ai-edge-torch-nightly 0.3.0.dev20250114__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- ai_edge_torch/__init__.py +32 -0
- ai_edge_torch/_config.py +69 -0
- ai_edge_torch/_convert/__init__.py +14 -0
- ai_edge_torch/_convert/conversion.py +153 -0
- ai_edge_torch/_convert/conversion_utils.py +64 -0
- ai_edge_torch/_convert/converter.py +270 -0
- ai_edge_torch/_convert/fx_passes/__init__.py +23 -0
- ai_edge_torch/_convert/fx_passes/build_aten_composite_pass.py +288 -0
- ai_edge_torch/_convert/fx_passes/build_interpolate_composite_pass.py +131 -0
- ai_edge_torch/_convert/fx_passes/inject_mlir_debuginfo_pass.py +73 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/__init__.py +16 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_check.py +258 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_mark.py +50 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +18 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +68 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +216 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +449 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +30 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/pass_body.py +303 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/utils.py +64 -0
- ai_edge_torch/_convert/fx_passes/remove_non_user_outputs_pass.py +52 -0
- ai_edge_torch/_convert/signature.py +66 -0
- ai_edge_torch/_convert/test/__init__.py +14 -0
- ai_edge_torch/_convert/test/test_convert.py +558 -0
- ai_edge_torch/_convert/test/test_convert_composites.py +234 -0
- ai_edge_torch/_convert/test/test_convert_multisig.py +189 -0
- ai_edge_torch/_convert/test/test_to_channel_last_io.py +96 -0
- ai_edge_torch/_convert/to_channel_last_io.py +92 -0
- ai_edge_torch/conftest.py +20 -0
- ai_edge_torch/debug/__init__.py +17 -0
- ai_edge_torch/debug/culprit.py +496 -0
- ai_edge_torch/debug/test/__init__.py +14 -0
- ai_edge_torch/debug/test/test_culprit.py +140 -0
- ai_edge_torch/debug/test/test_search_model.py +51 -0
- ai_edge_torch/debug/utils.py +59 -0
- ai_edge_torch/experimental/__init__.py +14 -0
- ai_edge_torch/fx_pass_base.py +110 -0
- ai_edge_torch/generative/__init__.py +14 -0
- ai_edge_torch/generative/examples/__init__.py +14 -0
- ai_edge_torch/generative/examples/amd_llama_135m/__init__.py +14 -0
- ai_edge_torch/generative/examples/amd_llama_135m/amd_llama_135m.py +87 -0
- ai_edge_torch/generative/examples/amd_llama_135m/convert_to_tflite.py +70 -0
- ai_edge_torch/generative/examples/amd_llama_135m/verify.py +72 -0
- ai_edge_torch/generative/examples/gemma/__init__.py +14 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/gemma/gemma1.py +107 -0
- ai_edge_torch/generative/examples/gemma/gemma2.py +295 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma1.py +56 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma2.py +43 -0
- ai_edge_torch/generative/examples/gemma/verify_util.py +157 -0
- ai_edge_torch/generative/examples/llama/__init__.py +14 -0
- ai_edge_torch/generative/examples/llama/convert_to_tflite.py +91 -0
- ai_edge_torch/generative/examples/llama/llama.py +196 -0
- ai_edge_torch/generative/examples/llama/verify.py +88 -0
- ai_edge_torch/generative/examples/moonshine/__init__.py +14 -0
- ai_edge_torch/generative/examples/moonshine/convert_moonshine_to_tflite.py +50 -0
- ai_edge_torch/generative/examples/moonshine/moonshine.py +103 -0
- ai_edge_torch/generative/examples/openelm/__init__.py +14 -0
- ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/openelm/openelm.py +127 -0
- ai_edge_torch/generative/examples/openelm/verify.py +71 -0
- ai_edge_torch/generative/examples/paligemma/__init__.py +14 -0
- ai_edge_torch/generative/examples/paligemma/convert_to_tflite.py +95 -0
- ai_edge_torch/generative/examples/paligemma/decoder.py +151 -0
- ai_edge_torch/generative/examples/paligemma/decoder2.py +177 -0
- ai_edge_torch/generative/examples/paligemma/image_encoder.py +160 -0
- ai_edge_torch/generative/examples/paligemma/paligemma.py +179 -0
- ai_edge_torch/generative/examples/paligemma/verify.py +161 -0
- ai_edge_torch/generative/examples/paligemma/verify_decoder.py +75 -0
- ai_edge_torch/generative/examples/paligemma/verify_decoder2.py +72 -0
- ai_edge_torch/generative/examples/paligemma/verify_image_encoder.py +99 -0
- ai_edge_torch/generative/examples/phi/__init__.py +14 -0
- ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/phi/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/phi/phi2.py +107 -0
- ai_edge_torch/generative/examples/phi/phi3.py +219 -0
- ai_edge_torch/generative/examples/phi/verify.py +64 -0
- ai_edge_torch/generative/examples/phi/verify_phi3.py +69 -0
- ai_edge_torch/generative/examples/qwen/__init__.py +14 -0
- ai_edge_torch/generative/examples/qwen/convert_to_tflite.py +93 -0
- ai_edge_torch/generative/examples/qwen/qwen.py +134 -0
- ai_edge_torch/generative/examples/qwen/verify.py +88 -0
- ai_edge_torch/generative/examples/smollm/__init__.py +14 -0
- ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/smollm/convert_v2_to_tflite.py +71 -0
- ai_edge_torch/generative/examples/smollm/smollm.py +125 -0
- ai_edge_torch/generative/examples/smollm/verify.py +86 -0
- ai_edge_torch/generative/examples/stable_diffusion/__init__.py +14 -0
- ai_edge_torch/generative/examples/stable_diffusion/attention.py +108 -0
- ai_edge_torch/generative/examples/stable_diffusion/clip.py +185 -0
- ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +173 -0
- ai_edge_torch/generative/examples/stable_diffusion/decoder.py +398 -0
- ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +749 -0
- ai_edge_torch/generative/examples/stable_diffusion/encoder.py +119 -0
- ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +254 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/__init__.py +19 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +62 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +66 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +74 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +39 -0
- ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +111 -0
- ai_edge_torch/generative/examples/stable_diffusion/util.py +77 -0
- ai_edge_torch/generative/examples/t5/__init__.py +14 -0
- ai_edge_torch/generative/examples/t5/convert_to_tflite.py +138 -0
- ai_edge_torch/generative/examples/t5/t5.py +655 -0
- ai_edge_torch/generative/examples/t5/t5_attention.py +246 -0
- ai_edge_torch/generative/examples/test_models/__init__.py +14 -0
- ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
- ai_edge_torch/generative/examples/test_models/toy_model.py +156 -0
- ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +138 -0
- ai_edge_torch/generative/examples/tiny_llama/__init__.py +14 -0
- ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +88 -0
- ai_edge_torch/generative/examples/tiny_llama/verify.py +72 -0
- ai_edge_torch/generative/fx_passes/__init__.py +30 -0
- ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +50 -0
- ai_edge_torch/generative/layers/__init__.py +14 -0
- ai_edge_torch/generative/layers/attention.py +399 -0
- ai_edge_torch/generative/layers/attention_utils.py +210 -0
- ai_edge_torch/generative/layers/builder.py +160 -0
- ai_edge_torch/generative/layers/feed_forward.py +120 -0
- ai_edge_torch/generative/layers/kv_cache.py +204 -0
- ai_edge_torch/generative/layers/lora.py +557 -0
- ai_edge_torch/generative/layers/model_config.py +238 -0
- ai_edge_torch/generative/layers/normalization.py +222 -0
- ai_edge_torch/generative/layers/rotary_position_embedding.py +94 -0
- ai_edge_torch/generative/layers/scaled_dot_product_attention.py +144 -0
- ai_edge_torch/generative/layers/unet/__init__.py +14 -0
- ai_edge_torch/generative/layers/unet/blocks_2d.py +806 -0
- ai_edge_torch/generative/layers/unet/builder.py +50 -0
- ai_edge_torch/generative/layers/unet/model_config.py +282 -0
- ai_edge_torch/generative/quantize/__init__.py +14 -0
- ai_edge_torch/generative/quantize/example.py +47 -0
- ai_edge_torch/generative/quantize/quant_attrs.py +68 -0
- ai_edge_torch/generative/quantize/quant_recipe.py +154 -0
- ai_edge_torch/generative/quantize/quant_recipe_utils.py +62 -0
- ai_edge_torch/generative/quantize/quant_recipes.py +56 -0
- ai_edge_torch/generative/quantize/supported_schemes.py +32 -0
- ai_edge_torch/generative/test/__init__.py +14 -0
- ai_edge_torch/generative/test/test_custom_dus.py +107 -0
- ai_edge_torch/generative/test/test_kv_cache.py +120 -0
- ai_edge_torch/generative/test/test_loader.py +83 -0
- ai_edge_torch/generative/test/test_lora.py +147 -0
- ai_edge_torch/generative/test/test_model_conversion.py +191 -0
- ai_edge_torch/generative/test/test_model_conversion_large.py +362 -0
- ai_edge_torch/generative/test/test_quantize.py +183 -0
- ai_edge_torch/generative/test/utils.py +82 -0
- ai_edge_torch/generative/utilities/__init__.py +15 -0
- ai_edge_torch/generative/utilities/converter.py +215 -0
- ai_edge_torch/generative/utilities/dynamic_update_slice.py +56 -0
- ai_edge_torch/generative/utilities/loader.py +398 -0
- ai_edge_torch/generative/utilities/model_builder.py +180 -0
- ai_edge_torch/generative/utilities/moonshine_loader.py +154 -0
- ai_edge_torch/generative/utilities/stable_diffusion_loader.py +1032 -0
- ai_edge_torch/generative/utilities/t5_loader.py +512 -0
- ai_edge_torch/generative/utilities/transformers_verifier.py +42 -0
- ai_edge_torch/generative/utilities/verifier.py +335 -0
- ai_edge_torch/hlfb/__init__.py +16 -0
- ai_edge_torch/hlfb/mark_pattern/__init__.py +153 -0
- ai_edge_torch/hlfb/mark_pattern/fx_utils.py +69 -0
- ai_edge_torch/hlfb/mark_pattern/pattern.py +288 -0
- ai_edge_torch/hlfb/test/__init__.py +14 -0
- ai_edge_torch/hlfb/test/test_mark_pattern.py +185 -0
- ai_edge_torch/lowertools/__init__.py +18 -0
- ai_edge_torch/lowertools/_shim.py +86 -0
- ai_edge_torch/lowertools/common_utils.py +142 -0
- ai_edge_torch/lowertools/odml_torch_utils.py +260 -0
- ai_edge_torch/lowertools/test_utils.py +62 -0
- ai_edge_torch/lowertools/torch_xla_utils.py +301 -0
- ai_edge_torch/lowertools/translate_recipe.py +163 -0
- ai_edge_torch/model.py +177 -0
- ai_edge_torch/odml_torch/__init__.py +20 -0
- ai_edge_torch/odml_torch/_torch_future.py +88 -0
- ai_edge_torch/odml_torch/_torch_library.py +19 -0
- ai_edge_torch/odml_torch/composite/__init__.py +16 -0
- ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
- ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
- ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
- ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
- ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
- ai_edge_torch/odml_torch/export.py +403 -0
- ai_edge_torch/odml_torch/export_utils.py +157 -0
- ai_edge_torch/odml_torch/jax_bridge/__init__.py +18 -0
- ai_edge_torch/odml_torch/jax_bridge/_wrap.py +180 -0
- ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
- ai_edge_torch/odml_torch/lowerings/__init__.py +27 -0
- ai_edge_torch/odml_torch/lowerings/_basic.py +294 -0
- ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
- ai_edge_torch/odml_torch/lowerings/_convolution.py +243 -0
- ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +285 -0
- ai_edge_torch/odml_torch/lowerings/_layer_norm.py +87 -0
- ai_edge_torch/odml_torch/lowerings/_quantized_decomposed.py +177 -0
- ai_edge_torch/odml_torch/lowerings/_rand.py +142 -0
- ai_edge_torch/odml_torch/lowerings/context.py +42 -0
- ai_edge_torch/odml_torch/lowerings/decomp.py +69 -0
- ai_edge_torch/odml_torch/lowerings/registry.py +65 -0
- ai_edge_torch/odml_torch/lowerings/utils.py +201 -0
- ai_edge_torch/odml_torch/passes/__init__.py +38 -0
- ai_edge_torch/odml_torch/tf_integration.py +156 -0
- ai_edge_torch/quantize/__init__.py +16 -0
- ai_edge_torch/quantize/pt2e_quantizer.py +466 -0
- ai_edge_torch/quantize/pt2e_quantizer_utils.py +1061 -0
- ai_edge_torch/quantize/quant_config.py +85 -0
- ai_edge_torch/testing/__init__.py +14 -0
- ai_edge_torch/testing/model_coverage/__init__.py +16 -0
- ai_edge_torch/testing/model_coverage/model_coverage.py +145 -0
- ai_edge_torch/version.py +16 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/LICENSE +202 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/METADATA +44 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/RECORD +213 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/WHEEL +5 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/top_level.txt +1 -0
@@ -0,0 +1,180 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
"""APIs to wrap JAX functions for using in ODML Torch lowerings."""
|
16
|
+
|
17
|
+
import functools
|
18
|
+
import inspect
|
19
|
+
from typing import Any, Callable, cast
|
20
|
+
import uuid
|
21
|
+
from ai_edge_torch.odml_torch import export_utils
|
22
|
+
from ai_edge_torch.odml_torch import passes
|
23
|
+
from ai_edge_torch.odml_torch.jax_bridge import utils
|
24
|
+
import jax
|
25
|
+
from jax._src.lib.mlir import ir
|
26
|
+
from jax._src.lib.mlir.dialects import func
|
27
|
+
from jax._src.lib.mlir.dialects import hlo as stablehlo
|
28
|
+
import torch.utils._pytree as pytree
|
29
|
+
|
30
|
+
# Jax double (64bit) precision is required to generate StableHLO mlir with
|
31
|
+
# i64/f64 tensors from Jax bridged lowerings. If not set properly, all the
|
32
|
+
# 64bit tensors would be truncated to 32bit dtype and potentially break the
|
33
|
+
# lowering.
|
34
|
+
jax.config.update("jax_enable_x64", True)
|
35
|
+
|
36
|
+
|
37
|
+
def _lower_to_ir_text(
|
38
|
+
jaxfn, args, kwargs, ir_input_names: list[str] = None
|
39
|
+
) -> tuple[str, list[ir.Value]]:
|
40
|
+
args = utils.tree_map_list_to_tuple(args)
|
41
|
+
kwargs = utils.tree_map_list_to_tuple(kwargs)
|
42
|
+
|
43
|
+
names_args = [
|
44
|
+
*zip(inspect.signature(jaxfn).parameters.keys(), args),
|
45
|
+
*kwargs.items(),
|
46
|
+
]
|
47
|
+
|
48
|
+
static_argnames = []
|
49
|
+
jax_lower_static_kwargs = {}
|
50
|
+
jax_lower_args = []
|
51
|
+
jax_lower_argnames = []
|
52
|
+
ir_inputs = []
|
53
|
+
|
54
|
+
for i, (name, arg) in enumerate(names_args):
|
55
|
+
is_positional = i < len(args)
|
56
|
+
if not utils.is_ir_variable(arg):
|
57
|
+
static_argnames.append(name)
|
58
|
+
jax_lower_static_kwargs[name] = arg
|
59
|
+
else:
|
60
|
+
# Enforce the arg order in the mlir is the same as the lowering func
|
61
|
+
jax_lower_args.append(utils.ir_variable_to_jax(arg))
|
62
|
+
|
63
|
+
if is_positional and len(jax_lower_args) == i + 1:
|
64
|
+
# The first N continuous tensor args are passed to the lowering func
|
65
|
+
# as positional args, when they passed to the bridged func as
|
66
|
+
# positional args also.
|
67
|
+
jax_lower_argnames.append(None)
|
68
|
+
else:
|
69
|
+
# Otherwise pass the arg to the lowering func as keyword arg.
|
70
|
+
jax_lower_argnames.append(name)
|
71
|
+
|
72
|
+
if ir_input_names is None or name in ir_input_names:
|
73
|
+
# ir variable can be a nested tuple, while mlir args should be flat.
|
74
|
+
ir_inputs += [
|
75
|
+
x for x in pytree.tree_flatten(arg)[0] if isinstance(x, ir.Value)
|
76
|
+
]
|
77
|
+
|
78
|
+
def lower_wrapper(*args):
|
79
|
+
nonlocal jax_lower_static_kwargs
|
80
|
+
|
81
|
+
jaxfn_args = []
|
82
|
+
jaxfn_kwargs = jax_lower_static_kwargs.copy()
|
83
|
+
for name, arg in zip(jax_lower_argnames, args):
|
84
|
+
if name is None:
|
85
|
+
jaxfn_args.append(arg)
|
86
|
+
else:
|
87
|
+
jaxfn_kwargs[name] = arg
|
88
|
+
|
89
|
+
return jaxfn(*jaxfn_args, **jaxfn_kwargs)
|
90
|
+
|
91
|
+
return jax.jit(lower_wrapper).lower(*jax_lower_args).as_text(), ir_inputs
|
92
|
+
|
93
|
+
|
94
|
+
def wrap(jaxfn: Callable[Any, Any], ir_input_names: list[str] = None):
|
95
|
+
"""Return the wrapped JAX function to be used in ODMLTorch lowerings.
|
96
|
+
|
97
|
+
If the given jaxfn has signature `jaxfn(*args, **kwargs) -> return`, the
|
98
|
+
wrapped function would:
|
99
|
+
- Have signature `wrapped(lctx: odml_torch.export.LoweringContext, *args,
|
100
|
+
**kwargs) -> return`.
|
101
|
+
- Accept mlir.ir.Value for all params expecting jax.Array as inputs.
|
102
|
+
- Return mlir.ir.Value for all jax.Array outputs from jaxfn.
|
103
|
+
|
104
|
+
Args:
|
105
|
+
jaxfn: The JAX function to be wrapped.
|
106
|
+
ir_input_names: The input (param) names of the JAX function to be used in
|
107
|
+
the MLIR lowering. This is useful when the JAX impl only depends on
|
108
|
+
specific inputs to the function. If not specified, all ir.Value passed to
|
109
|
+
the wrapped function are assumed to be used in the lowering.
|
110
|
+
"""
|
111
|
+
|
112
|
+
@functools.wraps(jaxfn)
|
113
|
+
def wrapped(lctx, *args, **kwargs):
|
114
|
+
|
115
|
+
ir_text, ir_inputs = _lower_to_ir_text(
|
116
|
+
jaxfn,
|
117
|
+
args,
|
118
|
+
kwargs,
|
119
|
+
ir_input_names=ir_input_names,
|
120
|
+
)
|
121
|
+
|
122
|
+
module = ir.Module.parse(ir_text)
|
123
|
+
passes.strip_debuginfo(module)
|
124
|
+
|
125
|
+
symbol_table = ir.SymbolTable(module.operation)
|
126
|
+
main_func = symbol_table["main"]
|
127
|
+
|
128
|
+
with ir.InsertionPoint.at_block_begin(lctx.ir_module.body):
|
129
|
+
cloned_func = cast(func.FuncOp, main_func.clone())
|
130
|
+
cloned_func_name = f"{jaxfn.__name__}_{uuid.uuid4().hex[:8]}"
|
131
|
+
cloned_func.attributes["sym_name"] = ir.StringAttr.get(cloned_func_name)
|
132
|
+
cloned_func.attributes["sym_visibility"] = ir.StringAttr.get("private")
|
133
|
+
|
134
|
+
# HACK: Use the custom inliner implemented in Python because MLIR inline
|
135
|
+
# pass from JAX's MLIR pybinding build in OSS cannot properly inline
|
136
|
+
# func.call ops.
|
137
|
+
# This should be switched to `passes.inline(module)` when we have our own
|
138
|
+
# MLIR pybinding build.
|
139
|
+
export_utils.inline(symbol_table, cloned_func.entry_block)
|
140
|
+
|
141
|
+
if not cloned_func.arguments:
|
142
|
+
# Known edge case: when the lowering does not depend on input but
|
143
|
+
# just the meta of input like shape or dtype.
|
144
|
+
ir_inputs = []
|
145
|
+
|
146
|
+
results = func.CallOp(cloned_func, ir_inputs).results
|
147
|
+
|
148
|
+
if lctx.node is None:
|
149
|
+
return results[0] if len(results) == 1 else results
|
150
|
+
|
151
|
+
out_avals = lctx.node.meta.get("tensor_meta") or lctx.node.meta.get("val")
|
152
|
+
|
153
|
+
if out_avals is None:
|
154
|
+
return results[0] if len(results) == 1 else results
|
155
|
+
|
156
|
+
def sanitize_result_elty(result, aval):
|
157
|
+
# JAX implementation may not respect aten op's output dtype. For example,
|
158
|
+
# JAX may implement a slightly different dtype upcast rules, leads to
|
159
|
+
# different result's dtype from bridged lowering and torch op output.
|
160
|
+
# Here we add an additional `stablehlo.convert` op when dtype does not
|
161
|
+
# match, to ensure the lowering's result dtype will always be the same
|
162
|
+
# as torch op's output dtype.
|
163
|
+
if aval is None:
|
164
|
+
return result
|
165
|
+
|
166
|
+
target_elty = export_utils.torch_dtype_to_ir_element_type(aval.dtype)
|
167
|
+
if result.type.element_type == target_elty:
|
168
|
+
return result
|
169
|
+
return stablehlo.convert(
|
170
|
+
ir.RankedTensorType.get(result.type.shape, target_elty), result
|
171
|
+
)
|
172
|
+
|
173
|
+
if len(results) == 1:
|
174
|
+
return sanitize_result_elty(results[0], out_avals)
|
175
|
+
return [
|
176
|
+
sanitize_result_elty(result, aval)
|
177
|
+
for result, aval in zip(results, out_avals)
|
178
|
+
]
|
179
|
+
|
180
|
+
return wrapped
|
@@ -0,0 +1,75 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
"""Utilities for Jax bridge."""
|
16
|
+
|
17
|
+
from ai_edge_torch import odml_torch
|
18
|
+
import jax
|
19
|
+
import jax.numpy as jnp
|
20
|
+
from jax._src.lib.mlir import ir
|
21
|
+
import torch
|
22
|
+
|
23
|
+
|
24
|
+
def t2j_dtype(dtype):
|
25
|
+
return {
|
26
|
+
torch.bfloat16: jnp.bfloat16,
|
27
|
+
torch.half: jnp.float16,
|
28
|
+
torch.float32: jnp.float32,
|
29
|
+
torch.double: jnp.double,
|
30
|
+
torch.long: jnp.int64,
|
31
|
+
torch.int64: jnp.int64,
|
32
|
+
torch.int32: jnp.int32,
|
33
|
+
torch.int16: jnp.int16,
|
34
|
+
torch.int8: jnp.int8,
|
35
|
+
torch.uint8: jnp.uint8,
|
36
|
+
torch.bool: jnp.bool_,
|
37
|
+
torch.complex64: jnp.complex64,
|
38
|
+
torch.complex128: jnp.complex128,
|
39
|
+
}.get(dtype)
|
40
|
+
|
41
|
+
|
42
|
+
def is_ir_variable(value):
|
43
|
+
if isinstance(value, ir.Value):
|
44
|
+
return True
|
45
|
+
if isinstance(value, (list, tuple)):
|
46
|
+
return any(is_ir_variable(x) for x in value)
|
47
|
+
return False
|
48
|
+
|
49
|
+
|
50
|
+
def ir_variable_to_jax(value):
|
51
|
+
if isinstance(value, (list, tuple)):
|
52
|
+
return tuple([ir_variable_to_jax(x) for x in value])
|
53
|
+
elif not isinstance(value, ir.Value):
|
54
|
+
return value
|
55
|
+
elif not isinstance(value.type, ir.RankedTensorType):
|
56
|
+
raise ValueError(
|
57
|
+
f"ir.Value to JAX must be in ir.RankedTensorType, got {value}"
|
58
|
+
)
|
59
|
+
|
60
|
+
return jax.ShapeDtypeStruct(
|
61
|
+
value.type.shape,
|
62
|
+
t2j_dtype(
|
63
|
+
odml_torch.export_utils.ir_element_type_to_torch_dtype(
|
64
|
+
value.type.element_type
|
65
|
+
)
|
66
|
+
),
|
67
|
+
)
|
68
|
+
|
69
|
+
|
70
|
+
def tree_map_list_to_tuple(value):
|
71
|
+
if isinstance(value, dict):
|
72
|
+
return {k: tree_map_list_to_tuple(v) for k, v in value.items()}
|
73
|
+
if isinstance(value, (list, tuple)):
|
74
|
+
return tuple([tree_map_list_to_tuple(v) for v in value])
|
75
|
+
return value
|
@@ -0,0 +1,27 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
from . import _basic
|
16
|
+
from . import _batch_norm
|
17
|
+
from . import _convolution
|
18
|
+
from . import _jax_lowerings
|
19
|
+
from . import _layer_norm
|
20
|
+
from . import _quantized_decomposed
|
21
|
+
from . import _rand
|
22
|
+
from . import context
|
23
|
+
from . import registry
|
24
|
+
from . import utils
|
25
|
+
from .decomp import decompositions
|
26
|
+
from .registry import lookup
|
27
|
+
from .registry import lower
|
@@ -0,0 +1,294 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
import math
|
16
|
+
from typing import Optional, Union
|
17
|
+
|
18
|
+
from ai_edge_torch.odml_torch import export_utils
|
19
|
+
from ai_edge_torch.odml_torch.lowerings import context
|
20
|
+
from ai_edge_torch.odml_torch.lowerings import registry
|
21
|
+
from ai_edge_torch.odml_torch.lowerings import utils
|
22
|
+
from jax._src.lib.mlir import ir
|
23
|
+
from jax._src.lib.mlir.dialects import hlo as stablehlo
|
24
|
+
import numpy as np
|
25
|
+
import torch
|
26
|
+
|
27
|
+
LoweringContext = context.LoweringContext
|
28
|
+
lower = registry.lower
|
29
|
+
|
30
|
+
|
31
|
+
# add(Tensor self, Tensor other) -> Tensor
|
32
|
+
# @lower(torch.ops.aten.add)
|
33
|
+
def _aten_add(lctx, x: ir.Value, y: ir.Value, alpha=1):
|
34
|
+
x, y = utils.upcast_to_same_type(x, y)
|
35
|
+
x, y = utils.broadcast_args_if_needed(x, y)
|
36
|
+
if alpha == 1:
|
37
|
+
return stablehlo.add(x, y)
|
38
|
+
|
39
|
+
alpha_splat = utils.splat(alpha, y.type.element_type, y.type.shape)
|
40
|
+
return stablehlo.add(x, stablehlo.multiply(y, alpha_splat))
|
41
|
+
|
42
|
+
|
43
|
+
# mul.Tensor(Tensor self, Tensor other) -> Tensor
|
44
|
+
# @lower(torch.ops.aten.mul.Tensor)
|
45
|
+
def _aten_mul_tensor(lctx, self: ir.Value, other: ir.Value):
|
46
|
+
self, other = utils.upcast_to_same_type(self, other)
|
47
|
+
self, other = utils.broadcast_args_if_needed(self, other)
|
48
|
+
|
49
|
+
return stablehlo.multiply(self, other)
|
50
|
+
|
51
|
+
|
52
|
+
# cat(Tensor[] tensors, int dim=0) -> Tensor
|
53
|
+
# @lower(torch.ops.aten.cat)
|
54
|
+
def _aten_cat(lctx, tensors: list[ir.Value], dim: int = 1):
|
55
|
+
return stablehlo.ConcatenateOp(tensors, dim).result
|
56
|
+
|
57
|
+
|
58
|
+
# view(Tensor(a) self, SymInt[] size) -> Tensor(a)
|
59
|
+
# @lower(torch.ops.aten.view)
|
60
|
+
def _aten_view(lctx, self: ir.Value, size: list[int]):
|
61
|
+
return stablehlo.ReshapeOp(
|
62
|
+
ir.RankedTensorType.get(size, self.type.element_type), self
|
63
|
+
).result
|
64
|
+
|
65
|
+
|
66
|
+
# hardtanh(Tensor self, Scalar min_val=-1, Scalar max_val=1) -> Tensor
|
67
|
+
@lower(torch.ops.aten.hardtanh)
|
68
|
+
def _aten_hardtanh(
|
69
|
+
lctx,
|
70
|
+
self: ir.Value,
|
71
|
+
min_val: Union[int, float] = -1.0,
|
72
|
+
max_val: Union[int, float] = 1.0,
|
73
|
+
):
|
74
|
+
elty = self.type.element_type
|
75
|
+
min_val = utils.splat(min_val, elty)
|
76
|
+
max_val = utils.splat(max_val, elty)
|
77
|
+
|
78
|
+
return stablehlo.clamp(min_val, self, max_val)
|
79
|
+
|
80
|
+
|
81
|
+
# mean(Tensor self, *, ScalarType? dtype=None) -> Tensor
|
82
|
+
# mean.dim(Tensor self, int[1]? dim, bool keepdim=False, *,
|
83
|
+
# ScalarType? dtype=None) -> Tensor
|
84
|
+
@lower(torch.ops.aten.mean)
|
85
|
+
@lower(torch.ops.aten.mean.dim)
|
86
|
+
def _aten_mean_dim(
|
87
|
+
lctx,
|
88
|
+
self: ir.Value,
|
89
|
+
dim: Optional[list[int]] = None,
|
90
|
+
keepdim: bool = False,
|
91
|
+
*,
|
92
|
+
dtype=None,
|
93
|
+
):
|
94
|
+
self_shape = self.type.shape
|
95
|
+
self_elty = self.type.element_type
|
96
|
+
if dim is None:
|
97
|
+
dim = list(range(len(self_shape)))
|
98
|
+
dim = [len(self_shape) + d if d < 0 else d for d in dim]
|
99
|
+
dim_ = ir.DenseI64ArrayAttr.get(np.asarray(dim, np.int64))
|
100
|
+
dim_to_keep = [d for d in range(len(self_shape)) if d not in dim]
|
101
|
+
dim_to_keep_ = ir.DenseI64ArrayAttr.get(np.asarray(dim_to_keep, np.int64))
|
102
|
+
|
103
|
+
zero_ = utils.splat(0.0, self_elty)
|
104
|
+
|
105
|
+
reduce_result_shape = [
|
106
|
+
s for d, s in enumerate(self_shape) if d in dim_to_keep
|
107
|
+
]
|
108
|
+
reduce_result_ty = ir.RankedTensorType.get(reduce_result_shape, self_elty)
|
109
|
+
reduce_op = stablehlo.ReduceOp([reduce_result_ty], [self], [zero_], dim_)
|
110
|
+
|
111
|
+
reducer_arg_ty = ir.RankedTensorType.get(tuple(), self_elty)
|
112
|
+
reducer = reduce_op.regions[0].blocks.append(reducer_arg_ty, reducer_arg_ty)
|
113
|
+
with ir.InsertionPoint(reducer):
|
114
|
+
stablehlo.return_(
|
115
|
+
[stablehlo.add(reducer.arguments[0], reducer.arguments[1])]
|
116
|
+
)
|
117
|
+
|
118
|
+
sum_ = reduce_op.result
|
119
|
+
if keepdim:
|
120
|
+
sum_ = stablehlo.broadcast_in_dim(
|
121
|
+
ir.RankedTensorType.get(
|
122
|
+
[s if d in dim_to_keep else 1 for d, s in enumerate(self_shape)],
|
123
|
+
self_elty,
|
124
|
+
),
|
125
|
+
sum_,
|
126
|
+
dim_to_keep_,
|
127
|
+
)
|
128
|
+
|
129
|
+
dim_els = math.prod([s for d, s in enumerate(self_shape) if d in dim])
|
130
|
+
dim_els_ = utils.splat(dim_els, self_elty)
|
131
|
+
div_ = stablehlo.broadcast_in_dim(
|
132
|
+
sum_.type, dim_els_, ir.DenseI64ArrayAttr.get([])
|
133
|
+
)
|
134
|
+
mean_ = stablehlo.divide(sum_, div_)
|
135
|
+
|
136
|
+
return mean_
|
137
|
+
|
138
|
+
|
139
|
+
# https://pytorch.org/docs/stable/generated/torch.clone.html
|
140
|
+
# https://github.com/pytorch/pytorch/blob/a95ceb51a23ae33c00b3a99224143c609b1b3eb3/aten/src/ATen/native/TensorFactories.cpp#L1730
|
141
|
+
@lower(torch.ops.aten.clone)
|
142
|
+
def _aten_clone(lctx, x: ir.Value, *, memory_format=None):
|
143
|
+
return x
|
144
|
+
|
145
|
+
|
146
|
+
# https://pytorch.org/docs/stable/generated/torch.permute.html
|
147
|
+
# https://github.com/pytorch/pytorch/blob/519151a062a9bd4f0d32a9c7c7eae47d7ed847b2/aten/src/ATen/native/TensorShape.cpp#L1448
|
148
|
+
# https://github.com/openxla/stablehlo/blob/main/docs/spec.md#transpose
|
149
|
+
@lower(torch.ops.aten.permute)
|
150
|
+
def _aten_permute(lctx, x: ir.Value, dims: list[int]):
|
151
|
+
dim = len(x.type.shape)
|
152
|
+
return stablehlo.transpose(x, ir.DenseI64ArrayAttr.get(dims))
|
153
|
+
|
154
|
+
|
155
|
+
# https://pytorch.org/docs/stable/generated/torch.mm.html
|
156
|
+
# https://github.com/pytorch/pytorch/blob/ffabb25c489df1dc631a577c12a0c843c8b202f3/aten/src/ATen/native/LinearAlgebra.cpp#L193
|
157
|
+
# https://github.com/openxla/stablehlo/blob/main/docs/spec.md#dot_general
|
158
|
+
@lower(torch.ops.aten.mm)
|
159
|
+
def _aten_mm(mod, mat1: ir.Value, mat2: ir.Value) -> ir.Value:
|
160
|
+
mat1_shape = mat1.type.shape
|
161
|
+
mat2_shape = mat2.type.shape
|
162
|
+
mat1_dims = len(mat1_shape)
|
163
|
+
mat2_dims = len(mat2_shape)
|
164
|
+
|
165
|
+
if mat1_dims != 2 or mat1_dims != 2:
|
166
|
+
raise ValueError(
|
167
|
+
"Both arguments must be 2D matrices, received dimensions %d and %d"
|
168
|
+
% (mat1_dims, mat2_dims)
|
169
|
+
)
|
170
|
+
|
171
|
+
if mat1_shape[1] != mat2_shape[0]:
|
172
|
+
raise ValueError(
|
173
|
+
"mat1 and mat2 shapes cannot be multiplied, received shapes %s and %s"
|
174
|
+
% (mat1_shape, mat2_shape)
|
175
|
+
)
|
176
|
+
|
177
|
+
dot_dnums = stablehlo.DotDimensionNumbers.get(
|
178
|
+
lhs_batching_dimensions=[],
|
179
|
+
rhs_batching_dimensions=[],
|
180
|
+
lhs_contracting_dimensions=(1,),
|
181
|
+
rhs_contracting_dimensions=(0,),
|
182
|
+
)
|
183
|
+
return stablehlo.dot_general(
|
184
|
+
ir.RankedTensorType.get(
|
185
|
+
(mat1.type.shape[0], mat2.type.shape[1]), mat1.type.element_type
|
186
|
+
),
|
187
|
+
mat1,
|
188
|
+
mat2,
|
189
|
+
dot_dnums,
|
190
|
+
)
|
191
|
+
|
192
|
+
|
193
|
+
# https://pytorch.org/docs/stable/generated/torch.div.html
|
194
|
+
# https://openxla.org/stablehlo/spec#divide
|
195
|
+
# TODO: support rounding mode and type promotion (see torch.div spec).
|
196
|
+
# @lower(torch.ops.aten.div)
|
197
|
+
def _aten_div(mod, x, y, *, rounding_mode=None, out=None) -> ir.Value:
|
198
|
+
# By default, PyTorch performs a "true" division like Python 3. This requires
|
199
|
+
# casting integer input types to float to achieve the same semantics using
|
200
|
+
# stablehlo.divide.
|
201
|
+
if isinstance(x.type.element_type, ir.IntegerType):
|
202
|
+
x = utils.convert_int_to_float(x)
|
203
|
+
if isinstance(y.type.element_type, ir.IntegerType):
|
204
|
+
y = utils.convert_int_to_float(y)
|
205
|
+
|
206
|
+
x, y = utils.broadcast_args_if_needed(x, y)
|
207
|
+
|
208
|
+
return stablehlo.divide(x, y)
|
209
|
+
|
210
|
+
|
211
|
+
# https://pytorch.org/docs/stable/generated/torch.floor.html
|
212
|
+
# https://openxla.org/stablehlo/spec#floor
|
213
|
+
@lower(torch.ops.aten.floor)
|
214
|
+
def _aten_floor(lctx, x: ir.Value, *, out=None) -> ir.Value:
|
215
|
+
return stablehlo.floor(x)
|
216
|
+
|
217
|
+
|
218
|
+
# Schema:
|
219
|
+
# - aten::cat(Tensor[] tensors, int dim=0) -> Tensor
|
220
|
+
# Torch Reference:
|
221
|
+
# - https://pytorch.org/docs/main/generated/torch.cat.html
|
222
|
+
@lower(torch.ops.aten.cat.default)
|
223
|
+
def _aten_cat(lctx: LoweringContext, tensors, dim=0):
|
224
|
+
assert tensors
|
225
|
+
non_empty_tensors = [t for t in tensors if np.prod(t.type.shape) != 0]
|
226
|
+
out_aval = lctx.node.meta.get("tensor_meta") or lctx.node.meta.get("val")
|
227
|
+
if not non_empty_tensors:
|
228
|
+
return utils.splat(
|
229
|
+
0,
|
230
|
+
export_utils.torch_dtype_to_ir_element_type(out_aval.dtype),
|
231
|
+
out_aval.shape,
|
232
|
+
)
|
233
|
+
|
234
|
+
if dim < 0:
|
235
|
+
dim = dim + len(out_aval.shape)
|
236
|
+
dim = ir.IntegerAttr.get(ir.IntegerType.get_signless(64), dim)
|
237
|
+
|
238
|
+
return stablehlo.concatenate(non_empty_tensors, dim)
|
239
|
+
|
240
|
+
|
241
|
+
# Schema:
|
242
|
+
# - aten::slice_scatter(Tensor self, Tensor src, int dim=0, SymInt?
|
243
|
+
# start=None, SymInt? end=None, SymInt step=1) -> Tensor
|
244
|
+
# Torch Reference:
|
245
|
+
# - https://pytorch.org/docs/stable/generated/torch.slice_scatter.html
|
246
|
+
# - https://github.com/pytorch/pytorch/blob/18f9331e5deb4c02ae5c206e133a9b4add49bd97/aten/src/ATen/native/TensorShape.cpp#L4002
|
247
|
+
@lower(torch.ops.aten.slice_scatter)
|
248
|
+
def _aten_slice_scatter(lctx, self, src, dim=0, start=None, end=None, step=1):
|
249
|
+
start = start if start is not None else 0
|
250
|
+
end = end if end is not None else self.type.shape[dim]
|
251
|
+
|
252
|
+
start, end = np.clip(
|
253
|
+
[start, end], -self.type.shape[dim], self.type.shape[dim]
|
254
|
+
)
|
255
|
+
|
256
|
+
if start < 0:
|
257
|
+
start = self.type.shape[dim] + start
|
258
|
+
if end < 0:
|
259
|
+
end = self.type.shape[dim] + end
|
260
|
+
|
261
|
+
if end <= start or np.prod(src.type.shape) == 0:
|
262
|
+
return self
|
263
|
+
|
264
|
+
end = start + step * math.ceil((end - start) / step) - (step - 1)
|
265
|
+
padding_low = start
|
266
|
+
padding_high = self.type.shape[dim] - end
|
267
|
+
interior_padding = step - 1
|
268
|
+
|
269
|
+
rank = len(self.type.shape)
|
270
|
+
src = stablehlo.pad(
|
271
|
+
src,
|
272
|
+
utils.splat(0, src.type.element_type, []),
|
273
|
+
edge_padding_low=[padding_low if i == dim else 0 for i in range(rank)],
|
274
|
+
edge_padding_high=[padding_high if i == dim else 0 for i in range(rank)],
|
275
|
+
interior_padding=[
|
276
|
+
interior_padding if i == dim else 0 for i in range(rank)
|
277
|
+
],
|
278
|
+
)
|
279
|
+
|
280
|
+
slices = [
|
281
|
+
slice(start, end, step) if i == dim else slice(None, None, None)
|
282
|
+
for i in range(rank)
|
283
|
+
]
|
284
|
+
pred = np.ones(self.type.shape, dtype=np.bool_)
|
285
|
+
pred[np.index_exp[tuple(slices)]] = False
|
286
|
+
pred = stablehlo.constant(
|
287
|
+
ir.DenseElementsAttr.get(
|
288
|
+
np.packbits(pred, bitorder="little"),
|
289
|
+
type=ir.IntegerType.get_signless(1),
|
290
|
+
shape=pred.shape,
|
291
|
+
)
|
292
|
+
)
|
293
|
+
out = stablehlo.select(pred, self, src)
|
294
|
+
return out
|
@@ -0,0 +1,65 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
"""Provides lowering for coreaten to mlir stablehlo op: Convolution"""
|
16
|
+
|
17
|
+
from typing import Optional
|
18
|
+
|
19
|
+
from ai_edge_torch.odml_torch.lowerings import utils
|
20
|
+
from jax._src.lib.mlir import ir
|
21
|
+
from jax._src.lib.mlir.dialects import hlo as stablehlo
|
22
|
+
import torch
|
23
|
+
|
24
|
+
from .registry import lower
|
25
|
+
|
26
|
+
|
27
|
+
# _native_batch_norm_legit_no_training(
|
28
|
+
# Tensor input,
|
29
|
+
# Tensor? weight,
|
30
|
+
# Tensor? bias,
|
31
|
+
# Tensor running_mean,
|
32
|
+
# Tensor running_var,
|
33
|
+
# float momentum,
|
34
|
+
# float eps) -> (Tensor, Tensor, Tensor)
|
35
|
+
@lower(torch.ops.aten._native_batch_norm_legit_no_training)
|
36
|
+
def _native_batch_norm_legit_no_training(
|
37
|
+
lctx,
|
38
|
+
input_tensor: ir.Value,
|
39
|
+
weight: Optional[ir.Value],
|
40
|
+
bias: Optional[ir.Value],
|
41
|
+
running_mean: ir.Value,
|
42
|
+
running_var: ir.Value,
|
43
|
+
momentum: float,
|
44
|
+
eps: float,
|
45
|
+
):
|
46
|
+
if weight is None:
|
47
|
+
weight = utils.splat(
|
48
|
+
1, running_mean.type.element_type, running_mean.type.shape
|
49
|
+
)
|
50
|
+
if bias is None:
|
51
|
+
bias = utils.splat(
|
52
|
+
0, running_mean.type.element_type, running_mean.type.shape
|
53
|
+
)
|
54
|
+
|
55
|
+
return [
|
56
|
+
stablehlo.batch_norm_inference(
|
57
|
+
input_tensor, weight, bias, running_mean, running_var, eps, 1
|
58
|
+
),
|
59
|
+
utils.splat(
|
60
|
+
0, input_tensor.type.element_type
|
61
|
+
), # TODO: return empty array instead
|
62
|
+
utils.splat(
|
63
|
+
0, input_tensor.type.element_type
|
64
|
+
), # TODO: return empty array instead
|
65
|
+
]
|