ai-edge-torch-nightly 0.3.0.dev20250114__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- ai_edge_torch/__init__.py +32 -0
- ai_edge_torch/_config.py +69 -0
- ai_edge_torch/_convert/__init__.py +14 -0
- ai_edge_torch/_convert/conversion.py +153 -0
- ai_edge_torch/_convert/conversion_utils.py +64 -0
- ai_edge_torch/_convert/converter.py +270 -0
- ai_edge_torch/_convert/fx_passes/__init__.py +23 -0
- ai_edge_torch/_convert/fx_passes/build_aten_composite_pass.py +288 -0
- ai_edge_torch/_convert/fx_passes/build_interpolate_composite_pass.py +131 -0
- ai_edge_torch/_convert/fx_passes/inject_mlir_debuginfo_pass.py +73 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/__init__.py +16 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_check.py +258 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_mark.py +50 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +18 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +68 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +216 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +449 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +30 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/pass_body.py +303 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/utils.py +64 -0
- ai_edge_torch/_convert/fx_passes/remove_non_user_outputs_pass.py +52 -0
- ai_edge_torch/_convert/signature.py +66 -0
- ai_edge_torch/_convert/test/__init__.py +14 -0
- ai_edge_torch/_convert/test/test_convert.py +558 -0
- ai_edge_torch/_convert/test/test_convert_composites.py +234 -0
- ai_edge_torch/_convert/test/test_convert_multisig.py +189 -0
- ai_edge_torch/_convert/test/test_to_channel_last_io.py +96 -0
- ai_edge_torch/_convert/to_channel_last_io.py +92 -0
- ai_edge_torch/conftest.py +20 -0
- ai_edge_torch/debug/__init__.py +17 -0
- ai_edge_torch/debug/culprit.py +496 -0
- ai_edge_torch/debug/test/__init__.py +14 -0
- ai_edge_torch/debug/test/test_culprit.py +140 -0
- ai_edge_torch/debug/test/test_search_model.py +51 -0
- ai_edge_torch/debug/utils.py +59 -0
- ai_edge_torch/experimental/__init__.py +14 -0
- ai_edge_torch/fx_pass_base.py +110 -0
- ai_edge_torch/generative/__init__.py +14 -0
- ai_edge_torch/generative/examples/__init__.py +14 -0
- ai_edge_torch/generative/examples/amd_llama_135m/__init__.py +14 -0
- ai_edge_torch/generative/examples/amd_llama_135m/amd_llama_135m.py +87 -0
- ai_edge_torch/generative/examples/amd_llama_135m/convert_to_tflite.py +70 -0
- ai_edge_torch/generative/examples/amd_llama_135m/verify.py +72 -0
- ai_edge_torch/generative/examples/gemma/__init__.py +14 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/gemma/gemma1.py +107 -0
- ai_edge_torch/generative/examples/gemma/gemma2.py +295 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma1.py +56 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma2.py +43 -0
- ai_edge_torch/generative/examples/gemma/verify_util.py +157 -0
- ai_edge_torch/generative/examples/llama/__init__.py +14 -0
- ai_edge_torch/generative/examples/llama/convert_to_tflite.py +91 -0
- ai_edge_torch/generative/examples/llama/llama.py +196 -0
- ai_edge_torch/generative/examples/llama/verify.py +88 -0
- ai_edge_torch/generative/examples/moonshine/__init__.py +14 -0
- ai_edge_torch/generative/examples/moonshine/convert_moonshine_to_tflite.py +50 -0
- ai_edge_torch/generative/examples/moonshine/moonshine.py +103 -0
- ai_edge_torch/generative/examples/openelm/__init__.py +14 -0
- ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/openelm/openelm.py +127 -0
- ai_edge_torch/generative/examples/openelm/verify.py +71 -0
- ai_edge_torch/generative/examples/paligemma/__init__.py +14 -0
- ai_edge_torch/generative/examples/paligemma/convert_to_tflite.py +95 -0
- ai_edge_torch/generative/examples/paligemma/decoder.py +151 -0
- ai_edge_torch/generative/examples/paligemma/decoder2.py +177 -0
- ai_edge_torch/generative/examples/paligemma/image_encoder.py +160 -0
- ai_edge_torch/generative/examples/paligemma/paligemma.py +179 -0
- ai_edge_torch/generative/examples/paligemma/verify.py +161 -0
- ai_edge_torch/generative/examples/paligemma/verify_decoder.py +75 -0
- ai_edge_torch/generative/examples/paligemma/verify_decoder2.py +72 -0
- ai_edge_torch/generative/examples/paligemma/verify_image_encoder.py +99 -0
- ai_edge_torch/generative/examples/phi/__init__.py +14 -0
- ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/phi/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/phi/phi2.py +107 -0
- ai_edge_torch/generative/examples/phi/phi3.py +219 -0
- ai_edge_torch/generative/examples/phi/verify.py +64 -0
- ai_edge_torch/generative/examples/phi/verify_phi3.py +69 -0
- ai_edge_torch/generative/examples/qwen/__init__.py +14 -0
- ai_edge_torch/generative/examples/qwen/convert_to_tflite.py +93 -0
- ai_edge_torch/generative/examples/qwen/qwen.py +134 -0
- ai_edge_torch/generative/examples/qwen/verify.py +88 -0
- ai_edge_torch/generative/examples/smollm/__init__.py +14 -0
- ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/smollm/convert_v2_to_tflite.py +71 -0
- ai_edge_torch/generative/examples/smollm/smollm.py +125 -0
- ai_edge_torch/generative/examples/smollm/verify.py +86 -0
- ai_edge_torch/generative/examples/stable_diffusion/__init__.py +14 -0
- ai_edge_torch/generative/examples/stable_diffusion/attention.py +108 -0
- ai_edge_torch/generative/examples/stable_diffusion/clip.py +185 -0
- ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +173 -0
- ai_edge_torch/generative/examples/stable_diffusion/decoder.py +398 -0
- ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +749 -0
- ai_edge_torch/generative/examples/stable_diffusion/encoder.py +119 -0
- ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +254 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/__init__.py +19 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +62 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +66 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +74 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +39 -0
- ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +111 -0
- ai_edge_torch/generative/examples/stable_diffusion/util.py +77 -0
- ai_edge_torch/generative/examples/t5/__init__.py +14 -0
- ai_edge_torch/generative/examples/t5/convert_to_tflite.py +138 -0
- ai_edge_torch/generative/examples/t5/t5.py +655 -0
- ai_edge_torch/generative/examples/t5/t5_attention.py +246 -0
- ai_edge_torch/generative/examples/test_models/__init__.py +14 -0
- ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
- ai_edge_torch/generative/examples/test_models/toy_model.py +156 -0
- ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +138 -0
- ai_edge_torch/generative/examples/tiny_llama/__init__.py +14 -0
- ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +88 -0
- ai_edge_torch/generative/examples/tiny_llama/verify.py +72 -0
- ai_edge_torch/generative/fx_passes/__init__.py +30 -0
- ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +50 -0
- ai_edge_torch/generative/layers/__init__.py +14 -0
- ai_edge_torch/generative/layers/attention.py +399 -0
- ai_edge_torch/generative/layers/attention_utils.py +210 -0
- ai_edge_torch/generative/layers/builder.py +160 -0
- ai_edge_torch/generative/layers/feed_forward.py +120 -0
- ai_edge_torch/generative/layers/kv_cache.py +204 -0
- ai_edge_torch/generative/layers/lora.py +557 -0
- ai_edge_torch/generative/layers/model_config.py +238 -0
- ai_edge_torch/generative/layers/normalization.py +222 -0
- ai_edge_torch/generative/layers/rotary_position_embedding.py +94 -0
- ai_edge_torch/generative/layers/scaled_dot_product_attention.py +144 -0
- ai_edge_torch/generative/layers/unet/__init__.py +14 -0
- ai_edge_torch/generative/layers/unet/blocks_2d.py +806 -0
- ai_edge_torch/generative/layers/unet/builder.py +50 -0
- ai_edge_torch/generative/layers/unet/model_config.py +282 -0
- ai_edge_torch/generative/quantize/__init__.py +14 -0
- ai_edge_torch/generative/quantize/example.py +47 -0
- ai_edge_torch/generative/quantize/quant_attrs.py +68 -0
- ai_edge_torch/generative/quantize/quant_recipe.py +154 -0
- ai_edge_torch/generative/quantize/quant_recipe_utils.py +62 -0
- ai_edge_torch/generative/quantize/quant_recipes.py +56 -0
- ai_edge_torch/generative/quantize/supported_schemes.py +32 -0
- ai_edge_torch/generative/test/__init__.py +14 -0
- ai_edge_torch/generative/test/test_custom_dus.py +107 -0
- ai_edge_torch/generative/test/test_kv_cache.py +120 -0
- ai_edge_torch/generative/test/test_loader.py +83 -0
- ai_edge_torch/generative/test/test_lora.py +147 -0
- ai_edge_torch/generative/test/test_model_conversion.py +191 -0
- ai_edge_torch/generative/test/test_model_conversion_large.py +362 -0
- ai_edge_torch/generative/test/test_quantize.py +183 -0
- ai_edge_torch/generative/test/utils.py +82 -0
- ai_edge_torch/generative/utilities/__init__.py +15 -0
- ai_edge_torch/generative/utilities/converter.py +215 -0
- ai_edge_torch/generative/utilities/dynamic_update_slice.py +56 -0
- ai_edge_torch/generative/utilities/loader.py +398 -0
- ai_edge_torch/generative/utilities/model_builder.py +180 -0
- ai_edge_torch/generative/utilities/moonshine_loader.py +154 -0
- ai_edge_torch/generative/utilities/stable_diffusion_loader.py +1032 -0
- ai_edge_torch/generative/utilities/t5_loader.py +512 -0
- ai_edge_torch/generative/utilities/transformers_verifier.py +42 -0
- ai_edge_torch/generative/utilities/verifier.py +335 -0
- ai_edge_torch/hlfb/__init__.py +16 -0
- ai_edge_torch/hlfb/mark_pattern/__init__.py +153 -0
- ai_edge_torch/hlfb/mark_pattern/fx_utils.py +69 -0
- ai_edge_torch/hlfb/mark_pattern/pattern.py +288 -0
- ai_edge_torch/hlfb/test/__init__.py +14 -0
- ai_edge_torch/hlfb/test/test_mark_pattern.py +185 -0
- ai_edge_torch/lowertools/__init__.py +18 -0
- ai_edge_torch/lowertools/_shim.py +86 -0
- ai_edge_torch/lowertools/common_utils.py +142 -0
- ai_edge_torch/lowertools/odml_torch_utils.py +260 -0
- ai_edge_torch/lowertools/test_utils.py +62 -0
- ai_edge_torch/lowertools/torch_xla_utils.py +301 -0
- ai_edge_torch/lowertools/translate_recipe.py +163 -0
- ai_edge_torch/model.py +177 -0
- ai_edge_torch/odml_torch/__init__.py +20 -0
- ai_edge_torch/odml_torch/_torch_future.py +88 -0
- ai_edge_torch/odml_torch/_torch_library.py +19 -0
- ai_edge_torch/odml_torch/composite/__init__.py +16 -0
- ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
- ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
- ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
- ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
- ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
- ai_edge_torch/odml_torch/export.py +403 -0
- ai_edge_torch/odml_torch/export_utils.py +157 -0
- ai_edge_torch/odml_torch/jax_bridge/__init__.py +18 -0
- ai_edge_torch/odml_torch/jax_bridge/_wrap.py +180 -0
- ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
- ai_edge_torch/odml_torch/lowerings/__init__.py +27 -0
- ai_edge_torch/odml_torch/lowerings/_basic.py +294 -0
- ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
- ai_edge_torch/odml_torch/lowerings/_convolution.py +243 -0
- ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +285 -0
- ai_edge_torch/odml_torch/lowerings/_layer_norm.py +87 -0
- ai_edge_torch/odml_torch/lowerings/_quantized_decomposed.py +177 -0
- ai_edge_torch/odml_torch/lowerings/_rand.py +142 -0
- ai_edge_torch/odml_torch/lowerings/context.py +42 -0
- ai_edge_torch/odml_torch/lowerings/decomp.py +69 -0
- ai_edge_torch/odml_torch/lowerings/registry.py +65 -0
- ai_edge_torch/odml_torch/lowerings/utils.py +201 -0
- ai_edge_torch/odml_torch/passes/__init__.py +38 -0
- ai_edge_torch/odml_torch/tf_integration.py +156 -0
- ai_edge_torch/quantize/__init__.py +16 -0
- ai_edge_torch/quantize/pt2e_quantizer.py +466 -0
- ai_edge_torch/quantize/pt2e_quantizer_utils.py +1061 -0
- ai_edge_torch/quantize/quant_config.py +85 -0
- ai_edge_torch/testing/__init__.py +14 -0
- ai_edge_torch/testing/model_coverage/__init__.py +16 -0
- ai_edge_torch/testing/model_coverage/model_coverage.py +145 -0
- ai_edge_torch/version.py +16 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/LICENSE +202 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/METADATA +44 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/RECORD +213 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/WHEEL +5 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/top_level.txt +1 -0
@@ -0,0 +1,86 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Verifies the reauthored SmolLM-135M model."""
|
17
|
+
|
18
|
+
import logging
|
19
|
+
import pathlib
|
20
|
+
|
21
|
+
from absl import app
|
22
|
+
from absl import flags
|
23
|
+
from ai_edge_torch.generative.examples.smollm import smollm
|
24
|
+
from ai_edge_torch.generative.utilities import transformers_verifier
|
25
|
+
from ai_edge_torch.generative.utilities import verifier
|
26
|
+
import transformers
|
27
|
+
|
28
|
+
|
29
|
+
_PROMPTS = flags.DEFINE_multi_string(
|
30
|
+
"prompts",
|
31
|
+
"What is the meaning of life?",
|
32
|
+
"The input prompts to generate answers.",
|
33
|
+
)
|
34
|
+
_MAX_NEW_TOKENS = flags.DEFINE_integer(
|
35
|
+
"max_new_tokens",
|
36
|
+
30,
|
37
|
+
"The maximum size of the generated tokens.",
|
38
|
+
)
|
39
|
+
_MODEL_VERSION = flags.DEFINE_enum(
|
40
|
+
"model_version",
|
41
|
+
"v1",
|
42
|
+
["v1", "v2"],
|
43
|
+
"The version of SmolLm to verify.",
|
44
|
+
)
|
45
|
+
_CHECKPOINT = {
|
46
|
+
"v1": "HuggingFaceTB/SmolLM-135M",
|
47
|
+
"v2": "HuggingFaceTB/SmolLM2-135M",
|
48
|
+
}
|
49
|
+
|
50
|
+
_BUILDER = {
|
51
|
+
"v1": smollm.build_model,
|
52
|
+
"v2": smollm.build_model_v2,
|
53
|
+
}
|
54
|
+
|
55
|
+
|
56
|
+
def main(_):
|
57
|
+
checkpoint = _CHECKPOINT[_MODEL_VERSION.value]
|
58
|
+
builder = _BUILDER[_MODEL_VERSION.value]
|
59
|
+
logging.info("Loading the original model from: %s", checkpoint)
|
60
|
+
original_model = transformers.AutoModelForCausalLM.from_pretrained(checkpoint)
|
61
|
+
|
62
|
+
# Locate the cached dir.
|
63
|
+
cached_config_file = transformers.utils.cached_file(
|
64
|
+
checkpoint, transformers.utils.CONFIG_NAME
|
65
|
+
)
|
66
|
+
reauthored_checkpoint = pathlib.Path(cached_config_file).parent
|
67
|
+
logging.info("Building the reauthored model from: %s", reauthored_checkpoint)
|
68
|
+
reauthored_model = builder(reauthored_checkpoint)
|
69
|
+
|
70
|
+
logging.info("Loading the tokenizer from: %s", checkpoint)
|
71
|
+
tokenizer = transformers.AutoTokenizer.from_pretrained(checkpoint)
|
72
|
+
|
73
|
+
verifier.verify_reauthored_model(
|
74
|
+
original_model=transformers_verifier.TransformersModelWrapper(
|
75
|
+
original_model
|
76
|
+
),
|
77
|
+
reauthored_model=verifier.ReauthoredModelWrapper(reauthored_model),
|
78
|
+
tokenizer=verifier.TokenizerWrapper(tokenizer),
|
79
|
+
generate_prompts=_PROMPTS.value,
|
80
|
+
max_new_tokens=_MAX_NEW_TOKENS.value,
|
81
|
+
atol=1e-04,
|
82
|
+
)
|
83
|
+
|
84
|
+
|
85
|
+
if __name__ == "__main__":
|
86
|
+
app.run(main)
|
@@ -0,0 +1,14 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
@@ -0,0 +1,108 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
import math
|
17
|
+
|
18
|
+
import torch
|
19
|
+
from torch import _decomp
|
20
|
+
from torch import nn
|
21
|
+
from torch._prims_common import mask_tensor
|
22
|
+
from torch._prims_common.wrappers import out_wrapper
|
23
|
+
from torch.nn import functional as F
|
24
|
+
|
25
|
+
|
26
|
+
def triu(a):
|
27
|
+
h, w = a.shape[-2:]
|
28
|
+
mask = (
|
29
|
+
torch.arange(w, device=a.device).unsqueeze(-2)
|
30
|
+
- torch.arange(h, device=a.device).unsqueeze(-1)
|
31
|
+
) >= 1
|
32
|
+
mask = torch.broadcast_to(mask, a.shape)
|
33
|
+
return torch.ops.aten.logical_and(a, mask).contiguous()
|
34
|
+
|
35
|
+
|
36
|
+
# _decomp.decomposition_table[torch.ops.aten.triu.default] = triu
|
37
|
+
|
38
|
+
|
39
|
+
class SelfAttention(nn.Module):
|
40
|
+
|
41
|
+
def __init__(self, n_heads, d_embed, in_proj_bias=True, out_proj_bias=True):
|
42
|
+
super().__init__()
|
43
|
+
self.in_proj = nn.Linear(d_embed, 3 * d_embed, bias=in_proj_bias)
|
44
|
+
self.out_proj = nn.Linear(d_embed, d_embed, bias=out_proj_bias)
|
45
|
+
self.n_heads = n_heads
|
46
|
+
self.d_head = d_embed // n_heads
|
47
|
+
|
48
|
+
def forward(self, x, causal_mask=False):
|
49
|
+
input_shape = x.shape
|
50
|
+
batch_size, sequence_length, d_embed = input_shape
|
51
|
+
interim_shape = (batch_size, sequence_length, self.n_heads, self.d_head)
|
52
|
+
|
53
|
+
q, k, v = self.in_proj(x).chunk(3, dim=-1)
|
54
|
+
|
55
|
+
q = q.view(interim_shape).transpose(1, 2)
|
56
|
+
k = k.view(interim_shape).transpose(1, 2)
|
57
|
+
v = v.view(interim_shape).transpose(1, 2)
|
58
|
+
|
59
|
+
weight = q @ k.transpose(-1, -2)
|
60
|
+
if causal_mask:
|
61
|
+
# mask = torch.ones_like(weight, dtype=torch.bool).triu(1)
|
62
|
+
mask = triu(torch.ones_like(weight, dtype=torch.bool))
|
63
|
+
weight.masked_fill_(mask, -torch.inf)
|
64
|
+
weight /= math.sqrt(self.d_head)
|
65
|
+
weight = F.softmax(weight, dim=-1)
|
66
|
+
|
67
|
+
output = weight @ v
|
68
|
+
output = output.transpose(1, 2)
|
69
|
+
output = output.reshape(input_shape)
|
70
|
+
output = self.out_proj(output)
|
71
|
+
return output
|
72
|
+
|
73
|
+
|
74
|
+
class CrossAttention(nn.Module):
|
75
|
+
|
76
|
+
def __init__(
|
77
|
+
self, n_heads, d_embed, d_cross, in_proj_bias=True, out_proj_bias=True
|
78
|
+
):
|
79
|
+
super().__init__()
|
80
|
+
self.q_proj = nn.Linear(d_embed, d_embed, bias=in_proj_bias)
|
81
|
+
self.k_proj = nn.Linear(d_cross, d_embed, bias=in_proj_bias)
|
82
|
+
self.v_proj = nn.Linear(d_cross, d_embed, bias=in_proj_bias)
|
83
|
+
self.out_proj = nn.Linear(d_embed, d_embed, bias=out_proj_bias)
|
84
|
+
self.n_heads = n_heads
|
85
|
+
self.d_head = d_embed // n_heads
|
86
|
+
|
87
|
+
def forward(self, x, y):
|
88
|
+
input_shape = x.shape
|
89
|
+
batch_size, sequence_length, d_embed = input_shape
|
90
|
+
interim_shape = (batch_size, -1, self.n_heads, self.d_head)
|
91
|
+
|
92
|
+
q = self.q_proj(x)
|
93
|
+
k = self.k_proj(y)
|
94
|
+
v = self.v_proj(y)
|
95
|
+
|
96
|
+
q = q.view(interim_shape).transpose(1, 2)
|
97
|
+
k = k.view(interim_shape).transpose(1, 2)
|
98
|
+
v = v.view(interim_shape).transpose(1, 2)
|
99
|
+
|
100
|
+
weight = q @ k.transpose(-1, -2)
|
101
|
+
weight /= math.sqrt(self.d_head)
|
102
|
+
weight = F.softmax(weight, dim=-1)
|
103
|
+
|
104
|
+
output = weight @ v
|
105
|
+
output = output.transpose(1, 2).contiguous()
|
106
|
+
output = output.view(input_shape)
|
107
|
+
output = self.out_proj(output)
|
108
|
+
return output
|
@@ -0,0 +1,185 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
from ai_edge_torch.generative.layers.attention import TransformerBlock
|
17
|
+
import ai_edge_torch.generative.layers.attention_utils as attention_utils
|
18
|
+
import ai_edge_torch.generative.layers.builder as builder
|
19
|
+
import ai_edge_torch.generative.layers.model_config as cfg
|
20
|
+
import ai_edge_torch.generative.utilities.loader as loading_utils
|
21
|
+
import torch
|
22
|
+
from torch import nn
|
23
|
+
|
24
|
+
TENSOR_NAMES = loading_utils.ModelLoader.TensorNames(
|
25
|
+
ff_up_proj=(
|
26
|
+
"cond_stage_model.transformer.text_model.encoder.layers.{}.mlp.fc1"
|
27
|
+
),
|
28
|
+
ff_down_proj=(
|
29
|
+
"cond_stage_model.transformer.text_model.encoder.layers.{}.mlp.fc2"
|
30
|
+
),
|
31
|
+
attn_query_proj="cond_stage_model.transformer.text_model.encoder.layers.{}.self_attn.q_proj",
|
32
|
+
attn_key_proj="cond_stage_model.transformer.text_model.encoder.layers.{}.self_attn.k_proj",
|
33
|
+
attn_value_proj="cond_stage_model.transformer.text_model.encoder.layers.{}.self_attn.v_proj",
|
34
|
+
attn_output_proj="cond_stage_model.transformer.text_model.encoder.layers.{}.self_attn.out_proj",
|
35
|
+
pre_attn_norm=(
|
36
|
+
"cond_stage_model.transformer.text_model.encoder.layers.{}.layer_norm1"
|
37
|
+
),
|
38
|
+
post_attn_norm=(
|
39
|
+
"cond_stage_model.transformer.text_model.encoder.layers.{}.layer_norm2"
|
40
|
+
),
|
41
|
+
embedding=(
|
42
|
+
"cond_stage_model.transformer.text_model.embeddings.token_embedding"
|
43
|
+
),
|
44
|
+
embedding_position="cond_stage_model.transformer.text_model.embeddings.position_embedding.weight",
|
45
|
+
final_norm="cond_stage_model.transformer.text_model.final_layer_norm",
|
46
|
+
lm_head=None,
|
47
|
+
)
|
48
|
+
|
49
|
+
|
50
|
+
class CLIP(nn.Module):
|
51
|
+
"""CLIP text encoder.
|
52
|
+
|
53
|
+
For details, see https://arxiv.org/abs/2103.00020
|
54
|
+
"""
|
55
|
+
|
56
|
+
def __init__(self, config: cfg.ModelConfig):
|
57
|
+
super().__init__()
|
58
|
+
self.tok_embedding = nn.Embedding(config.vocab_size, config.embedding_dim)
|
59
|
+
self.tok_embedding_position = nn.Parameter(
|
60
|
+
torch.zeros((config.max_seq_len, config.embedding_dim))
|
61
|
+
)
|
62
|
+
|
63
|
+
self.config = config
|
64
|
+
# CLIP has only one block config.
|
65
|
+
block_config = config.block_config(0)
|
66
|
+
self.transformer_blocks = nn.ModuleList(
|
67
|
+
TransformerBlock(block_config, config) for _ in range(config.num_layers)
|
68
|
+
)
|
69
|
+
self.final_norm = builder.build_norm(
|
70
|
+
config.embedding_dim, config.final_norm_config
|
71
|
+
)
|
72
|
+
|
73
|
+
self.mask_cache = attention_utils.build_causal_mask_cache(
|
74
|
+
size=config.max_seq_len, dtype=torch.float32
|
75
|
+
)
|
76
|
+
|
77
|
+
@torch.inference_mode
|
78
|
+
def forward(self, tokens: torch.IntTensor) -> torch.FloatTensor:
|
79
|
+
state = self.tok_embedding(tokens) + self.tok_embedding_position
|
80
|
+
for layer in self.transformer_blocks:
|
81
|
+
state = layer(state, mask=self.mask_cache)
|
82
|
+
output = self.final_norm(state)
|
83
|
+
return output
|
84
|
+
|
85
|
+
|
86
|
+
def get_model_config() -> cfg.ModelConfig:
|
87
|
+
"""Get configs for the CLIP of Stable Diffusion v1.5."""
|
88
|
+
max_seq_len = 77
|
89
|
+
vocab_size = 49408
|
90
|
+
num_layers = 12
|
91
|
+
num_heads = 12
|
92
|
+
num_query_groups = 12
|
93
|
+
embedding_dim = 768
|
94
|
+
|
95
|
+
attn_config = cfg.AttentionConfig(
|
96
|
+
num_heads=num_heads,
|
97
|
+
head_dim=embedding_dim // num_heads,
|
98
|
+
num_query_groups=num_query_groups,
|
99
|
+
rotary_base=0,
|
100
|
+
rotary_percentage=0.0,
|
101
|
+
qkv_use_bias=True,
|
102
|
+
qkv_transpose_before_split=True,
|
103
|
+
qkv_fused_interleaved=False,
|
104
|
+
output_proj_use_bias=True,
|
105
|
+
enable_kv_cache=False,
|
106
|
+
)
|
107
|
+
|
108
|
+
ff_config = cfg.FeedForwardConfig(
|
109
|
+
type=cfg.FeedForwardType.SEQUENTIAL,
|
110
|
+
activation=cfg.ActivationConfig(cfg.ActivationType.GELU_QUICK),
|
111
|
+
intermediate_size=embedding_dim * 4,
|
112
|
+
use_bias=True,
|
113
|
+
)
|
114
|
+
|
115
|
+
norm_config = cfg.NormalizationConfig(type=cfg.NormalizationType.LAYER_NORM)
|
116
|
+
|
117
|
+
block_config = cfg.TransformerBlockConfig(
|
118
|
+
attn_config=attn_config,
|
119
|
+
ff_config=ff_config,
|
120
|
+
pre_attention_norm_config=norm_config,
|
121
|
+
post_attention_norm_config=norm_config,
|
122
|
+
)
|
123
|
+
|
124
|
+
config = cfg.ModelConfig(
|
125
|
+
vocab_size=vocab_size,
|
126
|
+
num_layers=num_layers,
|
127
|
+
max_seq_len=max_seq_len,
|
128
|
+
embedding_dim=embedding_dim,
|
129
|
+
block_configs=block_config,
|
130
|
+
final_norm_config=norm_config,
|
131
|
+
enable_hlfb=True,
|
132
|
+
)
|
133
|
+
|
134
|
+
return config
|
135
|
+
|
136
|
+
|
137
|
+
def get_fake_model_config() -> cfg.ModelConfig:
|
138
|
+
"""Get fake configs for the CLIP of Stable Diffusion v1.5 for testing."""
|
139
|
+
max_seq_len = 6
|
140
|
+
vocab_size = 100
|
141
|
+
num_layers = 2
|
142
|
+
num_heads = 12
|
143
|
+
num_query_groups = 12
|
144
|
+
embedding_dim = 24
|
145
|
+
|
146
|
+
attn_config = cfg.AttentionConfig(
|
147
|
+
num_heads=num_heads,
|
148
|
+
head_dim=embedding_dim // num_heads,
|
149
|
+
num_query_groups=num_query_groups,
|
150
|
+
rotary_base=0,
|
151
|
+
rotary_percentage=0.0,
|
152
|
+
qkv_use_bias=True,
|
153
|
+
qkv_transpose_before_split=True,
|
154
|
+
qkv_fused_interleaved=False,
|
155
|
+
output_proj_use_bias=True,
|
156
|
+
enable_kv_cache=False,
|
157
|
+
)
|
158
|
+
|
159
|
+
ff_config = cfg.FeedForwardConfig(
|
160
|
+
type=cfg.FeedForwardType.SEQUENTIAL,
|
161
|
+
activation=cfg.ActivationConfig(cfg.ActivationType.GELU_QUICK),
|
162
|
+
intermediate_size=embedding_dim * 4,
|
163
|
+
use_bias=True,
|
164
|
+
)
|
165
|
+
|
166
|
+
norm_config = cfg.NormalizationConfig(type=cfg.NormalizationType.LAYER_NORM)
|
167
|
+
|
168
|
+
block_config = cfg.TransformerBlockConfig(
|
169
|
+
attn_config=attn_config,
|
170
|
+
ff_config=ff_config,
|
171
|
+
pre_attention_norm_config=norm_config,
|
172
|
+
post_attention_norm_config=norm_config,
|
173
|
+
)
|
174
|
+
|
175
|
+
config = cfg.ModelConfig(
|
176
|
+
vocab_size=vocab_size,
|
177
|
+
num_layers=num_layers,
|
178
|
+
max_seq_len=max_seq_len,
|
179
|
+
embedding_dim=embedding_dim,
|
180
|
+
block_configs=block_config,
|
181
|
+
final_norm_config=norm_config,
|
182
|
+
enable_hlfb=True,
|
183
|
+
)
|
184
|
+
|
185
|
+
return config
|
@@ -0,0 +1,173 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
import os
|
17
|
+
import pathlib
|
18
|
+
|
19
|
+
from absl import app
|
20
|
+
from absl import flags
|
21
|
+
import ai_edge_torch
|
22
|
+
from ai_edge_torch.generative.examples.stable_diffusion import clip
|
23
|
+
from ai_edge_torch.generative.examples.stable_diffusion import decoder
|
24
|
+
from ai_edge_torch.generative.examples.stable_diffusion import diffusion
|
25
|
+
from ai_edge_torch.generative.examples.stable_diffusion import util
|
26
|
+
from ai_edge_torch.generative.quantize import quant_recipes
|
27
|
+
from ai_edge_torch.generative.utilities import stable_diffusion_loader
|
28
|
+
import torch
|
29
|
+
|
30
|
+
_CLIP_CKPT = flags.DEFINE_string(
|
31
|
+
'clip_ckpt',
|
32
|
+
None,
|
33
|
+
help='Path to source CLIP model checkpoint',
|
34
|
+
required=True,
|
35
|
+
)
|
36
|
+
|
37
|
+
_DIFFUSION_CKPT = flags.DEFINE_string(
|
38
|
+
'diffusion_ckpt',
|
39
|
+
None,
|
40
|
+
help='Path to source diffusion model checkpoint',
|
41
|
+
required=True,
|
42
|
+
)
|
43
|
+
|
44
|
+
_DECODER_CKPT = flags.DEFINE_string(
|
45
|
+
'decoder_ckpt',
|
46
|
+
None,
|
47
|
+
help='Path to source image decoder model checkpoint',
|
48
|
+
required=True,
|
49
|
+
)
|
50
|
+
|
51
|
+
_OUTPUT_DIR = flags.DEFINE_string(
|
52
|
+
'output_dir',
|
53
|
+
None,
|
54
|
+
help='Path to the converted TF Lite directory.',
|
55
|
+
required=True,
|
56
|
+
)
|
57
|
+
|
58
|
+
_QUANTIZE = flags.DEFINE_bool(
|
59
|
+
'quantize',
|
60
|
+
help='Whether to quantize the model during conversion.',
|
61
|
+
default=True,
|
62
|
+
)
|
63
|
+
|
64
|
+
_DEVICE_TYPE = flags.DEFINE_string(
|
65
|
+
'device_type',
|
66
|
+
'cpu',
|
67
|
+
help='The device type of the model. Currently supported: cpu, gpu.',
|
68
|
+
)
|
69
|
+
|
70
|
+
|
71
|
+
@torch.inference_mode
|
72
|
+
def convert_stable_diffusion_to_tflite(
|
73
|
+
output_dir: str,
|
74
|
+
clip_ckpt_path: str,
|
75
|
+
diffusion_ckpt_path: str,
|
76
|
+
decoder_ckpt_path: str,
|
77
|
+
image_height: int = 512,
|
78
|
+
image_width: int = 512,
|
79
|
+
quantize: bool = True,
|
80
|
+
):
|
81
|
+
|
82
|
+
clip_model = clip.CLIP(clip.get_model_config())
|
83
|
+
loader = stable_diffusion_loader.ClipModelLoader(
|
84
|
+
clip_ckpt_path,
|
85
|
+
clip.TENSOR_NAMES,
|
86
|
+
)
|
87
|
+
loader.load(clip_model, strict=False)
|
88
|
+
|
89
|
+
diffusion_model = diffusion.Diffusion(
|
90
|
+
diffusion.get_model_config(batch_size=2, device_type=_DEVICE_TYPE.value)
|
91
|
+
)
|
92
|
+
diffusion_loader = stable_diffusion_loader.DiffusionModelLoader(
|
93
|
+
diffusion_ckpt_path, diffusion.TENSOR_NAMES
|
94
|
+
)
|
95
|
+
diffusion_loader.load(diffusion_model, strict=False)
|
96
|
+
|
97
|
+
decoder_model = decoder.Decoder(
|
98
|
+
decoder.get_model_config(device_type=_DEVICE_TYPE.value)
|
99
|
+
)
|
100
|
+
decoder_loader = stable_diffusion_loader.AutoEncoderModelLoader(
|
101
|
+
decoder_ckpt_path, decoder.TENSOR_NAMES
|
102
|
+
)
|
103
|
+
decoder_loader.load(decoder_model, strict=False)
|
104
|
+
|
105
|
+
# TODO(yichunk): enable image encoder conversion
|
106
|
+
# if encoder_ckpt_path is not None:
|
107
|
+
# encoder = Encoder()
|
108
|
+
# encoder.load_state_dict(torch.load(encoder_ckpt_path))
|
109
|
+
|
110
|
+
# Tensors used to trace the model graph during conversion.
|
111
|
+
n_tokens = 77
|
112
|
+
timestamp = 0
|
113
|
+
len_prompt = 1
|
114
|
+
prompt_tokens = torch.full((1, n_tokens), 0, dtype=torch.int)
|
115
|
+
input_image = torch.full(
|
116
|
+
(1, 3, image_height, image_width), 0, dtype=torch.float32
|
117
|
+
)
|
118
|
+
noise = torch.full(
|
119
|
+
(len_prompt, 4, image_height // 8, image_width // 8),
|
120
|
+
0,
|
121
|
+
dtype=torch.float32,
|
122
|
+
)
|
123
|
+
|
124
|
+
input_latents = torch.zeros_like(noise)
|
125
|
+
context_cond = clip_model(prompt_tokens)
|
126
|
+
context_uncond = torch.zeros_like(context_cond)
|
127
|
+
context = torch.cat([context_cond, context_uncond], axis=0)
|
128
|
+
time_embedding = util.get_time_embedding(timestamp)
|
129
|
+
|
130
|
+
if not os.path.exists(output_dir):
|
131
|
+
pathlib.Path(output_dir).mkdir(parents=True, exist_ok=True)
|
132
|
+
|
133
|
+
quant_config = (
|
134
|
+
quant_recipes.full_int8_weight_only_recipe() if quantize else None
|
135
|
+
)
|
136
|
+
|
137
|
+
# TODO(yichunk): convert to multi signature tflite model.
|
138
|
+
# CLIP text encoder
|
139
|
+
ai_edge_torch.signature('encode', clip_model, (prompt_tokens,)).convert(
|
140
|
+
quant_config=quant_config
|
141
|
+
).export(f'{output_dir}/clip.tflite')
|
142
|
+
|
143
|
+
# TODO(yichunk): enable image encoder conversion
|
144
|
+
# Image encoder
|
145
|
+
# ai_edge_torch.signature('encode', encoder, (input_image, noise)).convert(quant_config=quant_config).export(
|
146
|
+
# f'{output_dir}/encoder.tflite'
|
147
|
+
# )
|
148
|
+
|
149
|
+
# Diffusion
|
150
|
+
ai_edge_torch.signature(
|
151
|
+
'diffusion',
|
152
|
+
diffusion_model,
|
153
|
+
(torch.repeat_interleave(input_latents, 2, 0), context, time_embedding),
|
154
|
+
).convert(quant_config=quant_config).export(f'{output_dir}/diffusion.tflite')
|
155
|
+
|
156
|
+
# Image decoder
|
157
|
+
ai_edge_torch.signature('decode', decoder_model, (input_latents,)).convert(
|
158
|
+
quant_config=quant_config
|
159
|
+
).export(f'{output_dir}/decoder.tflite')
|
160
|
+
|
161
|
+
|
162
|
+
def main(_):
|
163
|
+
convert_stable_diffusion_to_tflite(
|
164
|
+
output_dir=_OUTPUT_DIR.value,
|
165
|
+
clip_ckpt_path=_CLIP_CKPT.value,
|
166
|
+
diffusion_ckpt_path=_DIFFUSION_CKPT.value,
|
167
|
+
decoder_ckpt_path=_DECODER_CKPT.value,
|
168
|
+
quantize=_QUANTIZE.value,
|
169
|
+
)
|
170
|
+
|
171
|
+
|
172
|
+
if __name__ == '__main__':
|
173
|
+
app.run(main)
|