ai-edge-torch-nightly 0.3.0.dev20250114__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (213) hide show
  1. ai_edge_torch/__init__.py +32 -0
  2. ai_edge_torch/_config.py +69 -0
  3. ai_edge_torch/_convert/__init__.py +14 -0
  4. ai_edge_torch/_convert/conversion.py +153 -0
  5. ai_edge_torch/_convert/conversion_utils.py +64 -0
  6. ai_edge_torch/_convert/converter.py +270 -0
  7. ai_edge_torch/_convert/fx_passes/__init__.py +23 -0
  8. ai_edge_torch/_convert/fx_passes/build_aten_composite_pass.py +288 -0
  9. ai_edge_torch/_convert/fx_passes/build_interpolate_composite_pass.py +131 -0
  10. ai_edge_torch/_convert/fx_passes/inject_mlir_debuginfo_pass.py +73 -0
  11. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/__init__.py +16 -0
  12. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_check.py +258 -0
  13. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_mark.py +50 -0
  14. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +18 -0
  15. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +68 -0
  16. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +216 -0
  17. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +449 -0
  18. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +30 -0
  19. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/pass_body.py +303 -0
  20. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/utils.py +64 -0
  21. ai_edge_torch/_convert/fx_passes/remove_non_user_outputs_pass.py +52 -0
  22. ai_edge_torch/_convert/signature.py +66 -0
  23. ai_edge_torch/_convert/test/__init__.py +14 -0
  24. ai_edge_torch/_convert/test/test_convert.py +558 -0
  25. ai_edge_torch/_convert/test/test_convert_composites.py +234 -0
  26. ai_edge_torch/_convert/test/test_convert_multisig.py +189 -0
  27. ai_edge_torch/_convert/test/test_to_channel_last_io.py +96 -0
  28. ai_edge_torch/_convert/to_channel_last_io.py +92 -0
  29. ai_edge_torch/conftest.py +20 -0
  30. ai_edge_torch/debug/__init__.py +17 -0
  31. ai_edge_torch/debug/culprit.py +496 -0
  32. ai_edge_torch/debug/test/__init__.py +14 -0
  33. ai_edge_torch/debug/test/test_culprit.py +140 -0
  34. ai_edge_torch/debug/test/test_search_model.py +51 -0
  35. ai_edge_torch/debug/utils.py +59 -0
  36. ai_edge_torch/experimental/__init__.py +14 -0
  37. ai_edge_torch/fx_pass_base.py +110 -0
  38. ai_edge_torch/generative/__init__.py +14 -0
  39. ai_edge_torch/generative/examples/__init__.py +14 -0
  40. ai_edge_torch/generative/examples/amd_llama_135m/__init__.py +14 -0
  41. ai_edge_torch/generative/examples/amd_llama_135m/amd_llama_135m.py +87 -0
  42. ai_edge_torch/generative/examples/amd_llama_135m/convert_to_tflite.py +70 -0
  43. ai_edge_torch/generative/examples/amd_llama_135m/verify.py +72 -0
  44. ai_edge_torch/generative/examples/gemma/__init__.py +14 -0
  45. ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +80 -0
  46. ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +80 -0
  47. ai_edge_torch/generative/examples/gemma/gemma1.py +107 -0
  48. ai_edge_torch/generative/examples/gemma/gemma2.py +295 -0
  49. ai_edge_torch/generative/examples/gemma/verify_gemma1.py +56 -0
  50. ai_edge_torch/generative/examples/gemma/verify_gemma2.py +43 -0
  51. ai_edge_torch/generative/examples/gemma/verify_util.py +157 -0
  52. ai_edge_torch/generative/examples/llama/__init__.py +14 -0
  53. ai_edge_torch/generative/examples/llama/convert_to_tflite.py +91 -0
  54. ai_edge_torch/generative/examples/llama/llama.py +196 -0
  55. ai_edge_torch/generative/examples/llama/verify.py +88 -0
  56. ai_edge_torch/generative/examples/moonshine/__init__.py +14 -0
  57. ai_edge_torch/generative/examples/moonshine/convert_moonshine_to_tflite.py +50 -0
  58. ai_edge_torch/generative/examples/moonshine/moonshine.py +103 -0
  59. ai_edge_torch/generative/examples/openelm/__init__.py +14 -0
  60. ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +80 -0
  61. ai_edge_torch/generative/examples/openelm/openelm.py +127 -0
  62. ai_edge_torch/generative/examples/openelm/verify.py +71 -0
  63. ai_edge_torch/generative/examples/paligemma/__init__.py +14 -0
  64. ai_edge_torch/generative/examples/paligemma/convert_to_tflite.py +95 -0
  65. ai_edge_torch/generative/examples/paligemma/decoder.py +151 -0
  66. ai_edge_torch/generative/examples/paligemma/decoder2.py +177 -0
  67. ai_edge_torch/generative/examples/paligemma/image_encoder.py +160 -0
  68. ai_edge_torch/generative/examples/paligemma/paligemma.py +179 -0
  69. ai_edge_torch/generative/examples/paligemma/verify.py +161 -0
  70. ai_edge_torch/generative/examples/paligemma/verify_decoder.py +75 -0
  71. ai_edge_torch/generative/examples/paligemma/verify_decoder2.py +72 -0
  72. ai_edge_torch/generative/examples/paligemma/verify_image_encoder.py +99 -0
  73. ai_edge_torch/generative/examples/phi/__init__.py +14 -0
  74. ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +80 -0
  75. ai_edge_torch/generative/examples/phi/convert_to_tflite.py +80 -0
  76. ai_edge_torch/generative/examples/phi/phi2.py +107 -0
  77. ai_edge_torch/generative/examples/phi/phi3.py +219 -0
  78. ai_edge_torch/generative/examples/phi/verify.py +64 -0
  79. ai_edge_torch/generative/examples/phi/verify_phi3.py +69 -0
  80. ai_edge_torch/generative/examples/qwen/__init__.py +14 -0
  81. ai_edge_torch/generative/examples/qwen/convert_to_tflite.py +93 -0
  82. ai_edge_torch/generative/examples/qwen/qwen.py +134 -0
  83. ai_edge_torch/generative/examples/qwen/verify.py +88 -0
  84. ai_edge_torch/generative/examples/smollm/__init__.py +14 -0
  85. ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +80 -0
  86. ai_edge_torch/generative/examples/smollm/convert_v2_to_tflite.py +71 -0
  87. ai_edge_torch/generative/examples/smollm/smollm.py +125 -0
  88. ai_edge_torch/generative/examples/smollm/verify.py +86 -0
  89. ai_edge_torch/generative/examples/stable_diffusion/__init__.py +14 -0
  90. ai_edge_torch/generative/examples/stable_diffusion/attention.py +108 -0
  91. ai_edge_torch/generative/examples/stable_diffusion/clip.py +185 -0
  92. ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +173 -0
  93. ai_edge_torch/generative/examples/stable_diffusion/decoder.py +398 -0
  94. ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +749 -0
  95. ai_edge_torch/generative/examples/stable_diffusion/encoder.py +119 -0
  96. ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +254 -0
  97. ai_edge_torch/generative/examples/stable_diffusion/samplers/__init__.py +19 -0
  98. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +62 -0
  99. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +66 -0
  100. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +74 -0
  101. ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +39 -0
  102. ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +111 -0
  103. ai_edge_torch/generative/examples/stable_diffusion/util.py +77 -0
  104. ai_edge_torch/generative/examples/t5/__init__.py +14 -0
  105. ai_edge_torch/generative/examples/t5/convert_to_tflite.py +138 -0
  106. ai_edge_torch/generative/examples/t5/t5.py +655 -0
  107. ai_edge_torch/generative/examples/t5/t5_attention.py +246 -0
  108. ai_edge_torch/generative/examples/test_models/__init__.py +14 -0
  109. ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
  110. ai_edge_torch/generative/examples/test_models/toy_model.py +156 -0
  111. ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +138 -0
  112. ai_edge_torch/generative/examples/tiny_llama/__init__.py +14 -0
  113. ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +80 -0
  114. ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +88 -0
  115. ai_edge_torch/generative/examples/tiny_llama/verify.py +72 -0
  116. ai_edge_torch/generative/fx_passes/__init__.py +30 -0
  117. ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +50 -0
  118. ai_edge_torch/generative/layers/__init__.py +14 -0
  119. ai_edge_torch/generative/layers/attention.py +399 -0
  120. ai_edge_torch/generative/layers/attention_utils.py +210 -0
  121. ai_edge_torch/generative/layers/builder.py +160 -0
  122. ai_edge_torch/generative/layers/feed_forward.py +120 -0
  123. ai_edge_torch/generative/layers/kv_cache.py +204 -0
  124. ai_edge_torch/generative/layers/lora.py +557 -0
  125. ai_edge_torch/generative/layers/model_config.py +238 -0
  126. ai_edge_torch/generative/layers/normalization.py +222 -0
  127. ai_edge_torch/generative/layers/rotary_position_embedding.py +94 -0
  128. ai_edge_torch/generative/layers/scaled_dot_product_attention.py +144 -0
  129. ai_edge_torch/generative/layers/unet/__init__.py +14 -0
  130. ai_edge_torch/generative/layers/unet/blocks_2d.py +806 -0
  131. ai_edge_torch/generative/layers/unet/builder.py +50 -0
  132. ai_edge_torch/generative/layers/unet/model_config.py +282 -0
  133. ai_edge_torch/generative/quantize/__init__.py +14 -0
  134. ai_edge_torch/generative/quantize/example.py +47 -0
  135. ai_edge_torch/generative/quantize/quant_attrs.py +68 -0
  136. ai_edge_torch/generative/quantize/quant_recipe.py +154 -0
  137. ai_edge_torch/generative/quantize/quant_recipe_utils.py +62 -0
  138. ai_edge_torch/generative/quantize/quant_recipes.py +56 -0
  139. ai_edge_torch/generative/quantize/supported_schemes.py +32 -0
  140. ai_edge_torch/generative/test/__init__.py +14 -0
  141. ai_edge_torch/generative/test/test_custom_dus.py +107 -0
  142. ai_edge_torch/generative/test/test_kv_cache.py +120 -0
  143. ai_edge_torch/generative/test/test_loader.py +83 -0
  144. ai_edge_torch/generative/test/test_lora.py +147 -0
  145. ai_edge_torch/generative/test/test_model_conversion.py +191 -0
  146. ai_edge_torch/generative/test/test_model_conversion_large.py +362 -0
  147. ai_edge_torch/generative/test/test_quantize.py +183 -0
  148. ai_edge_torch/generative/test/utils.py +82 -0
  149. ai_edge_torch/generative/utilities/__init__.py +15 -0
  150. ai_edge_torch/generative/utilities/converter.py +215 -0
  151. ai_edge_torch/generative/utilities/dynamic_update_slice.py +56 -0
  152. ai_edge_torch/generative/utilities/loader.py +398 -0
  153. ai_edge_torch/generative/utilities/model_builder.py +180 -0
  154. ai_edge_torch/generative/utilities/moonshine_loader.py +154 -0
  155. ai_edge_torch/generative/utilities/stable_diffusion_loader.py +1032 -0
  156. ai_edge_torch/generative/utilities/t5_loader.py +512 -0
  157. ai_edge_torch/generative/utilities/transformers_verifier.py +42 -0
  158. ai_edge_torch/generative/utilities/verifier.py +335 -0
  159. ai_edge_torch/hlfb/__init__.py +16 -0
  160. ai_edge_torch/hlfb/mark_pattern/__init__.py +153 -0
  161. ai_edge_torch/hlfb/mark_pattern/fx_utils.py +69 -0
  162. ai_edge_torch/hlfb/mark_pattern/pattern.py +288 -0
  163. ai_edge_torch/hlfb/test/__init__.py +14 -0
  164. ai_edge_torch/hlfb/test/test_mark_pattern.py +185 -0
  165. ai_edge_torch/lowertools/__init__.py +18 -0
  166. ai_edge_torch/lowertools/_shim.py +86 -0
  167. ai_edge_torch/lowertools/common_utils.py +142 -0
  168. ai_edge_torch/lowertools/odml_torch_utils.py +260 -0
  169. ai_edge_torch/lowertools/test_utils.py +62 -0
  170. ai_edge_torch/lowertools/torch_xla_utils.py +301 -0
  171. ai_edge_torch/lowertools/translate_recipe.py +163 -0
  172. ai_edge_torch/model.py +177 -0
  173. ai_edge_torch/odml_torch/__init__.py +20 -0
  174. ai_edge_torch/odml_torch/_torch_future.py +88 -0
  175. ai_edge_torch/odml_torch/_torch_library.py +19 -0
  176. ai_edge_torch/odml_torch/composite/__init__.py +16 -0
  177. ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
  178. ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
  179. ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
  180. ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
  181. ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
  182. ai_edge_torch/odml_torch/export.py +403 -0
  183. ai_edge_torch/odml_torch/export_utils.py +157 -0
  184. ai_edge_torch/odml_torch/jax_bridge/__init__.py +18 -0
  185. ai_edge_torch/odml_torch/jax_bridge/_wrap.py +180 -0
  186. ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
  187. ai_edge_torch/odml_torch/lowerings/__init__.py +27 -0
  188. ai_edge_torch/odml_torch/lowerings/_basic.py +294 -0
  189. ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
  190. ai_edge_torch/odml_torch/lowerings/_convolution.py +243 -0
  191. ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +285 -0
  192. ai_edge_torch/odml_torch/lowerings/_layer_norm.py +87 -0
  193. ai_edge_torch/odml_torch/lowerings/_quantized_decomposed.py +177 -0
  194. ai_edge_torch/odml_torch/lowerings/_rand.py +142 -0
  195. ai_edge_torch/odml_torch/lowerings/context.py +42 -0
  196. ai_edge_torch/odml_torch/lowerings/decomp.py +69 -0
  197. ai_edge_torch/odml_torch/lowerings/registry.py +65 -0
  198. ai_edge_torch/odml_torch/lowerings/utils.py +201 -0
  199. ai_edge_torch/odml_torch/passes/__init__.py +38 -0
  200. ai_edge_torch/odml_torch/tf_integration.py +156 -0
  201. ai_edge_torch/quantize/__init__.py +16 -0
  202. ai_edge_torch/quantize/pt2e_quantizer.py +466 -0
  203. ai_edge_torch/quantize/pt2e_quantizer_utils.py +1061 -0
  204. ai_edge_torch/quantize/quant_config.py +85 -0
  205. ai_edge_torch/testing/__init__.py +14 -0
  206. ai_edge_torch/testing/model_coverage/__init__.py +16 -0
  207. ai_edge_torch/testing/model_coverage/model_coverage.py +145 -0
  208. ai_edge_torch/version.py +16 -0
  209. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/LICENSE +202 -0
  210. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/METADATA +44 -0
  211. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/RECORD +213 -0
  212. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/WHEEL +5 -0
  213. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/top_level.txt +1 -0
@@ -0,0 +1,86 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ """Verifies the reauthored SmolLM-135M model."""
17
+
18
+ import logging
19
+ import pathlib
20
+
21
+ from absl import app
22
+ from absl import flags
23
+ from ai_edge_torch.generative.examples.smollm import smollm
24
+ from ai_edge_torch.generative.utilities import transformers_verifier
25
+ from ai_edge_torch.generative.utilities import verifier
26
+ import transformers
27
+
28
+
29
+ _PROMPTS = flags.DEFINE_multi_string(
30
+ "prompts",
31
+ "What is the meaning of life?",
32
+ "The input prompts to generate answers.",
33
+ )
34
+ _MAX_NEW_TOKENS = flags.DEFINE_integer(
35
+ "max_new_tokens",
36
+ 30,
37
+ "The maximum size of the generated tokens.",
38
+ )
39
+ _MODEL_VERSION = flags.DEFINE_enum(
40
+ "model_version",
41
+ "v1",
42
+ ["v1", "v2"],
43
+ "The version of SmolLm to verify.",
44
+ )
45
+ _CHECKPOINT = {
46
+ "v1": "HuggingFaceTB/SmolLM-135M",
47
+ "v2": "HuggingFaceTB/SmolLM2-135M",
48
+ }
49
+
50
+ _BUILDER = {
51
+ "v1": smollm.build_model,
52
+ "v2": smollm.build_model_v2,
53
+ }
54
+
55
+
56
+ def main(_):
57
+ checkpoint = _CHECKPOINT[_MODEL_VERSION.value]
58
+ builder = _BUILDER[_MODEL_VERSION.value]
59
+ logging.info("Loading the original model from: %s", checkpoint)
60
+ original_model = transformers.AutoModelForCausalLM.from_pretrained(checkpoint)
61
+
62
+ # Locate the cached dir.
63
+ cached_config_file = transformers.utils.cached_file(
64
+ checkpoint, transformers.utils.CONFIG_NAME
65
+ )
66
+ reauthored_checkpoint = pathlib.Path(cached_config_file).parent
67
+ logging.info("Building the reauthored model from: %s", reauthored_checkpoint)
68
+ reauthored_model = builder(reauthored_checkpoint)
69
+
70
+ logging.info("Loading the tokenizer from: %s", checkpoint)
71
+ tokenizer = transformers.AutoTokenizer.from_pretrained(checkpoint)
72
+
73
+ verifier.verify_reauthored_model(
74
+ original_model=transformers_verifier.TransformersModelWrapper(
75
+ original_model
76
+ ),
77
+ reauthored_model=verifier.ReauthoredModelWrapper(reauthored_model),
78
+ tokenizer=verifier.TokenizerWrapper(tokenizer),
79
+ generate_prompts=_PROMPTS.value,
80
+ max_new_tokens=_MAX_NEW_TOKENS.value,
81
+ atol=1e-04,
82
+ )
83
+
84
+
85
+ if __name__ == "__main__":
86
+ app.run(main)
@@ -0,0 +1,14 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
@@ -0,0 +1,108 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ import math
17
+
18
+ import torch
19
+ from torch import _decomp
20
+ from torch import nn
21
+ from torch._prims_common import mask_tensor
22
+ from torch._prims_common.wrappers import out_wrapper
23
+ from torch.nn import functional as F
24
+
25
+
26
+ def triu(a):
27
+ h, w = a.shape[-2:]
28
+ mask = (
29
+ torch.arange(w, device=a.device).unsqueeze(-2)
30
+ - torch.arange(h, device=a.device).unsqueeze(-1)
31
+ ) >= 1
32
+ mask = torch.broadcast_to(mask, a.shape)
33
+ return torch.ops.aten.logical_and(a, mask).contiguous()
34
+
35
+
36
+ # _decomp.decomposition_table[torch.ops.aten.triu.default] = triu
37
+
38
+
39
+ class SelfAttention(nn.Module):
40
+
41
+ def __init__(self, n_heads, d_embed, in_proj_bias=True, out_proj_bias=True):
42
+ super().__init__()
43
+ self.in_proj = nn.Linear(d_embed, 3 * d_embed, bias=in_proj_bias)
44
+ self.out_proj = nn.Linear(d_embed, d_embed, bias=out_proj_bias)
45
+ self.n_heads = n_heads
46
+ self.d_head = d_embed // n_heads
47
+
48
+ def forward(self, x, causal_mask=False):
49
+ input_shape = x.shape
50
+ batch_size, sequence_length, d_embed = input_shape
51
+ interim_shape = (batch_size, sequence_length, self.n_heads, self.d_head)
52
+
53
+ q, k, v = self.in_proj(x).chunk(3, dim=-1)
54
+
55
+ q = q.view(interim_shape).transpose(1, 2)
56
+ k = k.view(interim_shape).transpose(1, 2)
57
+ v = v.view(interim_shape).transpose(1, 2)
58
+
59
+ weight = q @ k.transpose(-1, -2)
60
+ if causal_mask:
61
+ # mask = torch.ones_like(weight, dtype=torch.bool).triu(1)
62
+ mask = triu(torch.ones_like(weight, dtype=torch.bool))
63
+ weight.masked_fill_(mask, -torch.inf)
64
+ weight /= math.sqrt(self.d_head)
65
+ weight = F.softmax(weight, dim=-1)
66
+
67
+ output = weight @ v
68
+ output = output.transpose(1, 2)
69
+ output = output.reshape(input_shape)
70
+ output = self.out_proj(output)
71
+ return output
72
+
73
+
74
+ class CrossAttention(nn.Module):
75
+
76
+ def __init__(
77
+ self, n_heads, d_embed, d_cross, in_proj_bias=True, out_proj_bias=True
78
+ ):
79
+ super().__init__()
80
+ self.q_proj = nn.Linear(d_embed, d_embed, bias=in_proj_bias)
81
+ self.k_proj = nn.Linear(d_cross, d_embed, bias=in_proj_bias)
82
+ self.v_proj = nn.Linear(d_cross, d_embed, bias=in_proj_bias)
83
+ self.out_proj = nn.Linear(d_embed, d_embed, bias=out_proj_bias)
84
+ self.n_heads = n_heads
85
+ self.d_head = d_embed // n_heads
86
+
87
+ def forward(self, x, y):
88
+ input_shape = x.shape
89
+ batch_size, sequence_length, d_embed = input_shape
90
+ interim_shape = (batch_size, -1, self.n_heads, self.d_head)
91
+
92
+ q = self.q_proj(x)
93
+ k = self.k_proj(y)
94
+ v = self.v_proj(y)
95
+
96
+ q = q.view(interim_shape).transpose(1, 2)
97
+ k = k.view(interim_shape).transpose(1, 2)
98
+ v = v.view(interim_shape).transpose(1, 2)
99
+
100
+ weight = q @ k.transpose(-1, -2)
101
+ weight /= math.sqrt(self.d_head)
102
+ weight = F.softmax(weight, dim=-1)
103
+
104
+ output = weight @ v
105
+ output = output.transpose(1, 2).contiguous()
106
+ output = output.view(input_shape)
107
+ output = self.out_proj(output)
108
+ return output
@@ -0,0 +1,185 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ from ai_edge_torch.generative.layers.attention import TransformerBlock
17
+ import ai_edge_torch.generative.layers.attention_utils as attention_utils
18
+ import ai_edge_torch.generative.layers.builder as builder
19
+ import ai_edge_torch.generative.layers.model_config as cfg
20
+ import ai_edge_torch.generative.utilities.loader as loading_utils
21
+ import torch
22
+ from torch import nn
23
+
24
+ TENSOR_NAMES = loading_utils.ModelLoader.TensorNames(
25
+ ff_up_proj=(
26
+ "cond_stage_model.transformer.text_model.encoder.layers.{}.mlp.fc1"
27
+ ),
28
+ ff_down_proj=(
29
+ "cond_stage_model.transformer.text_model.encoder.layers.{}.mlp.fc2"
30
+ ),
31
+ attn_query_proj="cond_stage_model.transformer.text_model.encoder.layers.{}.self_attn.q_proj",
32
+ attn_key_proj="cond_stage_model.transformer.text_model.encoder.layers.{}.self_attn.k_proj",
33
+ attn_value_proj="cond_stage_model.transformer.text_model.encoder.layers.{}.self_attn.v_proj",
34
+ attn_output_proj="cond_stage_model.transformer.text_model.encoder.layers.{}.self_attn.out_proj",
35
+ pre_attn_norm=(
36
+ "cond_stage_model.transformer.text_model.encoder.layers.{}.layer_norm1"
37
+ ),
38
+ post_attn_norm=(
39
+ "cond_stage_model.transformer.text_model.encoder.layers.{}.layer_norm2"
40
+ ),
41
+ embedding=(
42
+ "cond_stage_model.transformer.text_model.embeddings.token_embedding"
43
+ ),
44
+ embedding_position="cond_stage_model.transformer.text_model.embeddings.position_embedding.weight",
45
+ final_norm="cond_stage_model.transformer.text_model.final_layer_norm",
46
+ lm_head=None,
47
+ )
48
+
49
+
50
+ class CLIP(nn.Module):
51
+ """CLIP text encoder.
52
+
53
+ For details, see https://arxiv.org/abs/2103.00020
54
+ """
55
+
56
+ def __init__(self, config: cfg.ModelConfig):
57
+ super().__init__()
58
+ self.tok_embedding = nn.Embedding(config.vocab_size, config.embedding_dim)
59
+ self.tok_embedding_position = nn.Parameter(
60
+ torch.zeros((config.max_seq_len, config.embedding_dim))
61
+ )
62
+
63
+ self.config = config
64
+ # CLIP has only one block config.
65
+ block_config = config.block_config(0)
66
+ self.transformer_blocks = nn.ModuleList(
67
+ TransformerBlock(block_config, config) for _ in range(config.num_layers)
68
+ )
69
+ self.final_norm = builder.build_norm(
70
+ config.embedding_dim, config.final_norm_config
71
+ )
72
+
73
+ self.mask_cache = attention_utils.build_causal_mask_cache(
74
+ size=config.max_seq_len, dtype=torch.float32
75
+ )
76
+
77
+ @torch.inference_mode
78
+ def forward(self, tokens: torch.IntTensor) -> torch.FloatTensor:
79
+ state = self.tok_embedding(tokens) + self.tok_embedding_position
80
+ for layer in self.transformer_blocks:
81
+ state = layer(state, mask=self.mask_cache)
82
+ output = self.final_norm(state)
83
+ return output
84
+
85
+
86
+ def get_model_config() -> cfg.ModelConfig:
87
+ """Get configs for the CLIP of Stable Diffusion v1.5."""
88
+ max_seq_len = 77
89
+ vocab_size = 49408
90
+ num_layers = 12
91
+ num_heads = 12
92
+ num_query_groups = 12
93
+ embedding_dim = 768
94
+
95
+ attn_config = cfg.AttentionConfig(
96
+ num_heads=num_heads,
97
+ head_dim=embedding_dim // num_heads,
98
+ num_query_groups=num_query_groups,
99
+ rotary_base=0,
100
+ rotary_percentage=0.0,
101
+ qkv_use_bias=True,
102
+ qkv_transpose_before_split=True,
103
+ qkv_fused_interleaved=False,
104
+ output_proj_use_bias=True,
105
+ enable_kv_cache=False,
106
+ )
107
+
108
+ ff_config = cfg.FeedForwardConfig(
109
+ type=cfg.FeedForwardType.SEQUENTIAL,
110
+ activation=cfg.ActivationConfig(cfg.ActivationType.GELU_QUICK),
111
+ intermediate_size=embedding_dim * 4,
112
+ use_bias=True,
113
+ )
114
+
115
+ norm_config = cfg.NormalizationConfig(type=cfg.NormalizationType.LAYER_NORM)
116
+
117
+ block_config = cfg.TransformerBlockConfig(
118
+ attn_config=attn_config,
119
+ ff_config=ff_config,
120
+ pre_attention_norm_config=norm_config,
121
+ post_attention_norm_config=norm_config,
122
+ )
123
+
124
+ config = cfg.ModelConfig(
125
+ vocab_size=vocab_size,
126
+ num_layers=num_layers,
127
+ max_seq_len=max_seq_len,
128
+ embedding_dim=embedding_dim,
129
+ block_configs=block_config,
130
+ final_norm_config=norm_config,
131
+ enable_hlfb=True,
132
+ )
133
+
134
+ return config
135
+
136
+
137
+ def get_fake_model_config() -> cfg.ModelConfig:
138
+ """Get fake configs for the CLIP of Stable Diffusion v1.5 for testing."""
139
+ max_seq_len = 6
140
+ vocab_size = 100
141
+ num_layers = 2
142
+ num_heads = 12
143
+ num_query_groups = 12
144
+ embedding_dim = 24
145
+
146
+ attn_config = cfg.AttentionConfig(
147
+ num_heads=num_heads,
148
+ head_dim=embedding_dim // num_heads,
149
+ num_query_groups=num_query_groups,
150
+ rotary_base=0,
151
+ rotary_percentage=0.0,
152
+ qkv_use_bias=True,
153
+ qkv_transpose_before_split=True,
154
+ qkv_fused_interleaved=False,
155
+ output_proj_use_bias=True,
156
+ enable_kv_cache=False,
157
+ )
158
+
159
+ ff_config = cfg.FeedForwardConfig(
160
+ type=cfg.FeedForwardType.SEQUENTIAL,
161
+ activation=cfg.ActivationConfig(cfg.ActivationType.GELU_QUICK),
162
+ intermediate_size=embedding_dim * 4,
163
+ use_bias=True,
164
+ )
165
+
166
+ norm_config = cfg.NormalizationConfig(type=cfg.NormalizationType.LAYER_NORM)
167
+
168
+ block_config = cfg.TransformerBlockConfig(
169
+ attn_config=attn_config,
170
+ ff_config=ff_config,
171
+ pre_attention_norm_config=norm_config,
172
+ post_attention_norm_config=norm_config,
173
+ )
174
+
175
+ config = cfg.ModelConfig(
176
+ vocab_size=vocab_size,
177
+ num_layers=num_layers,
178
+ max_seq_len=max_seq_len,
179
+ embedding_dim=embedding_dim,
180
+ block_configs=block_config,
181
+ final_norm_config=norm_config,
182
+ enable_hlfb=True,
183
+ )
184
+
185
+ return config
@@ -0,0 +1,173 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ import os
17
+ import pathlib
18
+
19
+ from absl import app
20
+ from absl import flags
21
+ import ai_edge_torch
22
+ from ai_edge_torch.generative.examples.stable_diffusion import clip
23
+ from ai_edge_torch.generative.examples.stable_diffusion import decoder
24
+ from ai_edge_torch.generative.examples.stable_diffusion import diffusion
25
+ from ai_edge_torch.generative.examples.stable_diffusion import util
26
+ from ai_edge_torch.generative.quantize import quant_recipes
27
+ from ai_edge_torch.generative.utilities import stable_diffusion_loader
28
+ import torch
29
+
30
+ _CLIP_CKPT = flags.DEFINE_string(
31
+ 'clip_ckpt',
32
+ None,
33
+ help='Path to source CLIP model checkpoint',
34
+ required=True,
35
+ )
36
+
37
+ _DIFFUSION_CKPT = flags.DEFINE_string(
38
+ 'diffusion_ckpt',
39
+ None,
40
+ help='Path to source diffusion model checkpoint',
41
+ required=True,
42
+ )
43
+
44
+ _DECODER_CKPT = flags.DEFINE_string(
45
+ 'decoder_ckpt',
46
+ None,
47
+ help='Path to source image decoder model checkpoint',
48
+ required=True,
49
+ )
50
+
51
+ _OUTPUT_DIR = flags.DEFINE_string(
52
+ 'output_dir',
53
+ None,
54
+ help='Path to the converted TF Lite directory.',
55
+ required=True,
56
+ )
57
+
58
+ _QUANTIZE = flags.DEFINE_bool(
59
+ 'quantize',
60
+ help='Whether to quantize the model during conversion.',
61
+ default=True,
62
+ )
63
+
64
+ _DEVICE_TYPE = flags.DEFINE_string(
65
+ 'device_type',
66
+ 'cpu',
67
+ help='The device type of the model. Currently supported: cpu, gpu.',
68
+ )
69
+
70
+
71
+ @torch.inference_mode
72
+ def convert_stable_diffusion_to_tflite(
73
+ output_dir: str,
74
+ clip_ckpt_path: str,
75
+ diffusion_ckpt_path: str,
76
+ decoder_ckpt_path: str,
77
+ image_height: int = 512,
78
+ image_width: int = 512,
79
+ quantize: bool = True,
80
+ ):
81
+
82
+ clip_model = clip.CLIP(clip.get_model_config())
83
+ loader = stable_diffusion_loader.ClipModelLoader(
84
+ clip_ckpt_path,
85
+ clip.TENSOR_NAMES,
86
+ )
87
+ loader.load(clip_model, strict=False)
88
+
89
+ diffusion_model = diffusion.Diffusion(
90
+ diffusion.get_model_config(batch_size=2, device_type=_DEVICE_TYPE.value)
91
+ )
92
+ diffusion_loader = stable_diffusion_loader.DiffusionModelLoader(
93
+ diffusion_ckpt_path, diffusion.TENSOR_NAMES
94
+ )
95
+ diffusion_loader.load(diffusion_model, strict=False)
96
+
97
+ decoder_model = decoder.Decoder(
98
+ decoder.get_model_config(device_type=_DEVICE_TYPE.value)
99
+ )
100
+ decoder_loader = stable_diffusion_loader.AutoEncoderModelLoader(
101
+ decoder_ckpt_path, decoder.TENSOR_NAMES
102
+ )
103
+ decoder_loader.load(decoder_model, strict=False)
104
+
105
+ # TODO(yichunk): enable image encoder conversion
106
+ # if encoder_ckpt_path is not None:
107
+ # encoder = Encoder()
108
+ # encoder.load_state_dict(torch.load(encoder_ckpt_path))
109
+
110
+ # Tensors used to trace the model graph during conversion.
111
+ n_tokens = 77
112
+ timestamp = 0
113
+ len_prompt = 1
114
+ prompt_tokens = torch.full((1, n_tokens), 0, dtype=torch.int)
115
+ input_image = torch.full(
116
+ (1, 3, image_height, image_width), 0, dtype=torch.float32
117
+ )
118
+ noise = torch.full(
119
+ (len_prompt, 4, image_height // 8, image_width // 8),
120
+ 0,
121
+ dtype=torch.float32,
122
+ )
123
+
124
+ input_latents = torch.zeros_like(noise)
125
+ context_cond = clip_model(prompt_tokens)
126
+ context_uncond = torch.zeros_like(context_cond)
127
+ context = torch.cat([context_cond, context_uncond], axis=0)
128
+ time_embedding = util.get_time_embedding(timestamp)
129
+
130
+ if not os.path.exists(output_dir):
131
+ pathlib.Path(output_dir).mkdir(parents=True, exist_ok=True)
132
+
133
+ quant_config = (
134
+ quant_recipes.full_int8_weight_only_recipe() if quantize else None
135
+ )
136
+
137
+ # TODO(yichunk): convert to multi signature tflite model.
138
+ # CLIP text encoder
139
+ ai_edge_torch.signature('encode', clip_model, (prompt_tokens,)).convert(
140
+ quant_config=quant_config
141
+ ).export(f'{output_dir}/clip.tflite')
142
+
143
+ # TODO(yichunk): enable image encoder conversion
144
+ # Image encoder
145
+ # ai_edge_torch.signature('encode', encoder, (input_image, noise)).convert(quant_config=quant_config).export(
146
+ # f'{output_dir}/encoder.tflite'
147
+ # )
148
+
149
+ # Diffusion
150
+ ai_edge_torch.signature(
151
+ 'diffusion',
152
+ diffusion_model,
153
+ (torch.repeat_interleave(input_latents, 2, 0), context, time_embedding),
154
+ ).convert(quant_config=quant_config).export(f'{output_dir}/diffusion.tflite')
155
+
156
+ # Image decoder
157
+ ai_edge_torch.signature('decode', decoder_model, (input_latents,)).convert(
158
+ quant_config=quant_config
159
+ ).export(f'{output_dir}/decoder.tflite')
160
+
161
+
162
+ def main(_):
163
+ convert_stable_diffusion_to_tflite(
164
+ output_dir=_OUTPUT_DIR.value,
165
+ clip_ckpt_path=_CLIP_CKPT.value,
166
+ diffusion_ckpt_path=_DIFFUSION_CKPT.value,
167
+ decoder_ckpt_path=_DECODER_CKPT.value,
168
+ quantize=_QUANTIZE.value,
169
+ )
170
+
171
+
172
+ if __name__ == '__main__':
173
+ app.run(main)