ai-edge-torch-nightly 0.3.0.dev20250114__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- ai_edge_torch/__init__.py +32 -0
- ai_edge_torch/_config.py +69 -0
- ai_edge_torch/_convert/__init__.py +14 -0
- ai_edge_torch/_convert/conversion.py +153 -0
- ai_edge_torch/_convert/conversion_utils.py +64 -0
- ai_edge_torch/_convert/converter.py +270 -0
- ai_edge_torch/_convert/fx_passes/__init__.py +23 -0
- ai_edge_torch/_convert/fx_passes/build_aten_composite_pass.py +288 -0
- ai_edge_torch/_convert/fx_passes/build_interpolate_composite_pass.py +131 -0
- ai_edge_torch/_convert/fx_passes/inject_mlir_debuginfo_pass.py +73 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/__init__.py +16 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_check.py +258 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_mark.py +50 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +18 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +68 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +216 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +449 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +30 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/pass_body.py +303 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/utils.py +64 -0
- ai_edge_torch/_convert/fx_passes/remove_non_user_outputs_pass.py +52 -0
- ai_edge_torch/_convert/signature.py +66 -0
- ai_edge_torch/_convert/test/__init__.py +14 -0
- ai_edge_torch/_convert/test/test_convert.py +558 -0
- ai_edge_torch/_convert/test/test_convert_composites.py +234 -0
- ai_edge_torch/_convert/test/test_convert_multisig.py +189 -0
- ai_edge_torch/_convert/test/test_to_channel_last_io.py +96 -0
- ai_edge_torch/_convert/to_channel_last_io.py +92 -0
- ai_edge_torch/conftest.py +20 -0
- ai_edge_torch/debug/__init__.py +17 -0
- ai_edge_torch/debug/culprit.py +496 -0
- ai_edge_torch/debug/test/__init__.py +14 -0
- ai_edge_torch/debug/test/test_culprit.py +140 -0
- ai_edge_torch/debug/test/test_search_model.py +51 -0
- ai_edge_torch/debug/utils.py +59 -0
- ai_edge_torch/experimental/__init__.py +14 -0
- ai_edge_torch/fx_pass_base.py +110 -0
- ai_edge_torch/generative/__init__.py +14 -0
- ai_edge_torch/generative/examples/__init__.py +14 -0
- ai_edge_torch/generative/examples/amd_llama_135m/__init__.py +14 -0
- ai_edge_torch/generative/examples/amd_llama_135m/amd_llama_135m.py +87 -0
- ai_edge_torch/generative/examples/amd_llama_135m/convert_to_tflite.py +70 -0
- ai_edge_torch/generative/examples/amd_llama_135m/verify.py +72 -0
- ai_edge_torch/generative/examples/gemma/__init__.py +14 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/gemma/gemma1.py +107 -0
- ai_edge_torch/generative/examples/gemma/gemma2.py +295 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma1.py +56 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma2.py +43 -0
- ai_edge_torch/generative/examples/gemma/verify_util.py +157 -0
- ai_edge_torch/generative/examples/llama/__init__.py +14 -0
- ai_edge_torch/generative/examples/llama/convert_to_tflite.py +91 -0
- ai_edge_torch/generative/examples/llama/llama.py +196 -0
- ai_edge_torch/generative/examples/llama/verify.py +88 -0
- ai_edge_torch/generative/examples/moonshine/__init__.py +14 -0
- ai_edge_torch/generative/examples/moonshine/convert_moonshine_to_tflite.py +50 -0
- ai_edge_torch/generative/examples/moonshine/moonshine.py +103 -0
- ai_edge_torch/generative/examples/openelm/__init__.py +14 -0
- ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/openelm/openelm.py +127 -0
- ai_edge_torch/generative/examples/openelm/verify.py +71 -0
- ai_edge_torch/generative/examples/paligemma/__init__.py +14 -0
- ai_edge_torch/generative/examples/paligemma/convert_to_tflite.py +95 -0
- ai_edge_torch/generative/examples/paligemma/decoder.py +151 -0
- ai_edge_torch/generative/examples/paligemma/decoder2.py +177 -0
- ai_edge_torch/generative/examples/paligemma/image_encoder.py +160 -0
- ai_edge_torch/generative/examples/paligemma/paligemma.py +179 -0
- ai_edge_torch/generative/examples/paligemma/verify.py +161 -0
- ai_edge_torch/generative/examples/paligemma/verify_decoder.py +75 -0
- ai_edge_torch/generative/examples/paligemma/verify_decoder2.py +72 -0
- ai_edge_torch/generative/examples/paligemma/verify_image_encoder.py +99 -0
- ai_edge_torch/generative/examples/phi/__init__.py +14 -0
- ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/phi/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/phi/phi2.py +107 -0
- ai_edge_torch/generative/examples/phi/phi3.py +219 -0
- ai_edge_torch/generative/examples/phi/verify.py +64 -0
- ai_edge_torch/generative/examples/phi/verify_phi3.py +69 -0
- ai_edge_torch/generative/examples/qwen/__init__.py +14 -0
- ai_edge_torch/generative/examples/qwen/convert_to_tflite.py +93 -0
- ai_edge_torch/generative/examples/qwen/qwen.py +134 -0
- ai_edge_torch/generative/examples/qwen/verify.py +88 -0
- ai_edge_torch/generative/examples/smollm/__init__.py +14 -0
- ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/smollm/convert_v2_to_tflite.py +71 -0
- ai_edge_torch/generative/examples/smollm/smollm.py +125 -0
- ai_edge_torch/generative/examples/smollm/verify.py +86 -0
- ai_edge_torch/generative/examples/stable_diffusion/__init__.py +14 -0
- ai_edge_torch/generative/examples/stable_diffusion/attention.py +108 -0
- ai_edge_torch/generative/examples/stable_diffusion/clip.py +185 -0
- ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +173 -0
- ai_edge_torch/generative/examples/stable_diffusion/decoder.py +398 -0
- ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +749 -0
- ai_edge_torch/generative/examples/stable_diffusion/encoder.py +119 -0
- ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +254 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/__init__.py +19 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +62 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +66 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +74 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +39 -0
- ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +111 -0
- ai_edge_torch/generative/examples/stable_diffusion/util.py +77 -0
- ai_edge_torch/generative/examples/t5/__init__.py +14 -0
- ai_edge_torch/generative/examples/t5/convert_to_tflite.py +138 -0
- ai_edge_torch/generative/examples/t5/t5.py +655 -0
- ai_edge_torch/generative/examples/t5/t5_attention.py +246 -0
- ai_edge_torch/generative/examples/test_models/__init__.py +14 -0
- ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
- ai_edge_torch/generative/examples/test_models/toy_model.py +156 -0
- ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +138 -0
- ai_edge_torch/generative/examples/tiny_llama/__init__.py +14 -0
- ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +88 -0
- ai_edge_torch/generative/examples/tiny_llama/verify.py +72 -0
- ai_edge_torch/generative/fx_passes/__init__.py +30 -0
- ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +50 -0
- ai_edge_torch/generative/layers/__init__.py +14 -0
- ai_edge_torch/generative/layers/attention.py +399 -0
- ai_edge_torch/generative/layers/attention_utils.py +210 -0
- ai_edge_torch/generative/layers/builder.py +160 -0
- ai_edge_torch/generative/layers/feed_forward.py +120 -0
- ai_edge_torch/generative/layers/kv_cache.py +204 -0
- ai_edge_torch/generative/layers/lora.py +557 -0
- ai_edge_torch/generative/layers/model_config.py +238 -0
- ai_edge_torch/generative/layers/normalization.py +222 -0
- ai_edge_torch/generative/layers/rotary_position_embedding.py +94 -0
- ai_edge_torch/generative/layers/scaled_dot_product_attention.py +144 -0
- ai_edge_torch/generative/layers/unet/__init__.py +14 -0
- ai_edge_torch/generative/layers/unet/blocks_2d.py +806 -0
- ai_edge_torch/generative/layers/unet/builder.py +50 -0
- ai_edge_torch/generative/layers/unet/model_config.py +282 -0
- ai_edge_torch/generative/quantize/__init__.py +14 -0
- ai_edge_torch/generative/quantize/example.py +47 -0
- ai_edge_torch/generative/quantize/quant_attrs.py +68 -0
- ai_edge_torch/generative/quantize/quant_recipe.py +154 -0
- ai_edge_torch/generative/quantize/quant_recipe_utils.py +62 -0
- ai_edge_torch/generative/quantize/quant_recipes.py +56 -0
- ai_edge_torch/generative/quantize/supported_schemes.py +32 -0
- ai_edge_torch/generative/test/__init__.py +14 -0
- ai_edge_torch/generative/test/test_custom_dus.py +107 -0
- ai_edge_torch/generative/test/test_kv_cache.py +120 -0
- ai_edge_torch/generative/test/test_loader.py +83 -0
- ai_edge_torch/generative/test/test_lora.py +147 -0
- ai_edge_torch/generative/test/test_model_conversion.py +191 -0
- ai_edge_torch/generative/test/test_model_conversion_large.py +362 -0
- ai_edge_torch/generative/test/test_quantize.py +183 -0
- ai_edge_torch/generative/test/utils.py +82 -0
- ai_edge_torch/generative/utilities/__init__.py +15 -0
- ai_edge_torch/generative/utilities/converter.py +215 -0
- ai_edge_torch/generative/utilities/dynamic_update_slice.py +56 -0
- ai_edge_torch/generative/utilities/loader.py +398 -0
- ai_edge_torch/generative/utilities/model_builder.py +180 -0
- ai_edge_torch/generative/utilities/moonshine_loader.py +154 -0
- ai_edge_torch/generative/utilities/stable_diffusion_loader.py +1032 -0
- ai_edge_torch/generative/utilities/t5_loader.py +512 -0
- ai_edge_torch/generative/utilities/transformers_verifier.py +42 -0
- ai_edge_torch/generative/utilities/verifier.py +335 -0
- ai_edge_torch/hlfb/__init__.py +16 -0
- ai_edge_torch/hlfb/mark_pattern/__init__.py +153 -0
- ai_edge_torch/hlfb/mark_pattern/fx_utils.py +69 -0
- ai_edge_torch/hlfb/mark_pattern/pattern.py +288 -0
- ai_edge_torch/hlfb/test/__init__.py +14 -0
- ai_edge_torch/hlfb/test/test_mark_pattern.py +185 -0
- ai_edge_torch/lowertools/__init__.py +18 -0
- ai_edge_torch/lowertools/_shim.py +86 -0
- ai_edge_torch/lowertools/common_utils.py +142 -0
- ai_edge_torch/lowertools/odml_torch_utils.py +260 -0
- ai_edge_torch/lowertools/test_utils.py +62 -0
- ai_edge_torch/lowertools/torch_xla_utils.py +301 -0
- ai_edge_torch/lowertools/translate_recipe.py +163 -0
- ai_edge_torch/model.py +177 -0
- ai_edge_torch/odml_torch/__init__.py +20 -0
- ai_edge_torch/odml_torch/_torch_future.py +88 -0
- ai_edge_torch/odml_torch/_torch_library.py +19 -0
- ai_edge_torch/odml_torch/composite/__init__.py +16 -0
- ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
- ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
- ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
- ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
- ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
- ai_edge_torch/odml_torch/export.py +403 -0
- ai_edge_torch/odml_torch/export_utils.py +157 -0
- ai_edge_torch/odml_torch/jax_bridge/__init__.py +18 -0
- ai_edge_torch/odml_torch/jax_bridge/_wrap.py +180 -0
- ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
- ai_edge_torch/odml_torch/lowerings/__init__.py +27 -0
- ai_edge_torch/odml_torch/lowerings/_basic.py +294 -0
- ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
- ai_edge_torch/odml_torch/lowerings/_convolution.py +243 -0
- ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +285 -0
- ai_edge_torch/odml_torch/lowerings/_layer_norm.py +87 -0
- ai_edge_torch/odml_torch/lowerings/_quantized_decomposed.py +177 -0
- ai_edge_torch/odml_torch/lowerings/_rand.py +142 -0
- ai_edge_torch/odml_torch/lowerings/context.py +42 -0
- ai_edge_torch/odml_torch/lowerings/decomp.py +69 -0
- ai_edge_torch/odml_torch/lowerings/registry.py +65 -0
- ai_edge_torch/odml_torch/lowerings/utils.py +201 -0
- ai_edge_torch/odml_torch/passes/__init__.py +38 -0
- ai_edge_torch/odml_torch/tf_integration.py +156 -0
- ai_edge_torch/quantize/__init__.py +16 -0
- ai_edge_torch/quantize/pt2e_quantizer.py +466 -0
- ai_edge_torch/quantize/pt2e_quantizer_utils.py +1061 -0
- ai_edge_torch/quantize/quant_config.py +85 -0
- ai_edge_torch/testing/__init__.py +14 -0
- ai_edge_torch/testing/model_coverage/__init__.py +16 -0
- ai_edge_torch/testing/model_coverage/model_coverage.py +145 -0
- ai_edge_torch/version.py +16 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/LICENSE +202 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/METADATA +44 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/RECORD +213 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/WHEEL +5 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/top_level.txt +1 -0
@@ -0,0 +1,243 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
"""Provides lowering for coreaten to stablehlo for Convolution."""
|
16
|
+
|
17
|
+
import math
|
18
|
+
from typing import Optional
|
19
|
+
|
20
|
+
from ai_edge_torch.odml_torch.lowerings import registry
|
21
|
+
from jax._src.lib.mlir import ir
|
22
|
+
from jax._src.lib.mlir.dialects import hlo as stablehlo
|
23
|
+
import torch
|
24
|
+
|
25
|
+
|
26
|
+
def make_padding(padding):
|
27
|
+
"""Change the padding from pytorch to stablehlo style.
|
28
|
+
|
29
|
+
Stablehlo allows start and end padding for each dimension while aten only
|
30
|
+
allows symmetric padding and so only has one number per dimension.
|
31
|
+
|
32
|
+
Args:
|
33
|
+
padding: The padding of the convolution
|
34
|
+
|
35
|
+
Returns:
|
36
|
+
The padding in stablehlo style
|
37
|
+
"""
|
38
|
+
return tuple((p, p) for p in padding)
|
39
|
+
|
40
|
+
|
41
|
+
def create_conv_dimension_numbers(lhs, transposed: bool = False):
|
42
|
+
"""Create the dimension numbers for the convolution.
|
43
|
+
|
44
|
+
Args:
|
45
|
+
lhs: The input tensor
|
46
|
+
transposed: Whether the convolution is transposed
|
47
|
+
|
48
|
+
Returns:
|
49
|
+
The dimension numbers for the convolution
|
50
|
+
"""
|
51
|
+
num_spatial_dims = len(lhs.type.shape) - 2
|
52
|
+
spatial_dimensions = []
|
53
|
+
for i in range(0, num_spatial_dims):
|
54
|
+
spatial_dimensions.append(i + 2)
|
55
|
+
|
56
|
+
# Regular kernels are OIHW
|
57
|
+
# TransposedConv kernels are IOHW
|
58
|
+
dimension_numbers = stablehlo.ConvDimensionNumbers.get(
|
59
|
+
input_batch_dimension=0,
|
60
|
+
input_feature_dimension=1,
|
61
|
+
input_spatial_dimensions=spatial_dimensions,
|
62
|
+
kernel_input_feature_dimension=0 if transposed else 1,
|
63
|
+
kernel_output_feature_dimension=1 if transposed else 0,
|
64
|
+
kernel_spatial_dimensions=spatial_dimensions,
|
65
|
+
output_batch_dimension=0,
|
66
|
+
output_feature_dimension=1,
|
67
|
+
output_spatial_dimensions=spatial_dimensions,
|
68
|
+
)
|
69
|
+
return dimension_numbers
|
70
|
+
|
71
|
+
|
72
|
+
def infer_output_shape(
|
73
|
+
lhs,
|
74
|
+
rhs,
|
75
|
+
stride,
|
76
|
+
dilation,
|
77
|
+
padding,
|
78
|
+
transposed: bool = False,
|
79
|
+
output_padding: list[int] = 0,
|
80
|
+
):
|
81
|
+
"""Infer the output shape of the convolution.
|
82
|
+
|
83
|
+
Args:
|
84
|
+
lhs: The input tensor
|
85
|
+
rhs: The kernel tensor
|
86
|
+
stride: The stride of the convolution (dilation of input in transposed conv)
|
87
|
+
dilation: The kernel dilation of the convolution
|
88
|
+
padding: The padding of the convolution
|
89
|
+
transposed: Whether the convolution is transposed
|
90
|
+
output_padding: The output padding of the convolution
|
91
|
+
|
92
|
+
Returns:
|
93
|
+
The output shape of the convolution
|
94
|
+
"""
|
95
|
+
lhs_type: ir.RankedTensorType = lhs.type
|
96
|
+
lhs_shape: list[int] = lhs_type.shape
|
97
|
+
rhs_shape: list[int] = rhs.type.shape
|
98
|
+
|
99
|
+
# Input layout is: (N)CHW and Kernel layout is: (O)IHW for regular conv
|
100
|
+
# Input layout is: (N)CHW and Kernel layout is: I(O)HW for transposed conv
|
101
|
+
output_shape = (
|
102
|
+
[lhs_shape[0], rhs_shape[1]]
|
103
|
+
if transposed
|
104
|
+
else [lhs_shape[0], rhs_shape[0]]
|
105
|
+
)
|
106
|
+
num_spatial_dims = len(lhs.type.shape) - 2
|
107
|
+
|
108
|
+
# looping over the spatial dims (skipping the first 2 dims which are
|
109
|
+
# batch and features)
|
110
|
+
for spatial_dim in range(0, num_spatial_dims):
|
111
|
+
dim = spatial_dim + 2
|
112
|
+
dim_size = lhs_shape[dim]
|
113
|
+
kernel_dim_size = rhs_shape[dim]
|
114
|
+
|
115
|
+
if transposed:
|
116
|
+
output_dim_size = (
|
117
|
+
(dim_size - 1) * stride[spatial_dim]
|
118
|
+
- 2 * padding[spatial_dim]
|
119
|
+
+ dilation[spatial_dim] * (kernel_dim_size - 1)
|
120
|
+
+ output_padding[spatial_dim]
|
121
|
+
+ 1
|
122
|
+
)
|
123
|
+
else:
|
124
|
+
output_dim_size = math.floor(
|
125
|
+
(
|
126
|
+
(
|
127
|
+
dim_size
|
128
|
+
+ 2 * padding[spatial_dim]
|
129
|
+
- dilation[spatial_dim] * (kernel_dim_size - 1)
|
130
|
+
- 1
|
131
|
+
)
|
132
|
+
/ stride[spatial_dim]
|
133
|
+
)
|
134
|
+
+ 1
|
135
|
+
)
|
136
|
+
|
137
|
+
output_shape.append(output_dim_size)
|
138
|
+
|
139
|
+
return output_shape
|
140
|
+
|
141
|
+
|
142
|
+
def build_transpose_conv(
|
143
|
+
lctx,
|
144
|
+
output_type: ir.RankedTensorType,
|
145
|
+
lhs: ir.Value,
|
146
|
+
rhs: ir.Value,
|
147
|
+
stride: list[int],
|
148
|
+
padding: list[int],
|
149
|
+
dilation: list[int],
|
150
|
+
output_padding: list[int],
|
151
|
+
groups: int,
|
152
|
+
):
|
153
|
+
lhs_type: ir.RankedTensorType = lhs.type
|
154
|
+
num_spatial_dims = len(lhs_type.shape) - 2
|
155
|
+
rhs = stablehlo.reverse(rhs, list(range(2, 2 + num_spatial_dims)))
|
156
|
+
|
157
|
+
kernel_size = rhs.type.shape
|
158
|
+
# We need to additional padding on the input to get the right output size.
|
159
|
+
adjusted_padding = [
|
160
|
+
dilation[dim] * (kernel_size[dim + 2] - 1) - padding[dim]
|
161
|
+
for dim in range(num_spatial_dims)
|
162
|
+
]
|
163
|
+
return stablehlo.convolution(
|
164
|
+
result=output_type,
|
165
|
+
lhs=lhs,
|
166
|
+
rhs=rhs,
|
167
|
+
dimension_numbers=create_conv_dimension_numbers(lhs, True),
|
168
|
+
feature_group_count=groups,
|
169
|
+
batch_group_count=1,
|
170
|
+
padding=make_padding(adjusted_padding),
|
171
|
+
lhs_dilation=stride,
|
172
|
+
rhs_dilation=dilation,
|
173
|
+
)
|
174
|
+
|
175
|
+
|
176
|
+
# convolution(Tensor input, Tensor weight, Tensor? bias, SymInt[] stride,
|
177
|
+
# SymInt[] padding, SymInt[] dilation, bool transposed,
|
178
|
+
# SymInt[] output_padding, SymInt groups) -> Tensor
|
179
|
+
@registry.lower(torch.ops.aten.convolution)
|
180
|
+
def _aten_convolution(
|
181
|
+
lctx,
|
182
|
+
lhs: ir.Value,
|
183
|
+
rhs: ir.Value,
|
184
|
+
bias: Optional[ir.Value],
|
185
|
+
stride: list[int],
|
186
|
+
padding: list[int],
|
187
|
+
dilation: list[int],
|
188
|
+
transposed: bool,
|
189
|
+
output_padding: list[int],
|
190
|
+
groups: int,
|
191
|
+
):
|
192
|
+
|
193
|
+
# TODO(b/365559296) Add support for output_padding
|
194
|
+
if any(output_padding):
|
195
|
+
raise NotImplementedError(
|
196
|
+
"Output padding on convolution is not implemented."
|
197
|
+
)
|
198
|
+
|
199
|
+
lhs_type: ir.RankedTensorType = lhs.type
|
200
|
+
output_shape = infer_output_shape(
|
201
|
+
lhs, rhs, stride, dilation, padding, transposed, output_padding
|
202
|
+
)
|
203
|
+
output_type = ir.RankedTensorType.get(
|
204
|
+
output_shape,
|
205
|
+
lhs_type.element_type,
|
206
|
+
)
|
207
|
+
|
208
|
+
if transposed:
|
209
|
+
res = build_transpose_conv(
|
210
|
+
lctx,
|
211
|
+
output_type,
|
212
|
+
lhs,
|
213
|
+
rhs,
|
214
|
+
stride,
|
215
|
+
padding,
|
216
|
+
dilation,
|
217
|
+
output_padding,
|
218
|
+
groups,
|
219
|
+
)
|
220
|
+
else:
|
221
|
+
res = stablehlo.convolution(
|
222
|
+
result=output_type,
|
223
|
+
lhs=lhs,
|
224
|
+
rhs=rhs,
|
225
|
+
dimension_numbers=create_conv_dimension_numbers(lhs),
|
226
|
+
feature_group_count=groups,
|
227
|
+
batch_group_count=1,
|
228
|
+
window_strides=stride,
|
229
|
+
padding=make_padding(padding),
|
230
|
+
rhs_dilation=dilation,
|
231
|
+
)
|
232
|
+
|
233
|
+
if bias is not None:
|
234
|
+
# broadcast [C] to [NCHW]
|
235
|
+
broadcasted_bias = stablehlo.broadcast_in_dim(
|
236
|
+
output_type, bias, ir.DenseI64ArrayAttr.get([1])
|
237
|
+
)
|
238
|
+
res = stablehlo.add(
|
239
|
+
lhs=res,
|
240
|
+
rhs=broadcasted_bias,
|
241
|
+
)
|
242
|
+
|
243
|
+
return res
|
@@ -0,0 +1,285 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
import functools
|
16
|
+
import logging
|
17
|
+
|
18
|
+
from ai_edge_torch.odml_torch import jax_bridge
|
19
|
+
from ai_edge_torch.odml_torch.lowerings import context
|
20
|
+
from ai_edge_torch.odml_torch.lowerings import registry
|
21
|
+
import jax.numpy as jnp
|
22
|
+
from jax._src.lib.mlir import ir
|
23
|
+
import torch
|
24
|
+
import torch_xla2.ops.jaten # Import to load torch_xla2 ops
|
25
|
+
import torch_xla2.ops.ops_registry # Import to load torch_xla2 ops
|
26
|
+
|
27
|
+
LoweringContext = context.LoweringContext
|
28
|
+
|
29
|
+
|
30
|
+
@functools.cache
|
31
|
+
def _log_usage(op):
|
32
|
+
logging.warning("Use jax lowering: %s", str(op))
|
33
|
+
|
34
|
+
|
35
|
+
def lower_by_jax(op, ir_input_names=None):
|
36
|
+
def inner(lowering):
|
37
|
+
bridged = jax_bridge.wrap(lowering, ir_input_names)
|
38
|
+
|
39
|
+
@registry.lower(op)
|
40
|
+
def _jax_lowering(lctx, *args, **kwargs):
|
41
|
+
_log_usage(op)
|
42
|
+
return bridged(lctx, *args, **kwargs)
|
43
|
+
|
44
|
+
return lowering
|
45
|
+
|
46
|
+
return inner
|
47
|
+
|
48
|
+
|
49
|
+
_TORCH_XLA2_IMPLS = {}
|
50
|
+
|
51
|
+
for op, torch_xla2_op in torch_xla2.ops.ops_registry.all_aten_ops.items():
|
52
|
+
if not torch_xla2_op.is_jax_function:
|
53
|
+
continue
|
54
|
+
if isinstance(op, torch._ops.OpOverloadPacket):
|
55
|
+
ops = [getattr(op, overload) for overload in op.overloads()] + [op]
|
56
|
+
else:
|
57
|
+
ops = [op]
|
58
|
+
|
59
|
+
for op in ops:
|
60
|
+
_TORCH_XLA2_IMPLS[op] = torch_xla2_op.func
|
61
|
+
|
62
|
+
|
63
|
+
def lower_by_torch_xla2(op):
|
64
|
+
return lower_by_jax(op)(_TORCH_XLA2_IMPLS[op])
|
65
|
+
|
66
|
+
|
67
|
+
lower_by_torch_xla2(torch.ops.aten._adaptive_avg_pool2d)
|
68
|
+
lower_by_torch_xla2(torch.ops.aten._adaptive_avg_pool3d)
|
69
|
+
lower_by_torch_xla2(torch.ops.aten._cdist_forward)
|
70
|
+
lower_by_torch_xla2(torch.ops.aten._local_scalar_dense)
|
71
|
+
lower_by_torch_xla2(torch.ops.aten._local_scalar_dense)
|
72
|
+
lower_by_torch_xla2(torch.ops.aten._log_softmax)
|
73
|
+
lower_by_torch_xla2(torch.ops.aten._native_batch_norm_legit)
|
74
|
+
lower_by_torch_xla2(torch.ops.aten._native_batch_norm_legit_no_training)
|
75
|
+
lower_by_torch_xla2(torch.ops.aten._pdist_forward)
|
76
|
+
lower_by_torch_xla2(torch.ops.aten._softmax)
|
77
|
+
lower_by_torch_xla2(torch.ops.aten._to_copy)
|
78
|
+
lower_by_torch_xla2(torch.ops.aten._unsafe_index)
|
79
|
+
lower_by_torch_xla2(torch.ops.aten._unsafe_view)
|
80
|
+
lower_by_torch_xla2(torch.ops.aten.abs)
|
81
|
+
lower_by_torch_xla2(torch.ops.aten.acos)
|
82
|
+
lower_by_torch_xla2(torch.ops.aten.acosh)
|
83
|
+
lower_by_torch_xla2(torch.ops.aten.add.Scalar)
|
84
|
+
lower_by_torch_xla2(torch.ops.aten.add.Tensor)
|
85
|
+
lower_by_torch_xla2(torch.ops.aten.addbmm.default)
|
86
|
+
lower_by_torch_xla2(torch.ops.aten.addmm)
|
87
|
+
lower_by_torch_xla2(torch.ops.aten.addmv)
|
88
|
+
lower_by_torch_xla2(torch.ops.aten.alias)
|
89
|
+
lower_by_torch_xla2(torch.ops.aten.allclose)
|
90
|
+
lower_by_torch_xla2(torch.ops.aten.amax)
|
91
|
+
lower_by_torch_xla2(torch.ops.aten.amin)
|
92
|
+
lower_by_torch_xla2(torch.ops.aten.any)
|
93
|
+
lower_by_torch_xla2(torch.ops.aten.arange.default)
|
94
|
+
lower_by_torch_xla2(torch.ops.aten.arange.start)
|
95
|
+
lower_by_torch_xla2(torch.ops.aten.arange.start_step)
|
96
|
+
lower_by_torch_xla2(torch.ops.aten.argmax)
|
97
|
+
lower_by_torch_xla2(torch.ops.aten.argmin)
|
98
|
+
lower_by_torch_xla2(torch.ops.aten.as_strided)
|
99
|
+
lower_by_torch_xla2(torch.ops.aten.as_strided_copy)
|
100
|
+
lower_by_torch_xla2(torch.ops.aten.asin)
|
101
|
+
lower_by_torch_xla2(torch.ops.aten.asinh)
|
102
|
+
lower_by_torch_xla2(torch.ops.aten.atan)
|
103
|
+
lower_by_torch_xla2(torch.ops.aten.atan2)
|
104
|
+
lower_by_torch_xla2(torch.ops.aten.atanh)
|
105
|
+
lower_by_torch_xla2(torch.ops.aten.avg_pool2d)
|
106
|
+
lower_by_torch_xla2(torch.ops.aten.avg_pool3d)
|
107
|
+
lower_by_torch_xla2(torch.ops.aten.bitwise_and)
|
108
|
+
lower_by_torch_xla2(torch.ops.aten.bitwise_not)
|
109
|
+
lower_by_torch_xla2(torch.ops.aten.bitwise_or)
|
110
|
+
lower_by_torch_xla2(torch.ops.aten.bitwise_xor)
|
111
|
+
lower_by_torch_xla2(torch.ops.aten.bmm)
|
112
|
+
lower_by_torch_xla2(torch.ops.aten.ceil)
|
113
|
+
lower_by_torch_xla2(torch.ops.aten.clamp.Tensor)
|
114
|
+
lower_by_torch_xla2(torch.ops.aten.clamp.default)
|
115
|
+
lower_by_torch_xla2(torch.ops.aten.clone)
|
116
|
+
lower_by_torch_xla2(torch.ops.aten.clone.default)
|
117
|
+
lower_by_torch_xla2(torch.ops.aten.constant_pad_nd)
|
118
|
+
lower_by_torch_xla2(torch.ops.aten.cos)
|
119
|
+
lower_by_torch_xla2(torch.ops.aten.cosh)
|
120
|
+
lower_by_torch_xla2(torch.ops.aten.cumsum)
|
121
|
+
lower_by_torch_xla2(torch.ops.aten.detach)
|
122
|
+
lower_by_torch_xla2(torch.ops.aten.diagonal)
|
123
|
+
lower_by_torch_xla2(torch.ops.aten.div)
|
124
|
+
lower_by_torch_xla2(torch.ops.aten.dot)
|
125
|
+
lower_by_torch_xla2(torch.ops.aten.embedding)
|
126
|
+
lower_by_torch_xla2(torch.ops.aten.empty)
|
127
|
+
lower_by_torch_xla2(torch.ops.aten.eq)
|
128
|
+
lower_by_torch_xla2(torch.ops.aten.erf)
|
129
|
+
lower_by_torch_xla2(torch.ops.aten.exp)
|
130
|
+
lower_by_torch_xla2(torch.ops.aten.expand)
|
131
|
+
lower_by_torch_xla2(torch.ops.aten.expand_copy)
|
132
|
+
lower_by_torch_xla2(torch.ops.aten.expm1)
|
133
|
+
lower_by_torch_xla2(torch.ops.aten.fill)
|
134
|
+
lower_by_torch_xla2(torch.ops.aten.flip)
|
135
|
+
lower_by_torch_xla2(torch.ops.aten.fmod)
|
136
|
+
lower_by_torch_xla2(torch.ops.aten.full)
|
137
|
+
lower_by_torch_xla2(torch.ops.aten.full_like)
|
138
|
+
lower_by_torch_xla2(torch.ops.aten.gather)
|
139
|
+
lower_by_torch_xla2(torch.ops.aten.ge)
|
140
|
+
lower_by_torch_xla2(torch.ops.aten.gelu)
|
141
|
+
lower_by_torch_xla2(torch.ops.aten.glu)
|
142
|
+
lower_by_torch_xla2(torch.ops.aten.glu.default)
|
143
|
+
lower_by_torch_xla2(torch.ops.aten.gt)
|
144
|
+
lower_by_torch_xla2(torch.ops.aten.hardtanh)
|
145
|
+
lower_by_torch_xla2(torch.ops.aten.index)
|
146
|
+
lower_by_torch_xla2(torch.ops.aten.index.Tensor)
|
147
|
+
lower_by_torch_xla2(torch.ops.aten.index_copy)
|
148
|
+
lower_by_torch_xla2(torch.ops.aten.index_put)
|
149
|
+
lower_by_torch_xla2(torch.ops.aten.index_select)
|
150
|
+
lower_by_torch_xla2(torch.ops.aten.isinf)
|
151
|
+
lower_by_torch_xla2(torch.ops.aten.isnan)
|
152
|
+
lower_by_torch_xla2(torch.ops.aten.le)
|
153
|
+
lower_by_torch_xla2(torch.ops.aten.leaky_relu)
|
154
|
+
lower_by_torch_xla2(torch.ops.aten.lift_fresh_copy)
|
155
|
+
lower_by_torch_xla2(torch.ops.aten.linalg_vector_norm)
|
156
|
+
lower_by_torch_xla2(torch.ops.aten.log)
|
157
|
+
lower_by_torch_xla2(torch.ops.aten.log10)
|
158
|
+
lower_by_torch_xla2(torch.ops.aten.log1p)
|
159
|
+
lower_by_torch_xla2(torch.ops.aten.log2)
|
160
|
+
lower_by_torch_xla2(torch.ops.aten.logical_and)
|
161
|
+
lower_by_torch_xla2(torch.ops.aten.logical_not)
|
162
|
+
lower_by_torch_xla2(torch.ops.aten.logical_or)
|
163
|
+
lower_by_torch_xla2(torch.ops.aten.logical_xor)
|
164
|
+
lower_by_torch_xla2(torch.ops.aten.lt)
|
165
|
+
lower_by_torch_xla2(torch.ops.aten.max)
|
166
|
+
lower_by_torch_xla2(torch.ops.aten.max_pool2d_with_indices)
|
167
|
+
lower_by_torch_xla2(torch.ops.aten.max_pool2d_with_indices_backward)
|
168
|
+
lower_by_torch_xla2(torch.ops.aten.max_pool2d_with_indices_backward)
|
169
|
+
lower_by_torch_xla2(torch.ops.aten.max_pool3d_with_indices)
|
170
|
+
lower_by_torch_xla2(torch.ops.aten.maximum)
|
171
|
+
lower_by_torch_xla2(torch.ops.aten.mean)
|
172
|
+
lower_by_torch_xla2(torch.ops.aten.min)
|
173
|
+
lower_by_torch_xla2(torch.ops.aten.minimum)
|
174
|
+
lower_by_torch_xla2(torch.ops.aten.mm)
|
175
|
+
lower_by_torch_xla2(torch.ops.aten.mul.Scalar)
|
176
|
+
lower_by_torch_xla2(torch.ops.aten.mul.Tensor)
|
177
|
+
lower_by_torch_xla2(torch.ops.aten.native_batch_norm)
|
178
|
+
lower_by_torch_xla2(torch.ops.aten.native_layer_norm_backward)
|
179
|
+
lower_by_torch_xla2(torch.ops.aten.ne)
|
180
|
+
lower_by_torch_xla2(torch.ops.aten.neg)
|
181
|
+
lower_by_torch_xla2(torch.ops.aten.nonzero)
|
182
|
+
lower_by_torch_xla2(torch.ops.aten.outer)
|
183
|
+
lower_by_torch_xla2(torch.ops.aten.permute)
|
184
|
+
lower_by_torch_xla2(torch.ops.aten.permute_copy)
|
185
|
+
lower_by_torch_xla2(torch.ops.aten.pixel_shuffle)
|
186
|
+
lower_by_torch_xla2(torch.ops.aten.pow)
|
187
|
+
lower_by_torch_xla2(torch.ops.aten.prod)
|
188
|
+
lower_by_torch_xla2(torch.ops.aten.reciprocal)
|
189
|
+
lower_by_torch_xla2(torch.ops.aten.reflection_pad1d)
|
190
|
+
lower_by_torch_xla2(torch.ops.aten.relu)
|
191
|
+
lower_by_torch_xla2(torch.ops.aten.remainder)
|
192
|
+
lower_by_torch_xla2(torch.ops.aten.repeat)
|
193
|
+
lower_by_torch_xla2(torch.ops.aten.reshape)
|
194
|
+
lower_by_torch_xla2(torch.ops.aten.roll)
|
195
|
+
lower_by_torch_xla2(torch.ops.aten.round)
|
196
|
+
lower_by_torch_xla2(torch.ops.aten.rsqrt)
|
197
|
+
lower_by_torch_xla2(torch.ops.aten.scalar_tensor)
|
198
|
+
lower_by_torch_xla2(torch.ops.aten.scatter.src)
|
199
|
+
lower_by_torch_xla2(torch.ops.aten.scatter.value)
|
200
|
+
lower_by_torch_xla2(torch.ops.aten.scatter_add)
|
201
|
+
lower_by_torch_xla2(torch.ops.aten.scatter_reduce)
|
202
|
+
lower_by_torch_xla2(torch.ops.aten.select)
|
203
|
+
lower_by_torch_xla2(torch.ops.aten.select_copy)
|
204
|
+
lower_by_torch_xla2(torch.ops.aten.select_scatter)
|
205
|
+
lower_by_torch_xla2(torch.ops.aten.sigmoid)
|
206
|
+
lower_by_torch_xla2(torch.ops.aten.sign)
|
207
|
+
lower_by_torch_xla2(torch.ops.aten.silu)
|
208
|
+
lower_by_torch_xla2(torch.ops.aten.sin)
|
209
|
+
lower_by_torch_xla2(torch.ops.aten.sinh)
|
210
|
+
lower_by_torch_xla2(torch.ops.aten.slice)
|
211
|
+
lower_by_torch_xla2(torch.ops.aten.slice_copy)
|
212
|
+
lower_by_torch_xla2(torch.ops.aten.sort)
|
213
|
+
lower_by_torch_xla2(torch.ops.aten.split)
|
214
|
+
lower_by_torch_xla2(torch.ops.aten.split_copy)
|
215
|
+
lower_by_torch_xla2(torch.ops.aten.split_with_sizes)
|
216
|
+
lower_by_torch_xla2(torch.ops.aten.sqrt)
|
217
|
+
lower_by_torch_xla2(torch.ops.aten.squeeze)
|
218
|
+
lower_by_torch_xla2(torch.ops.aten.squeeze_copy)
|
219
|
+
lower_by_torch_xla2(torch.ops.aten.stack)
|
220
|
+
lower_by_torch_xla2(torch.ops.aten.sub.Scalar)
|
221
|
+
lower_by_torch_xla2(torch.ops.aten.sub.Tensor)
|
222
|
+
lower_by_torch_xla2(torch.ops.aten.sum)
|
223
|
+
lower_by_torch_xla2(torch.ops.aten.sym_size)
|
224
|
+
lower_by_torch_xla2(torch.ops.aten.t)
|
225
|
+
lower_by_torch_xla2(torch.ops.aten.tan)
|
226
|
+
lower_by_torch_xla2(torch.ops.aten.tanh)
|
227
|
+
lower_by_torch_xla2(torch.ops.aten.tensor_split.sections)
|
228
|
+
lower_by_torch_xla2(torch.ops.aten.tensor_split.sections)
|
229
|
+
lower_by_torch_xla2(torch.ops.aten.to.device)
|
230
|
+
lower_by_torch_xla2(torch.ops.aten.to.device)
|
231
|
+
lower_by_torch_xla2(torch.ops.aten.to.dtype)
|
232
|
+
lower_by_torch_xla2(torch.ops.aten.topk)
|
233
|
+
lower_by_torch_xla2(torch.ops.aten.transpose)
|
234
|
+
lower_by_torch_xla2(torch.ops.aten.transpose_copy)
|
235
|
+
lower_by_torch_xla2(torch.ops.aten.triu)
|
236
|
+
lower_by_torch_xla2(torch.ops.aten.true_divide)
|
237
|
+
lower_by_torch_xla2(torch.ops.aten.trunc)
|
238
|
+
lower_by_torch_xla2(torch.ops.aten.unbind_copy)
|
239
|
+
lower_by_torch_xla2(torch.ops.aten.unsqueeze)
|
240
|
+
lower_by_torch_xla2(torch.ops.aten.unsqueeze.default)
|
241
|
+
lower_by_torch_xla2(torch.ops.aten.unsqueeze_copy)
|
242
|
+
lower_by_torch_xla2(torch.ops.aten.var.correction)
|
243
|
+
lower_by_torch_xla2(torch.ops.aten.var_mean.correction)
|
244
|
+
lower_by_torch_xla2(torch.ops.aten.view)
|
245
|
+
lower_by_torch_xla2(torch.ops.aten.view_as_complex)
|
246
|
+
lower_by_torch_xla2(torch.ops.aten.view_as_real)
|
247
|
+
lower_by_torch_xla2(torch.ops.aten.view_copy)
|
248
|
+
lower_by_torch_xla2(torch.ops.aten.where.ScalarOther)
|
249
|
+
lower_by_torch_xla2(torch.ops.aten.where.ScalarSelf)
|
250
|
+
lower_by_torch_xla2(torch.ops.aten.where.self)
|
251
|
+
lower_by_torch_xla2(torch.ops.prims.broadcast_in_dim)
|
252
|
+
lower_by_torch_xla2(torch.ops.prims.var)
|
253
|
+
|
254
|
+
|
255
|
+
@lower_by_jax(torch.ops.aten.unbind)
|
256
|
+
def _aten_copy(self, *args, **kwargs):
|
257
|
+
return _TORCH_XLA2_IMPLS[torch.ops.aten.unbind_copy](self, *args, **kwargs)
|
258
|
+
|
259
|
+
|
260
|
+
@lower_by_jax(torch.ops.aten.copy, ir_input_names=["src"])
|
261
|
+
def _aten_copy(self, src, **kwargs):
|
262
|
+
return _TORCH_XLA2_IMPLS[torch.ops.aten.copy](self, src)
|
263
|
+
|
264
|
+
|
265
|
+
# Schema:
|
266
|
+
# - aten::einsum(str equation, Tensor[] tensors, *, int[]? path=None)
|
267
|
+
# -> Tensor
|
268
|
+
# Torch Reference:
|
269
|
+
# - https://pytorch.org/docs/stable/generated/torch.einsum.html
|
270
|
+
# - https://github.com/pytorch/pytorch/blob/1b3f8b75896720e88362cbec7db32abc52afa83e/aten/src/ATen/native/Linear.cpp#L255
|
271
|
+
@registry.lower(torch.ops.aten.einsum.default)
|
272
|
+
def _aten_einsum_default(
|
273
|
+
lctx: LoweringContext,
|
274
|
+
equation: str,
|
275
|
+
tensors: list[ir.Value],
|
276
|
+
path=None,
|
277
|
+
):
|
278
|
+
_log_usage(torch.ops.aten.einsum.default)
|
279
|
+
|
280
|
+
@jax_bridge.wrap
|
281
|
+
def jax_lowering(operands):
|
282
|
+
# Ignore the input path and let JAX determine the path.
|
283
|
+
return jnp.einsum(equation, *operands, optimize="optimal")
|
284
|
+
|
285
|
+
return jax_lowering(lctx, tuple(tensors))
|
@@ -0,0 +1,87 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
"""Provides lowering for coreaten to stablehlo for LayerNorm."""
|
16
|
+
|
17
|
+
import math
|
18
|
+
from typing import Optional
|
19
|
+
from ai_edge_torch.odml_torch.lowerings import registry
|
20
|
+
from ai_edge_torch.odml_torch.lowerings import utils
|
21
|
+
from jax._src.lib.mlir import ir
|
22
|
+
from jax._src.lib.mlir.dialects import hlo as stablehlo
|
23
|
+
import numpy as np
|
24
|
+
import torch
|
25
|
+
|
26
|
+
|
27
|
+
# native_layer_norm(Tensor input, SymInt[] normalized_shape, Tensor? weight,
|
28
|
+
# Tensor? bias, float eps) -> (Tensor, Tensor, Tensor)
|
29
|
+
@registry.lower(torch.ops.aten.native_layer_norm)
|
30
|
+
def _aten_native_layer_norm(
|
31
|
+
lctx,
|
32
|
+
data: ir.Value,
|
33
|
+
normalized_shape: list[int],
|
34
|
+
weight: Optional[ir.Value],
|
35
|
+
bias: Optional[ir.Value],
|
36
|
+
eps: float,
|
37
|
+
):
|
38
|
+
data_type: ir.RankedTensorType = data.type
|
39
|
+
unnormalized_count = math.prod(data_type.shape) // math.prod(normalized_shape)
|
40
|
+
dest_shape = [
|
41
|
+
1,
|
42
|
+
unnormalized_count,
|
43
|
+
math.prod(normalized_shape),
|
44
|
+
]
|
45
|
+
dest_type = ir.RankedTensorType.get(dest_shape, data_type.element_type)
|
46
|
+
|
47
|
+
reshaped_data = stablehlo.reshape(dest_type, data)
|
48
|
+
|
49
|
+
one = utils.splat(1, data_type.element_type, [unnormalized_count])
|
50
|
+
zero = utils.splat(0, data_type.element_type, [unnormalized_count])
|
51
|
+
output, mean, var = stablehlo.batch_norm_training(
|
52
|
+
reshaped_data, one, zero, eps, 1
|
53
|
+
)
|
54
|
+
eps_splat = utils.splat(eps, var.type.element_type, var.type.shape)
|
55
|
+
rstd = stablehlo.rsqrt(stablehlo.add(var, eps_splat))
|
56
|
+
|
57
|
+
stats_shape = data_type.shape[: -1 * len(normalized_shape)] + [1] * len(
|
58
|
+
normalized_shape
|
59
|
+
)
|
60
|
+
stats_type = ir.RankedTensorType.get(stats_shape, data_type.element_type)
|
61
|
+
mean = stablehlo.reshape(stats_type, mean)
|
62
|
+
rstd = stablehlo.reshape(stats_type, rstd)
|
63
|
+
|
64
|
+
output = stablehlo.reshape(data_type, output)
|
65
|
+
|
66
|
+
data_rank = len(data_type.shape)
|
67
|
+
normalized_rank = len(normalized_shape)
|
68
|
+
if weight is not None:
|
69
|
+
weight = stablehlo.broadcast_in_dim(
|
70
|
+
data_type,
|
71
|
+
weight,
|
72
|
+
ir.DenseI64ArrayAttr.get(
|
73
|
+
list(range(data_rank - normalized_rank, data_rank))
|
74
|
+
),
|
75
|
+
)
|
76
|
+
output = stablehlo.multiply(weight, output)
|
77
|
+
if bias is not None:
|
78
|
+
bias = stablehlo.broadcast_in_dim(
|
79
|
+
data_type,
|
80
|
+
bias,
|
81
|
+
ir.DenseI64ArrayAttr.get(
|
82
|
+
list(range(data_rank - normalized_rank, data_rank))
|
83
|
+
),
|
84
|
+
)
|
85
|
+
output = stablehlo.add(bias, output)
|
86
|
+
|
87
|
+
return output, mean, rstd
|