +47 -0
  135. ai_edge_torch/generative/quantize/quant_attrs.py +68 -0
  136. ai_edge_torch/generative/quantize/quant_recipe.py +154 -0
  137. ai_edge_torch/generative/quantize/quant_recipe_utils.py +62 -0
  138. ai_edge_torch/generative/quantize/quant_recipes.py +56 -0
  139. ai_edge_torch/generative/quantize/supported_schemes.py +32 -0
  140. ai_edge_torch/generative/test/__init__.py +14 -0
  141. ai_edge_torch/generative/test/test_custom_dus.py +107 -0
  142. ai_edge_torch/generative/test/test_kv_cache.py +120 -0
  143. ai_edge_torch/generative/test/test_loader.py +83 -0
  144. ai_edge_torch/generative/test/test_lora.py +147 -0
  145. ai_edge_torch/generative/test/test_model_conversion.py +191 -0
  146. ai_edge_torch/generative/test/test_model_conversion_large.py +362 -0
  147. ai_edge_torch/generative/test/test_quantize.py +183 -0
  148. ai_edge_torch/generative/test/utils.py +82 -0
  149. ai_edge_torch/generative/utilities/__init__.py +15 -0
  150. ai_edge_torch/generative/utilities/converter.py +215 -0
  151. ai_edge_torch/generative/utilities/dynamic_update_slice.py +56 -0
  152. ai_edge_torch/generative/utilities/loader.py +398 -0
  153. ai_edge_torch/generative/utilities/model_builder.py +180 -0
  154. ai_edge_torch/generative/utilities/moonshine_loader.py +154 -0
  155. ai_edge_torch/generative/utilities/stable_diffusion_loader.py +1032 -0
  156. ai_edge_torch/generative/utilities/t5_loader.py +512 -0
  157. ai_edge_torch/generative/utilities/transformers_verifier.py +42 -0
  158. ai_edge_torch/generative/utilities/verifier.py +335 -0
  159. ai_edge_torch/hlfb/__init__.py +16 -0
  160. ai_edge_torch/hlfb/mark_pattern/__init__.py +153 -0
  161. ai_edge_torch/hlfb/mark_pattern/fx_utils.py +69 -0
  162. ai_edge_torch/hlfb/mark_pattern/pattern.py +288 -0
  163. ai_edge_torch/hlfb/test/__init__.py +14 -0
  164. ai_edge_torch/hlfb/test/test_mark_pattern.py +185 -0
  165. ai_edge_torch/lowertools/__init__.py +18 -0
  166. ai_edge_torch/lowertools/_shim.py +86 -0
  167. ai_edge_torch/lowertools/common_utils.py +142 -0
  168. ai_edge_torch/lowertools/odml_torch_utils.py +260 -0
  169. ai_edge_torch/lowertools/test_utils.py +62 -0
  170. ai_edge_torch/lowertools/torch_xla_utils.py +301 -0
  171. ai_edge_torch/lowertools/translate_recipe.py +163 -0
  172. ai_edge_torch/model.py +177 -0
  173. ai_edge_torch/odml_torch/__init__.py +20 -0
  174. ai_edge_torch/odml_torch/_torch_future.py +88 -0
  175. ai_edge_torch/odml_torch/_torch_library.py +19 -0
  176. ai_edge_torch/odml_torch/composite/__init__.py +16 -0
  177. ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
  178. ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
  179. ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
  180. ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
  181. ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
  182. ai_edge_torch/odml_torch/export.py +403 -0
  183. ai_edge_torch/odml_torch/export_utils.py +157 -0
  184. ai_edge_torch/odml_torch/jax_bridge/__init__.py +18 -0
  185. ai_edge_torch/odml_torch/jax_bridge/_wrap.py +180 -0
  186. ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
  187. ai_edge_torch/odml_torch/lowerings/__init__.py +27 -0
  188. ai_edge_torch/odml_torch/lowerings/_basic.py +294 -0
  189. ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
  190. ai_edge_torch/odml_torch/lowerings/_convolution.py +243 -0
  191. ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +285 -0
  192. ai_edge_torch/odml_torch/lowerings/_layer_norm.py +87 -0
  193. ai_edge_torch/odml_torch/lowerings/_quantized_decomposed.py +177 -0
  194. ai_edge_torch/odml_torch/lowerings/_rand.py +142 -0
  195. ai_edge_torch/odml_torch/lowerings/context.py +42 -0
  196. ai_edge_torch/odml_torch/lowerings/decomp.py +69 -0
  197. ai_edge_torch/odml_torch/lowerings/registry.py +65 -0
  198. ai_edge_torch/odml_torch/lowerings/utils.py +201 -0
  199. ai_edge_torch/odml_torch/passes/__init__.py +38 -0
  200. ai_edge_torch/odml_torch/tf_integration.py +156 -0
  201. ai_edge_torch/quantize/__init__.py +16 -0
  202. ai_edge_torch/quantize/pt2e_quantizer.py +466 -0
  203. ai_edge_torch/quantize/pt2e_quantizer_utils.py +1061 -0
  204. ai_edge_torch/quantize/quant_config.py +85 -0
  205. ai_edge_torch/testing/__init__.py +14 -0
  206. ai_edge_torch/testing/model_coverage/__init__.py +16 -0
  207. ai_edge_torch/testing/model_coverage/model_coverage.py +145 -0
  208. ai_edge_torch/version.py +16 -0
  209. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/LICENSE +202 -0
  210. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/METADATA +44 -0
  211. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/RECORD +213 -0
  212. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/WHEEL +5 -0
  213. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/top_level.txt +1 -0
@@ -0,0 +1,655 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ # Example of building a T5 model.
16
+
17
+ import copy
18
+ import os
19
+ from pathlib import Path
20
+ from typing import Optional
21
+
22
+ from ai_edge_torch.generative.examples.t5.t5_attention import EncoderDecoderBlock # NOQA
23
+ import ai_edge_torch.generative.layers.attention_utils as attn_utils
24
+ import ai_edge_torch.generative.layers.builder as builder
25
+ import ai_edge_torch.generative.layers.model_config as cfg
26
+ import ai_edge_torch.generative.utilities.t5_loader as loading_utils
27
+ import torch
28
+ import torch.nn as nn
29
+
30
+ ENCDEC_TENSOR_NAMES = {
31
+ "ff_up_proj": "{prefix}.block.{}.layer.{num}.DenseReluDense.wi",
32
+ "ff_down_proj": "{prefix}.block.{}.layer.{num}.DenseReluDense.wo",
33
+ "attn_query_proj": "{prefix}.block.{}.layer.0.SelfAttention.q",
34
+ "attn_key_proj": "{prefix}.block.{}.layer.0.SelfAttention.k",
35
+ "attn_value_proj": "{prefix}.block.{}.layer.0.SelfAttention.v",
36
+ "attn_output_proj": "{prefix}.block.{}.layer.0.SelfAttention.o",
37
+ "relative_attn_bias": (
38
+ "{prefix}.block.0.layer.0.SelfAttention.relative_attention_bias"
39
+ ),
40
+ "pre_attn_norm": "{prefix}.block.{}.layer.0.layer_norm",
41
+ "post_attn_norm": "{prefix}.block.{}.layer.1.layer_norm",
42
+ "final_norm": "{prefix}.final_layer_norm",
43
+ }
44
+
45
+ TENSOR_NAMES = {"lm_head": "lm_head", "embedding": "shared"}
46
+
47
+
48
+ class T5Stack(nn.Module):
49
+
50
+ def __init__(self, config, embed_tokens=None):
51
+ super().__init__()
52
+ self.config = config
53
+ self.embed_tokens = embed_tokens
54
+ self.is_decoder = config.is_decoder
55
+ # T5 has only one block config.
56
+ block_config = config.block_config(0)
57
+ self.transformer_blocks = nn.ModuleList([
58
+ EncoderDecoderBlock(
59
+ block_config,
60
+ config,
61
+ has_relative_attention_bias=bool(idx == 0),
62
+ )
63
+ for idx in range(config.num_layers)
64
+ ])
65
+ self.final_norm = builder.build_norm(
66
+ config.embedding_dim, config.final_norm_config
67
+ )
68
+
69
+ def forward(
70
+ self,
71
+ input_ids: torch.Tensor,
72
+ input_pos: torch.Tensor,
73
+ attention_mask: torch.Tensor,
74
+ relative_position: torch.Tensor,
75
+ encoder_hidden_states: Optional[
76
+ torch.Tensor
77
+ ] = None, # should be for decoder case
78
+ encoder_attention_mask: Optional[
79
+ torch.Tensor
80
+ ] = None, # should be for decoder case
81
+ ):
82
+ inputs_embeds = self.embed_tokens(input_ids)
83
+ hidden_states = inputs_embeds
84
+ position_bias = None
85
+ encoder_decoder_position_bias = None
86
+ for _, layer_module in enumerate(self.transformer_blocks):
87
+ # EncoderDecoderBlock.forward
88
+ hidden_states, position_bias, encoder_decoder_position_bias = (
89
+ layer_module(
90
+ hidden_states,
91
+ input_pos,
92
+ mask=attention_mask,
93
+ relative_position=relative_position,
94
+ position_bias=position_bias,
95
+ encoder_hidden_states=encoder_hidden_states,
96
+ encoder_attention_mask=encoder_attention_mask,
97
+ encoder_decoder_position_bias=encoder_decoder_position_bias,
98
+ )
99
+ )
100
+
101
+ hidden_states = self.final_norm(hidden_states)
102
+ return hidden_states
103
+
104
+
105
+ class T5(nn.Module):
106
+
107
+ def __init__(self, config: cfg.ModelConfig):
108
+ super().__init__()
109
+
110
+ self.config = config
111
+ # Construct model layers.
112
+ self.tok_embedding = nn.Embedding(
113
+ config.vocab_size, config.embedding_dim, padding_idx=0
114
+ )
115
+
116
+ encoder_config = copy.deepcopy(config)
117
+ encoder_config.is_decoder = False
118
+ # T5 has only one block config.
119
+ encoder_config.block_config(0).attn_config.enable_kv_cache = False
120
+ self.encoder = T5Stack(encoder_config, self.tok_embedding)
121
+
122
+ decoder_config = copy.deepcopy(config)
123
+ decoder_config.is_decoder = True
124
+ self.decoder = T5Stack(decoder_config, self.tok_embedding)
125
+ self.lm_head = nn.Linear(
126
+ config.embedding_dim, config.vocab_size, bias=config.lm_head_use_bias
127
+ )
128
+
129
+ self.enc_attn_mask_cache = (
130
+ torch.zeros(
131
+ (config.kv_cache_max, config.kv_cache_max),
132
+ dtype=torch.float32,
133
+ device=torch.device("cpu"),
134
+ )
135
+ .unsqueeze(0)
136
+ .unsqueeze(0)
137
+ )
138
+
139
+ self.dec_attn_mask_cache = attn_utils.build_causal_mask_cache(
140
+ size=config.kv_cache_max,
141
+ dtype=torch.float32,
142
+ device=torch.device("cpu"),
143
+ )
144
+
145
+ # T5 has only one block config.
146
+ attn_config = config.block_config(0).attn_config
147
+ self.enc_rel_pos_mask = attn_utils.build_relative_position_buckets(
148
+ bidirectional=True,
149
+ query_length=config.kv_cache_max,
150
+ key_length=config.kv_cache_max,
151
+ num_buckets=attn_config.relative_attention_num_buckets,
152
+ max_distance=attn_config.relative_attention_max_distance,
153
+ )
154
+
155
+ self.dec_rel_pos_mask = attn_utils.build_relative_position_buckets(
156
+ bidirectional=False,
157
+ query_length=config.kv_cache_max,
158
+ key_length=config.kv_cache_max,
159
+ num_buckets=attn_config.relative_attention_num_buckets,
160
+ max_distance=attn_config.relative_attention_max_distance,
161
+ )
162
+
163
+ @torch.inference_mode
164
+ def forward(
165
+ self,
166
+ input_ids: torch.Tensor,
167
+ input_pos: torch.Tensor,
168
+ decoder_input_ids: torch.Tensor,
169
+ decoder_input_pos: torch.Tensor,
170
+ pad_mask: torch.Tensor,
171
+ ) -> torch.Tensor:
172
+ B, T = input_ids.size()
173
+ assert self.config.max_seq_len >= T, (
174
+ f"Cannot forward sequence of length {T}, max seq length is only"
175
+ f" {self.config.max_seq_len}"
176
+ )
177
+
178
+ enc_mask = self.enc_attn_mask_cache.index_select(2, input_pos)
179
+ enc_mask = enc_mask[:, :, :, : self.config.kv_cache_max]
180
+ # Mask off any "pad" tokens that shouldn't contribute to self-attention
181
+ enc_mask[:, :, :, :] += pad_mask
182
+ dec_mask = self.dec_attn_mask_cache.index_select(2, decoder_input_pos)
183
+ dec_mask = dec_mask[:, :, :, : self.config.kv_cache_max]
184
+ enc_relative_position = self.enc_rel_pos_mask.index_select(2, input_pos)
185
+ enc_relative_position = enc_relative_position[
186
+ :, :, :, : self.config.kv_cache_max
187
+ ]
188
+ dec_relative_position = self.enc_rel_pos_mask.index_select(
189
+ 2, decoder_input_pos
190
+ )
191
+ dec_relative_position = dec_relative_position[
192
+ :, :, :, : self.config.kv_cache_max
193
+ ]
194
+ enc_attention_mask = self.enc_attn_mask_cache.index_select(
195
+ 2, decoder_input_pos
196
+ )
197
+ # Mask off any "pad" tokens that shouldn't contribute to cross attention
198
+ enc_attention_mask[:, :, :, :] += pad_mask
199
+
200
+ # Convert encoder inputs in embeddings if needed
201
+ encoder_hidden_states = self.encoder(
202
+ input_ids=input_ids,
203
+ input_pos=input_pos,
204
+ attention_mask=enc_mask,
205
+ relative_position=enc_relative_position,
206
+ )
207
+
208
+ # Decode
209
+ decoder_out = self.decoder(
210
+ input_ids=decoder_input_ids,
211
+ input_pos=decoder_input_pos,
212
+ attention_mask=dec_mask,
213
+ relative_position=dec_relative_position,
214
+ encoder_hidden_states=encoder_hidden_states,
215
+ encoder_attention_mask=enc_attention_mask,
216
+ )
217
+
218
+ # Rescale output before projecting on vocab
219
+ # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586
220
+ sequence_output = decoder_out * (self.config.embedding_dim**-0.5)
221
+
222
+ lm_logits = self.lm_head(sequence_output)
223
+ return lm_logits
224
+
225
+
226
+ class T5Encoder(nn.Module):
227
+
228
+ def __init__(self, config: cfg.ModelConfig, embedding_layer):
229
+ super().__init__()
230
+
231
+ self.config = config
232
+ # Construct model layers.
233
+ assert (
234
+ embedding_layer != None
235
+ ), "Passed in embedding layer should not be None!"
236
+ self.tok_embedding = embedding_layer
237
+
238
+ encoder_config = copy.deepcopy(config)
239
+ encoder_config.is_decoder = False
240
+ # T5 has only one block config.
241
+ encoder_config.block_config(0).attn_config.enable_kv_cache = False
242
+ self.encoder = T5Stack(encoder_config, self.tok_embedding)
243
+
244
+ self.enc_attn_mask_cache = (
245
+ torch.zeros(
246
+ (config.kv_cache_max, config.kv_cache_max),
247
+ dtype=torch.float32,
248
+ device=torch.device("cpu"),
249
+ )
250
+ .unsqueeze(0)
251
+ .unsqueeze(0)
252
+ )
253
+
254
+ # T5 has only one block config.
255
+ attn_config = config.block_config(0).attn_config
256
+ self.enc_rel_pos_mask = attn_utils.build_relative_position_buckets(
257
+ bidirectional=True,
258
+ query_length=config.kv_cache_max,
259
+ key_length=config.kv_cache_max,
260
+ num_buckets=attn_config.relative_attention_num_buckets,
261
+ max_distance=attn_config.relative_attention_max_distance,
262
+ )
263
+
264
+ @torch.inference_mode
265
+ def forward(
266
+ self,
267
+ input_ids: torch.Tensor,
268
+ input_pos: torch.Tensor,
269
+ pad_mask: torch.Tensor,
270
+ ) -> torch.Tensor:
271
+ B, T = input_ids.size()
272
+ assert self.config.max_seq_len >= T, (
273
+ f"Cannot forward sequence of length {T}, max seq length is only"
274
+ f" {self.config.max_seq_len}"
275
+ )
276
+
277
+ enc_mask = self.enc_attn_mask_cache.index_select(2, input_pos)
278
+ enc_mask = enc_mask[:, :, :, : self.config.kv_cache_max]
279
+ # Mask off any "pad" tokens that shouldn't contribute to self-attention
280
+ enc_mask[:, :, :, :] += pad_mask
281
+ enc_relative_position = self.enc_rel_pos_mask.index_select(2, input_pos)
282
+ enc_relative_position = enc_relative_position[
283
+ :, :, :, : self.config.kv_cache_max
284
+ ]
285
+
286
+ # Convert encoder inputs in embeddings if needed
287
+ encoder_hidden_states = self.encoder(
288
+ input_ids=input_ids,
289
+ input_pos=input_pos,
290
+ attention_mask=enc_mask,
291
+ relative_position=enc_relative_position,
292
+ )
293
+
294
+ return encoder_hidden_states
295
+
296
+
297
+ class T5Decoder(nn.Module):
298
+
299
+ def __init__(self, config: cfg.ModelConfig, embedding_layer):
300
+ super().__init__()
301
+
302
+ self.config = config
303
+ # Construct model layers.
304
+ assert (
305
+ embedding_layer != None
306
+ ), "Passed in embedding layer should not be None!"
307
+ self.tok_embedding = embedding_layer
308
+
309
+ decoder_config = copy.deepcopy(config)
310
+ decoder_config.is_decoder = True
311
+ self.decoder = T5Stack(decoder_config, self.tok_embedding)
312
+ self.lm_head = nn.Linear(
313
+ config.embedding_dim, config.vocab_size, bias=config.lm_head_use_bias
314
+ )
315
+
316
+ self.enc_attn_mask_cache = (
317
+ torch.zeros(
318
+ (config.kv_cache_max, config.kv_cache_max),
319
+ dtype=torch.float32,
320
+ device=torch.device("cpu"),
321
+ )
322
+ .unsqueeze(0)
323
+ .unsqueeze(0)
324
+ )
325
+
326
+ # T5 has only one block config.
327
+ attn_config = config.block_config(0).attn_config
328
+ self.enc_rel_pos_mask = attn_utils.build_relative_position_buckets(
329
+ bidirectional=True,
330
+ query_length=config.kv_cache_max,
331
+ key_length=config.kv_cache_max,
332
+ num_buckets=attn_config.relative_attention_num_buckets,
333
+ max_distance=attn_config.relative_attention_max_distance,
334
+ )
335
+
336
+ self.dec_attn_mask_cache = attn_utils.build_causal_mask_cache(
337
+ size=config.kv_cache_max,
338
+ )
339
+
340
+ @torch.inference_mode
341
+ def forward(
342
+ self,
343
+ encoder_hidden_states: torch.Tensor,
344
+ decoder_input_ids: torch.Tensor,
345
+ decoder_input_pos: torch.Tensor,
346
+ pad_mask: torch.Tensor,
347
+ ) -> torch.Tensor:
348
+ dec_mask = self.dec_attn_mask_cache.index_select(2, decoder_input_pos)
349
+ dec_mask = dec_mask[:, :, :, : self.config.kv_cache_max]
350
+ dec_relative_position = self.enc_rel_pos_mask.index_select(
351
+ 2, decoder_input_pos
352
+ )
353
+ dec_relative_position = dec_relative_position[
354
+ :, :, :, : self.config.kv_cache_max
355
+ ]
356
+ enc_attention_mask = self.enc_attn_mask_cache.index_select(
357
+ 2, decoder_input_pos
358
+ )
359
+ # Mask off any "pad" tokens that shouldn't contribute to cross attention
360
+ enc_attention_mask[:, :, :, :] += pad_mask
361
+
362
+ # Decode
363
+ decoder_out = self.decoder(
364
+ input_ids=decoder_input_ids,
365
+ input_pos=decoder_input_pos,
366
+ attention_mask=dec_mask,
367
+ relative_position=dec_relative_position,
368
+ encoder_hidden_states=encoder_hidden_states,
369
+ encoder_attention_mask=enc_attention_mask,
370
+ )
371
+
372
+ # Rescale output before projecting on vocab
373
+ # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586
374
+ sequence_output = decoder_out * (self.config.embedding_dim**-0.5)
375
+
376
+ lm_logits = self.lm_head(sequence_output)
377
+ return lm_logits
378
+
379
+
380
+ def get_model_config_t5() -> cfg.ModelConfig:
381
+ attn_config = cfg.AttentionConfig(
382
+ num_heads=12,
383
+ head_dim=64,
384
+ num_query_groups=12,
385
+ qkv_use_bias=False,
386
+ relative_attention_num_buckets=32,
387
+ relative_attention_max_distance=128,
388
+ )
389
+ ff_config = cfg.FeedForwardConfig(
390
+ type=cfg.FeedForwardType.SEQUENTIAL,
391
+ activation=cfg.ActivationConfig(cfg.ActivationType.RELU),
392
+ intermediate_size=3072,
393
+ )
394
+ # T5 Confirmed as RMS Norm and eps = 1e-6 TJA.
395
+ norm_config = cfg.NormalizationConfig(
396
+ type=cfg.NormalizationType.RMS_NORM,
397
+ epsilon=1e-6,
398
+ )
399
+ block_config = cfg.TransformerBlockConfig(
400
+ attn_config=attn_config,
401
+ relative_attention=True,
402
+ ff_config=ff_config,
403
+ pre_attention_norm_config=norm_config,
404
+ post_attention_norm_config=norm_config,
405
+ )
406
+ config = cfg.ModelConfig(
407
+ vocab_size=32128,
408
+ num_layers=12,
409
+ max_seq_len=512,
410
+ embedding_dim=768,
411
+ block_configs=block_config,
412
+ final_norm_config=norm_config,
413
+ lm_head_use_bias=False,
414
+ enable_hlfb=True,
415
+ )
416
+ return config
417
+
418
+
419
+ def build_t5_model(checkpoint_path: str) -> nn.Module:
420
+ config = get_model_config_t5()
421
+ model = T5(config)
422
+ # Need the encoder and decoder mappings.
423
+ encoder_tensor_names = {
424
+ k: v.replace("{prefix}", "encoder").replace("{num}", "1")
425
+ for k, v in ENCDEC_TENSOR_NAMES.items()
426
+ }
427
+ decoder_tensor_names = ENCDEC_TENSOR_NAMES | {
428
+ "cross_attn_query_proj": "{prefix}.block.{}.layer.1.EncDecAttention.q",
429
+ "cross_attn_key_proj": "{prefix}.block.{}.layer.1.EncDecAttention.k",
430
+ "cross_attn_value_proj": "{prefix}.block.{}.layer.1.EncDecAttention.v",
431
+ "cross_attn_output_proj": "{prefix}.block.{}.layer.1.EncDecAttention.o",
432
+ # In the decoder, the FF is layer 2 in the Transformer block
433
+ "post_attn_norm": "{prefix}.block.{}.layer.2.layer_norm",
434
+ # In the decoder, the cross attention is layer 1 in the Transformer block
435
+ "pre_cross_attn_norm": "{prefix}.block.{}.layer.1.layer_norm",
436
+ }
437
+
438
+ decoder_tensor_names = {
439
+ k: v.replace("{prefix}", "decoder").replace("{num}", "2")
440
+ for k, v in decoder_tensor_names.items()
441
+ }
442
+
443
+ # Additional layer norms for Cross Attention in decoder
444
+ # decoder_tensor_names["pre_attn_norm"] = "{prefix}.block.{}.layer.1.layer_norm",
445
+ tensor_names = {
446
+ "encoder.": loading_utils.ModelLoader.TensorNames(**encoder_tensor_names),
447
+ "decoder.": loading_utils.ModelLoader.TensorNames(**decoder_tensor_names),
448
+ "": loading_utils.ModelLoader.TensorNames(**TENSOR_NAMES),
449
+ }
450
+ loader = loading_utils.ModelLoader(checkpoint_path, names=tensor_names)
451
+ # The embedding is shared between the encoder and decoder, so we set
452
+ # strict=False.
453
+ loader.load(model, strict=False, fuse_attention=False)
454
+ return model
455
+
456
+
457
+ def build_t5_encoder_model(
458
+ config: cfg.ModelConfig, embedding_layer, checkpoint_path: str
459
+ ) -> nn.Module:
460
+ model = T5Encoder(config, embedding_layer)
461
+ encoder_tensor_names = {
462
+ k: v.replace("{prefix}", "encoder").replace("{num}", "1")
463
+ for k, v in ENCDEC_TENSOR_NAMES.items()
464
+ }
465
+
466
+ # Additional layer norms for Cross Attention in decoder
467
+ # decoder_tensor_names["pre_attn_norm"] = "{prefix}.block.{}.layer.1.layer_norm",
468
+ tensor_names = {
469
+ "encoder.": loading_utils.ModelLoader.TensorNames(**encoder_tensor_names),
470
+ "": loading_utils.ModelLoader.TensorNames(**TENSOR_NAMES),
471
+ }
472
+ loader = loading_utils.ModelLoader(checkpoint_path, names=tensor_names)
473
+ # The embedding is shared between the encoder and decoder, so we set
474
+ # strict=False.
475
+ loader.load(model, strict=False, fuse_attention=False)
476
+ return model
477
+
478
+
479
+ def build_t5_decoder_model(
480
+ config: cfg.ModelConfig, embedding_layer, checkpoint_path: str
481
+ ) -> nn.Module:
482
+ model = T5Decoder(config, embedding_layer)
483
+ decoder_tensor_names = ENCDEC_TENSOR_NAMES | {
484
+ "cross_attn_query_proj": "{prefix}.block.{}.layer.1.EncDecAttention.q",
485
+ "cross_attn_key_proj": "{prefix}.block.{}.layer.1.EncDecAttention.k",
486
+ "cross_attn_value_proj": "{prefix}.block.{}.layer.1.EncDecAttention.v",
487
+ "cross_attn_output_proj": "{prefix}.block.{}.layer.1.EncDecAttention.o",
488
+ # In the decoder, the FF is layer 2 in the Transformer block
489
+ "post_attn_norm": "{prefix}.block.{}.layer.2.layer_norm",
490
+ # In the decoder, the cross attention is layer 1 in the Transformer block
491
+ "pre_cross_attn_norm": "{prefix}.block.{}.layer.1.layer_norm",
492
+ }
493
+
494
+ decoder_tensor_names = {
495
+ k: v.replace("{prefix}", "decoder").replace("{num}", "2")
496
+ for k, v in decoder_tensor_names.items()
497
+ }
498
+
499
+ # Additional layer norms for Cross Attention in decoder
500
+ # decoder_tensor_names["pre_attn_norm"] = "{prefix}.block.{}.layer.1.layer_norm",
501
+ tensor_names = {
502
+ "decoder.": loading_utils.ModelLoader.TensorNames(**decoder_tensor_names),
503
+ "": loading_utils.ModelLoader.TensorNames(**TENSOR_NAMES),
504
+ }
505
+ loader = loading_utils.ModelLoader(checkpoint_path, names=tensor_names)
506
+ # The embedding is shared between the encoder and decoder, so we set
507
+ # strict=False.
508
+ loader.load(model, strict=False, fuse_attention=False)
509
+ return model
510
+
511
+
512
+ def get_sample_encoder_input_ids() -> torch.Tensor:
513
+ idx = torch.tensor([[
514
+ 3856,
515
+ 27111,
516
+ 10,
517
+ 4425,
518
+ 51,
519
+ 4008,
520
+ 31,
521
+ 7,
522
+ 2306,
523
+ 16576,
524
+ 47,
525
+ 4381,
526
+ 16,
527
+ 8,
528
+ 3414,
529
+ 13,
530
+ 1410,
531
+ 16,
532
+ 932,
533
+ 11,
534
+ 1515,
535
+ 2766,
536
+ 6,
537
+ 11,
538
+ 4838,
539
+ 16,
540
+ 23964,
541
+ 16,
542
+ 1797,
543
+ 13,
544
+ 24,
545
+ 215,
546
+ 5,
547
+ 94,
548
+ 47,
549
+ 2017,
550
+ 168,
551
+ 1204,
552
+ 57,
553
+ 6800,
554
+ 7,
555
+ 11,
556
+ 9443,
557
+ 38,
558
+ 3673,
559
+ 8,
560
+ 4016,
561
+ 13,
562
+ 66,
563
+ 70,
564
+ 14234,
565
+ 5,
566
+ 2449,
567
+ 1215,
568
+ 83,
569
+ 17,
570
+ 16,
571
+ 8782,
572
+ 70,
573
+ 723,
574
+ 30,
575
+ 8,
576
+ 6162,
577
+ 13,
578
+ 1410,
579
+ 12,
580
+ 48,
581
+ 833,
582
+ 250,
583
+ 13,
584
+ 149,
585
+ 231,
586
+ 79,
587
+ 1858,
588
+ 16576,
589
+ 5,
590
+ 1,
591
+ ]])
592
+ return idx
593
+
594
+
595
+ def define_and_run_t5(checkpoint_path: str) -> None:
596
+ current_dir = Path(__file__).parent.resolve()
597
+ t5_goldens = torch.load(current_dir / "t5_lm_logits.pt")
598
+
599
+ model = build_t5_model(checkpoint_path)
600
+
601
+ idx = get_sample_encoder_input_ids()
602
+ tokens = torch.full((1, 512), 0, dtype=torch.int, device="cpu")
603
+ tokens[0, :77] = idx
604
+ input_pos = torch.arange(0, 512, dtype=torch.int)
605
+
606
+ decode_d_token = torch.tensor([[0]], dtype=torch.int)
607
+ decode_d_input_pos = torch.tensor([0], dtype=torch.int)
608
+ pad_mask = torch.zeros([model.config.kv_cache_max], dtype=torch.float32)
609
+ pad_mask[77:] = float("-inf")
610
+ lm_logits = model.forward(
611
+ tokens, input_pos, decode_d_token, decode_d_input_pos, pad_mask
612
+ )
613
+ print("comparing with goldens..")
614
+ assert torch.allclose(t5_goldens, lm_logits, atol=1e-05)
615
+
616
+
617
+ # TODO(haoliang): Move those tests.
618
+ def define_and_run_t5_split(checkpoint_path: str) -> None:
619
+ current_dir = Path(__file__).parent.resolve()
620
+ t5_goldens = torch.load(current_dir / "t5_lm_logits.pt")
621
+
622
+ config = get_model_config_t5()
623
+ embedding_layer = nn.Embedding(
624
+ config.vocab_size, config.embedding_dim, padding_idx=0
625
+ )
626
+ t5_encoder_model = build_t5_encoder_model(
627
+ config, embedding_layer, checkpoint_path
628
+ )
629
+ t5_decoder_model = build_t5_decoder_model(
630
+ config, embedding_layer, checkpoint_path
631
+ )
632
+ idx = get_sample_encoder_input_ids()
633
+
634
+ tokens = torch.full((1, 512), 0, dtype=torch.int, device="cpu")
635
+ tokens[0, :77] = idx
636
+ input_pos = torch.arange(0, 512, dtype=torch.int)
637
+
638
+ decode_d_token = torch.tensor([[0]], dtype=torch.int)
639
+ decode_d_input_pos = torch.tensor([0], dtype=torch.int)
640
+ pad_mask = torch.zeros(
641
+ [t5_encoder_model.config.kv_cache_max], dtype=torch.float32
642
+ )
643
+ pad_mask[77:] = float("-inf")
644
+ hidden_states = t5_encoder_model.forward(tokens, input_pos, pad_mask)
645
+ lm_logits = t5_decoder_model.forward(
646
+ hidden_states, decode_d_token, decode_d_input_pos, pad_mask
647
+ )
648
+ print("comparing with goldens..")
649
+ assert torch.allclose(t5_goldens, lm_logits, atol=1e-05)
650
+
651
+
652
+ if __name__ == "__main__":
653
+ checkpoint = os.path.join(Path.home(), "Downloads/llm_data/t5")
654
+ # define_and_run_t5(checkpoint)
655
+ define_and_run_t5_split(checkpoint)