ai-edge-torch-nightly 0.3.0.dev20250114__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- ai_edge_torch/__init__.py +32 -0
- ai_edge_torch/_config.py +69 -0
- ai_edge_torch/_convert/__init__.py +14 -0
- ai_edge_torch/_convert/conversion.py +153 -0
- ai_edge_torch/_convert/conversion_utils.py +64 -0
- ai_edge_torch/_convert/converter.py +270 -0
- ai_edge_torch/_convert/fx_passes/__init__.py +23 -0
- ai_edge_torch/_convert/fx_passes/build_aten_composite_pass.py +288 -0
- ai_edge_torch/_convert/fx_passes/build_interpolate_composite_pass.py +131 -0
- ai_edge_torch/_convert/fx_passes/inject_mlir_debuginfo_pass.py +73 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/__init__.py +16 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_check.py +258 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_mark.py +50 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +18 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +68 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +216 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +449 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +30 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/pass_body.py +303 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/utils.py +64 -0
- ai_edge_torch/_convert/fx_passes/remove_non_user_outputs_pass.py +52 -0
- ai_edge_torch/_convert/signature.py +66 -0
- ai_edge_torch/_convert/test/__init__.py +14 -0
- ai_edge_torch/_convert/test/test_convert.py +558 -0
- ai_edge_torch/_convert/test/test_convert_composites.py +234 -0
- ai_edge_torch/_convert/test/test_convert_multisig.py +189 -0
- ai_edge_torch/_convert/test/test_to_channel_last_io.py +96 -0
- ai_edge_torch/_convert/to_channel_last_io.py +92 -0
- ai_edge_torch/conftest.py +20 -0
- ai_edge_torch/debug/__init__.py +17 -0
- ai_edge_torch/debug/culprit.py +496 -0
- ai_edge_torch/debug/test/__init__.py +14 -0
- ai_edge_torch/debug/test/test_culprit.py +140 -0
- ai_edge_torch/debug/test/test_search_model.py +51 -0
- ai_edge_torch/debug/utils.py +59 -0
- ai_edge_torch/experimental/__init__.py +14 -0
- ai_edge_torch/fx_pass_base.py +110 -0
- ai_edge_torch/generative/__init__.py +14 -0
- ai_edge_torch/generative/examples/__init__.py +14 -0
- ai_edge_torch/generative/examples/amd_llama_135m/__init__.py +14 -0
- ai_edge_torch/generative/examples/amd_llama_135m/amd_llama_135m.py +87 -0
- ai_edge_torch/generative/examples/amd_llama_135m/convert_to_tflite.py +70 -0
- ai_edge_torch/generative/examples/amd_llama_135m/verify.py +72 -0
- ai_edge_torch/generative/examples/gemma/__init__.py +14 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/gemma/gemma1.py +107 -0
- ai_edge_torch/generative/examples/gemma/gemma2.py +295 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma1.py +56 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma2.py +43 -0
- ai_edge_torch/generative/examples/gemma/verify_util.py +157 -0
- ai_edge_torch/generative/examples/llama/__init__.py +14 -0
- ai_edge_torch/generative/examples/llama/convert_to_tflite.py +91 -0
- ai_edge_torch/generative/examples/llama/llama.py +196 -0
- ai_edge_torch/generative/examples/llama/verify.py +88 -0
- ai_edge_torch/generative/examples/moonshine/__init__.py +14 -0
- ai_edge_torch/generative/examples/moonshine/convert_moonshine_to_tflite.py +50 -0
- ai_edge_torch/generative/examples/moonshine/moonshine.py +103 -0
- ai_edge_torch/generative/examples/openelm/__init__.py +14 -0
- ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/openelm/openelm.py +127 -0
- ai_edge_torch/generative/examples/openelm/verify.py +71 -0
- ai_edge_torch/generative/examples/paligemma/__init__.py +14 -0
- ai_edge_torch/generative/examples/paligemma/convert_to_tflite.py +95 -0
- ai_edge_torch/generative/examples/paligemma/decoder.py +151 -0
- ai_edge_torch/generative/examples/paligemma/decoder2.py +177 -0
- ai_edge_torch/generative/examples/paligemma/image_encoder.py +160 -0
- ai_edge_torch/generative/examples/paligemma/paligemma.py +179 -0
- ai_edge_torch/generative/examples/paligemma/verify.py +161 -0
- ai_edge_torch/generative/examples/paligemma/verify_decoder.py +75 -0
- ai_edge_torch/generative/examples/paligemma/verify_decoder2.py +72 -0
- ai_edge_torch/generative/examples/paligemma/verify_image_encoder.py +99 -0
- ai_edge_torch/generative/examples/phi/__init__.py +14 -0
- ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/phi/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/phi/phi2.py +107 -0
- ai_edge_torch/generative/examples/phi/phi3.py +219 -0
- ai_edge_torch/generative/examples/phi/verify.py +64 -0
- ai_edge_torch/generative/examples/phi/verify_phi3.py +69 -0
- ai_edge_torch/generative/examples/qwen/__init__.py +14 -0
- ai_edge_torch/generative/examples/qwen/convert_to_tflite.py +93 -0
- ai_edge_torch/generative/examples/qwen/qwen.py +134 -0
- ai_edge_torch/generative/examples/qwen/verify.py +88 -0
- ai_edge_torch/generative/examples/smollm/__init__.py +14 -0
- ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/smollm/convert_v2_to_tflite.py +71 -0
- ai_edge_torch/generative/examples/smollm/smollm.py +125 -0
- ai_edge_torch/generative/examples/smollm/verify.py +86 -0
- ai_edge_torch/generative/examples/stable_diffusion/__init__.py +14 -0
- ai_edge_torch/generative/examples/stable_diffusion/attention.py +108 -0
- ai_edge_torch/generative/examples/stable_diffusion/clip.py +185 -0
- ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +173 -0
- ai_edge_torch/generative/examples/stable_diffusion/decoder.py +398 -0
- ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +749 -0
- ai_edge_torch/generative/examples/stable_diffusion/encoder.py +119 -0
- ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +254 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/__init__.py +19 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +62 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +66 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +74 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +39 -0
- ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +111 -0
- ai_edge_torch/generative/examples/stable_diffusion/util.py +77 -0
- ai_edge_torch/generative/examples/t5/__init__.py +14 -0
- ai_edge_torch/generative/examples/t5/convert_to_tflite.py +138 -0
- ai_edge_torch/generative/examples/t5/t5.py +655 -0
- ai_edge_torch/generative/examples/t5/t5_attention.py +246 -0
- ai_edge_torch/generative/examples/test_models/__init__.py +14 -0
- ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
- ai_edge_torch/generative/examples/test_models/toy_model.py +156 -0
- ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +138 -0
- ai_edge_torch/generative/examples/tiny_llama/__init__.py +14 -0
- ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +88 -0
- ai_edge_torch/generative/examples/tiny_llama/verify.py +72 -0
- ai_edge_torch/generative/fx_passes/__init__.py +30 -0
- ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +50 -0
- ai_edge_torch/generative/layers/__init__.py +14 -0
- ai_edge_torch/generative/layers/attention.py +399 -0
- ai_edge_torch/generative/layers/attention_utils.py +210 -0
- ai_edge_torch/generative/layers/builder.py +160 -0
- ai_edge_torch/generative/layers/feed_forward.py +120 -0
- ai_edge_torch/generative/layers/kv_cache.py +204 -0
- ai_edge_torch/generative/layers/lora.py +557 -0
- ai_edge_torch/generative/layers/model_config.py +238 -0
- ai_edge_torch/generative/layers/normalization.py +222 -0
- ai_edge_torch/generative/layers/rotary_position_embedding.py +94 -0
- ai_edge_torch/generative/layers/scaled_dot_product_attention.py +144 -0
- ai_edge_torch/generative/layers/unet/__init__.py +14 -0
- ai_edge_torch/generative/layers/unet/blocks_2d.py +806 -0
- ai_edge_torch/generative/layers/unet/builder.py +50 -0
- ai_edge_torch/generative/layers/unet/model_config.py +282 -0
- ai_edge_torch/generative/quantize/__init__.py +14 -0
- ai_edge_torch/generative/quantize/example.py +47 -0
- ai_edge_torch/generative/quantize/quant_attrs.py +68 -0
- ai_edge_torch/generative/quantize/quant_recipe.py +154 -0
- ai_edge_torch/generative/quantize/quant_recipe_utils.py +62 -0
- ai_edge_torch/generative/quantize/quant_recipes.py +56 -0
- ai_edge_torch/generative/quantize/supported_schemes.py +32 -0
- ai_edge_torch/generative/test/__init__.py +14 -0
- ai_edge_torch/generative/test/test_custom_dus.py +107 -0
- ai_edge_torch/generative/test/test_kv_cache.py +120 -0
- ai_edge_torch/generative/test/test_loader.py +83 -0
- ai_edge_torch/generative/test/test_lora.py +147 -0
- ai_edge_torch/generative/test/test_model_conversion.py +191 -0
- ai_edge_torch/generative/test/test_model_conversion_large.py +362 -0
- ai_edge_torch/generative/test/test_quantize.py +183 -0
- ai_edge_torch/generative/test/utils.py +82 -0
- ai_edge_torch/generative/utilities/__init__.py +15 -0
- ai_edge_torch/generative/utilities/converter.py +215 -0
- ai_edge_torch/generative/utilities/dynamic_update_slice.py +56 -0
- ai_edge_torch/generative/utilities/loader.py +398 -0
- ai_edge_torch/generative/utilities/model_builder.py +180 -0
- ai_edge_torch/generative/utilities/moonshine_loader.py +154 -0
- ai_edge_torch/generative/utilities/stable_diffusion_loader.py +1032 -0
- ai_edge_torch/generative/utilities/t5_loader.py +512 -0
- ai_edge_torch/generative/utilities/transformers_verifier.py +42 -0
- ai_edge_torch/generative/utilities/verifier.py +335 -0
- ai_edge_torch/hlfb/__init__.py +16 -0
- ai_edge_torch/hlfb/mark_pattern/__init__.py +153 -0
- ai_edge_torch/hlfb/mark_pattern/fx_utils.py +69 -0
- ai_edge_torch/hlfb/mark_pattern/pattern.py +288 -0
- ai_edge_torch/hlfb/test/__init__.py +14 -0
- ai_edge_torch/hlfb/test/test_mark_pattern.py +185 -0
- ai_edge_torch/lowertools/__init__.py +18 -0
- ai_edge_torch/lowertools/_shim.py +86 -0
- ai_edge_torch/lowertools/common_utils.py +142 -0
- ai_edge_torch/lowertools/odml_torch_utils.py +260 -0
- ai_edge_torch/lowertools/test_utils.py +62 -0
- ai_edge_torch/lowertools/torch_xla_utils.py +301 -0
- ai_edge_torch/lowertools/translate_recipe.py +163 -0
- ai_edge_torch/model.py +177 -0
- ai_edge_torch/odml_torch/__init__.py +20 -0
- ai_edge_torch/odml_torch/_torch_future.py +88 -0
- ai_edge_torch/odml_torch/_torch_library.py +19 -0
- ai_edge_torch/odml_torch/composite/__init__.py +16 -0
- ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
- ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
- ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
- ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
- ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
- ai_edge_torch/odml_torch/export.py +403 -0
- ai_edge_torch/odml_torch/export_utils.py +157 -0
- ai_edge_torch/odml_torch/jax_bridge/__init__.py +18 -0
- ai_edge_torch/odml_torch/jax_bridge/_wrap.py +180 -0
- ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
- ai_edge_torch/odml_torch/lowerings/__init__.py +27 -0
- ai_edge_torch/odml_torch/lowerings/_basic.py +294 -0
- ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
- ai_edge_torch/odml_torch/lowerings/_convolution.py +243 -0
- ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +285 -0
- ai_edge_torch/odml_torch/lowerings/_layer_norm.py +87 -0
- ai_edge_torch/odml_torch/lowerings/_quantized_decomposed.py +177 -0
- ai_edge_torch/odml_torch/lowerings/_rand.py +142 -0
- ai_edge_torch/odml_torch/lowerings/context.py +42 -0
- ai_edge_torch/odml_torch/lowerings/decomp.py +69 -0
- ai_edge_torch/odml_torch/lowerings/registry.py +65 -0
- ai_edge_torch/odml_torch/lowerings/utils.py +201 -0
- ai_edge_torch/odml_torch/passes/__init__.py +38 -0
- ai_edge_torch/odml_torch/tf_integration.py +156 -0
- ai_edge_torch/quantize/__init__.py +16 -0
- ai_edge_torch/quantize/pt2e_quantizer.py +466 -0
- ai_edge_torch/quantize/pt2e_quantizer_utils.py +1061 -0
- ai_edge_torch/quantize/quant_config.py +85 -0
- ai_edge_torch/testing/__init__.py +14 -0
- ai_edge_torch/testing/model_coverage/__init__.py +16 -0
- ai_edge_torch/testing/model_coverage/model_coverage.py +145 -0
- ai_edge_torch/version.py +16 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/LICENSE +202 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/METADATA +44 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/RECORD +213 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/WHEEL +5 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/top_level.txt +1 -0
@@ -0,0 +1,160 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
# Builder class for individual components.
|
16
|
+
from typing import Callable
|
17
|
+
|
18
|
+
import ai_edge_torch.generative.layers.feed_forward as feed_forward
|
19
|
+
import ai_edge_torch.generative.layers.model_config as cfg
|
20
|
+
import ai_edge_torch.generative.layers.normalization as normalization
|
21
|
+
import torch
|
22
|
+
from torch import nn
|
23
|
+
import torch.nn.functional as F
|
24
|
+
|
25
|
+
|
26
|
+
class GeGLU(nn.Module):
|
27
|
+
"""GeGLU is an activation function which is a variant of GELU.
|
28
|
+
|
29
|
+
GeGLU(x) = (xW+b) * GELU(xV+c)
|
30
|
+
See: https://arxiv.org/abs/2002.05202v1
|
31
|
+
"""
|
32
|
+
|
33
|
+
def __init__(self, d_in: int, d_out: int):
|
34
|
+
super().__init__()
|
35
|
+
self.proj = nn.Linear(d_in, d_out * 2)
|
36
|
+
|
37
|
+
def forward(self, x: torch.Tensor):
|
38
|
+
x, gate = self.proj(x).chunk(2, dim=-1)
|
39
|
+
return x * F.gelu(gate)
|
40
|
+
|
41
|
+
|
42
|
+
class SwiGLU(nn.Module):
|
43
|
+
"""SwiGLU is an activation function which is a variant of GLU.
|
44
|
+
|
45
|
+
SwiGLU is same as SiLU_GLU, because The SiLU function is also known as the
|
46
|
+
swish function.
|
47
|
+
|
48
|
+
SwiGLU(x) = Swish(xW+b) * (xV+c)
|
49
|
+
See: https://paperswithcode.com/method/swiglu
|
50
|
+
"""
|
51
|
+
|
52
|
+
def forward(self, x: torch.Tensor):
|
53
|
+
x, y = x.chunk(2, dim=-1)
|
54
|
+
return F.silu(x) * y
|
55
|
+
|
56
|
+
|
57
|
+
def build_norm(dim: int, config: cfg.NormalizationConfig):
|
58
|
+
"""Builder function for normalizers.
|
59
|
+
|
60
|
+
Args:
|
61
|
+
dim (int): dimension of the input tensor.
|
62
|
+
config (`NormalizationConfig` object): the normalization configuration.
|
63
|
+
|
64
|
+
Returns:
|
65
|
+
The constructed `nn.Module` normalization layer.
|
66
|
+
|
67
|
+
Raises:
|
68
|
+
ValueError: If config's `layer_norm_type` is not supported.
|
69
|
+
"""
|
70
|
+
if config.type == cfg.NormalizationType.NONE:
|
71
|
+
return lambda x: x
|
72
|
+
elif config.type == cfg.NormalizationType.RMS_NORM:
|
73
|
+
return normalization.RMSNorm(
|
74
|
+
dim,
|
75
|
+
eps=config.epsilon,
|
76
|
+
zero_centered_gamma=config.zero_centered,
|
77
|
+
enable_hlfb=config.enable_hlfb,
|
78
|
+
)
|
79
|
+
elif config.type == cfg.NormalizationType.LAYER_NORM:
|
80
|
+
return normalization.LayerNorm(dim, config.epsilon, config.enable_hlfb)
|
81
|
+
elif config.type == cfg.NormalizationType.GROUP_NORM:
|
82
|
+
return normalization.GroupNorm(
|
83
|
+
config.group_num, dim, config.epsilon, config.enable_hlfb
|
84
|
+
)
|
85
|
+
else:
|
86
|
+
raise ValueError("Unsupported norm type.")
|
87
|
+
|
88
|
+
|
89
|
+
def build_ff(dim: int, config: cfg.FeedForwardConfig):
|
90
|
+
"""Builder function for Feed Forward. Supports `Sequential` and `Gated`.
|
91
|
+
|
92
|
+
Args:
|
93
|
+
dim (int): dimension of the input tensor.
|
94
|
+
config (`FeedForwardConfig` object): the model configuration.
|
95
|
+
|
96
|
+
Returns:
|
97
|
+
The constructed `nn.Module` feedforward layer.
|
98
|
+
|
99
|
+
Raises:
|
100
|
+
ValueError: If config's `ff_type` is not supported.
|
101
|
+
"""
|
102
|
+
ff_type = config.type
|
103
|
+
if ff_type == cfg.FeedForwardType.SEQUENTIAL:
|
104
|
+
ff_module = feed_forward.SequentialFeedForward
|
105
|
+
elif ff_type == cfg.FeedForwardType.GATED:
|
106
|
+
ff_module = feed_forward.GatedFeedForward
|
107
|
+
else:
|
108
|
+
raise ValueError("Unsupported feedforward type.")
|
109
|
+
|
110
|
+
activation = get_activation(config.activation)
|
111
|
+
|
112
|
+
pre_ff_norm = build_norm(dim, config.pre_ff_norm_config)
|
113
|
+
post_ff_norm = build_norm(dim, config.post_ff_norm_config)
|
114
|
+
|
115
|
+
return ff_module(
|
116
|
+
dim=dim,
|
117
|
+
hidden_dim=config.intermediate_size,
|
118
|
+
activation=activation,
|
119
|
+
use_bias=config.use_bias,
|
120
|
+
use_glu=(
|
121
|
+
config.activation.type == cfg.ActivationType.GE_GLU
|
122
|
+
or config.activation.type == cfg.ActivationType.SILU_GLU
|
123
|
+
),
|
124
|
+
pre_ff_norm=pre_ff_norm,
|
125
|
+
post_ff_norm=post_ff_norm,
|
126
|
+
)
|
127
|
+
|
128
|
+
|
129
|
+
def get_activation(config: cfg.ActivationConfig):
|
130
|
+
"""Get pytorch callable activation from the activation config.
|
131
|
+
|
132
|
+
Args:
|
133
|
+
config (cfg.ActivationConfig): activation config.
|
134
|
+
|
135
|
+
Returns:
|
136
|
+
Activation function.
|
137
|
+
|
138
|
+
Raises:
|
139
|
+
ValueError: If activation config is not supported.
|
140
|
+
"""
|
141
|
+
if config.type == cfg.ActivationType.LINEAR:
|
142
|
+
return lambda x: x
|
143
|
+
elif config.type == cfg.ActivationType.SILU:
|
144
|
+
return F.silu
|
145
|
+
elif config.type == cfg.ActivationType.GELU:
|
146
|
+
return F.gelu
|
147
|
+
elif config.type == cfg.ActivationType.GELU_TANH:
|
148
|
+
return lambda x: F.gelu(x, approximate="tanh")
|
149
|
+
elif config.type == cfg.ActivationType.GELU_QUICK:
|
150
|
+
# GELU approximation that is fast but somewhat inaccurate.
|
151
|
+
# See: https://github.com/hendrycks/GELUs
|
152
|
+
return lambda x: x * F.sigmoid(1.702 * x)
|
153
|
+
elif config.type == cfg.ActivationType.GE_GLU:
|
154
|
+
return GeGLU(config.dim_in, config.dim_out)
|
155
|
+
elif config.type == cfg.ActivationType.RELU:
|
156
|
+
return F.relu
|
157
|
+
elif config.type == cfg.ActivationType.SILU_GLU:
|
158
|
+
return SwiGLU()
|
159
|
+
else:
|
160
|
+
raise ValueError("Unsupported activation type.")
|
@@ -0,0 +1,120 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
# Common building blocks for FeedForward layers.
|
16
|
+
|
17
|
+
from typing import Callable, Optional
|
18
|
+
|
19
|
+
import torch
|
20
|
+
from torch import nn
|
21
|
+
|
22
|
+
|
23
|
+
class SequentialFeedForward(nn.Module):
|
24
|
+
"""Vanilla sequential Feedforward with customizable activation."""
|
25
|
+
|
26
|
+
def __init__(
|
27
|
+
self,
|
28
|
+
dim: int,
|
29
|
+
hidden_dim: int,
|
30
|
+
activation: Callable[[torch.Tensor], torch.Tensor],
|
31
|
+
use_bias=False,
|
32
|
+
use_glu=False,
|
33
|
+
pre_ff_norm: Optional[Callable[[torch.Tensor], torch.Tensor]] = None,
|
34
|
+
post_ff_norm: Optional[Callable[[torch.Tensor], torch.Tensor]] = None,
|
35
|
+
):
|
36
|
+
"""Init function for feedforward layer.
|
37
|
+
|
38
|
+
Args:
|
39
|
+
dim (int): embedding size.
|
40
|
+
hidden_dim (int): hidden dim size of the feedforward layer.
|
41
|
+
activation (Callable): activation function used in this block.
|
42
|
+
use_bias (Boolean): whether to use bias. Default is false.
|
43
|
+
use_glu (Boolean): whether to use glu in activation. Default is false.
|
44
|
+
pre_ff_norm (Callable): pre feedforward norm. Default is None.
|
45
|
+
post_ff_norm (Callable): post feedforward norm. Default is None.
|
46
|
+
"""
|
47
|
+
super().__init__()
|
48
|
+
self.act = activation
|
49
|
+
if use_glu:
|
50
|
+
self.w1 = nn.Linear(dim, hidden_dim * 2, bias=use_bias)
|
51
|
+
else:
|
52
|
+
self.w1 = nn.Linear(dim, hidden_dim, bias=use_bias)
|
53
|
+
self.w2 = nn.Linear(hidden_dim, dim, bias=use_bias)
|
54
|
+
self.pre_ff_norm = pre_ff_norm if pre_ff_norm else lambda x: x
|
55
|
+
self.post_ff_norm = post_ff_norm if post_ff_norm else lambda x: x
|
56
|
+
|
57
|
+
def forward(self, x):
|
58
|
+
"""Forward pass for Feedforward layer.
|
59
|
+
|
60
|
+
Args:
|
61
|
+
x (torch.Tensor): the input tensor.
|
62
|
+
|
63
|
+
Returns:
|
64
|
+
torch.Tensor: output tensor after feedforward.
|
65
|
+
"""
|
66
|
+
x_norm = self.pre_ff_norm(x)
|
67
|
+
out = self.w2(self.act(self.w1(x_norm)))
|
68
|
+
return self.post_ff_norm(out)
|
69
|
+
|
70
|
+
|
71
|
+
class GatedFeedForward(nn.Module):
|
72
|
+
"""Gated Feedforward with customizable activation.
|
73
|
+
|
74
|
+
https://arxiv.org/pdf/2002.05202v1.pdf
|
75
|
+
"""
|
76
|
+
|
77
|
+
def __init__(
|
78
|
+
self,
|
79
|
+
dim: int,
|
80
|
+
hidden_dim: int,
|
81
|
+
activation: Callable[[torch.Tensor], torch.Tensor],
|
82
|
+
use_bias=False,
|
83
|
+
use_glu=False,
|
84
|
+
pre_ff_norm: Optional[Callable[[torch.Tensor], torch.Tensor]] = None,
|
85
|
+
post_ff_norm: Optional[Callable[[torch.Tensor], torch.Tensor]] = None,
|
86
|
+
):
|
87
|
+
"""Init function for feedforward layer.
|
88
|
+
|
89
|
+
Args:
|
90
|
+
dim (int): embedding size.
|
91
|
+
hidden_dim (int): hidden dim size of the feedforward layer.
|
92
|
+
activation (Callable): activation function used in this block.
|
93
|
+
use_bias (Boolean): whether to use bias. Default is false.
|
94
|
+
use_glu (Boolean): whether to use glu in activation. Default is false.
|
95
|
+
pre_ff_norm (Callable): pre feedforward norm. Default is None.
|
96
|
+
post_ff_norm (Callable): post feedforward norm. Default is None.
|
97
|
+
"""
|
98
|
+
super().__init__()
|
99
|
+
self.act = activation
|
100
|
+
if use_glu:
|
101
|
+
self.w1 = nn.Linear(dim, hidden_dim * 2, bias=use_bias)
|
102
|
+
else:
|
103
|
+
self.w1 = nn.Linear(dim, hidden_dim, bias=use_bias)
|
104
|
+
self.w2 = nn.Linear(hidden_dim, dim, bias=use_bias)
|
105
|
+
self.w3 = nn.Linear(dim, hidden_dim, bias=use_bias)
|
106
|
+
self.pre_ff_norm = pre_ff_norm if pre_ff_norm else lambda x: x
|
107
|
+
self.post_ff_norm = post_ff_norm if post_ff_norm else lambda x: x
|
108
|
+
|
109
|
+
def forward(self, x):
|
110
|
+
"""Forward pass for Feedforward layer.
|
111
|
+
|
112
|
+
Args:
|
113
|
+
x (torch.Tensor): the input tensor.
|
114
|
+
|
115
|
+
Returns:
|
116
|
+
torch.Tensor: output tensor after feedforward.
|
117
|
+
"""
|
118
|
+
x_norm = self.pre_ff_norm(x)
|
119
|
+
out = self.w2(self.act(self.w1(x_norm)) * self.w3(x_norm))
|
120
|
+
return self.post_ff_norm(out)
|
@@ -0,0 +1,204 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Utility functions for externalized KV Cache."""
|
17
|
+
|
18
|
+
import dataclasses
|
19
|
+
from typing import List, Tuple
|
20
|
+
|
21
|
+
from ai_edge_torch import hlfb
|
22
|
+
from ai_edge_torch.generative.layers import model_config
|
23
|
+
from ai_edge_torch.generative.utilities.dynamic_update_slice import dynamic_update_slice
|
24
|
+
import torch
|
25
|
+
import torch.utils._pytree as pytree
|
26
|
+
|
27
|
+
BATCH_SIZE = 1
|
28
|
+
|
29
|
+
|
30
|
+
@dataclasses.dataclass
|
31
|
+
class KVCacheEntry:
|
32
|
+
"""A single cache entry that includes K and V caches.
|
33
|
+
|
34
|
+
The chaches are built based on the provided config with the shape of
|
35
|
+
(batch_size=1, kv_cache_max, num_query_groups, head_dim).
|
36
|
+
"""
|
37
|
+
|
38
|
+
k_cache: torch.Tensor
|
39
|
+
v_cache: torch.Tensor
|
40
|
+
|
41
|
+
@classmethod
|
42
|
+
def from_model_config(
|
43
|
+
cls,
|
44
|
+
kv_cache_max: int,
|
45
|
+
config: model_config.AttentionConfig,
|
46
|
+
dtype: torch.dtype = torch.float32,
|
47
|
+
device: torch.device = None,
|
48
|
+
) -> "KVCacheEntry":
|
49
|
+
"""Build an instance of the class based on model config."""
|
50
|
+
shape = (BATCH_SIZE, kv_cache_max, config.num_query_groups, config.head_dim)
|
51
|
+
k = torch.zeros(shape, dtype=dtype, device=device)
|
52
|
+
v = torch.zeros(shape, dtype=dtype, device=device)
|
53
|
+
obj = cls(k_cache=k, v_cache=v)
|
54
|
+
return obj
|
55
|
+
|
56
|
+
|
57
|
+
@dataclasses.dataclass
|
58
|
+
class KVCache:
|
59
|
+
"""A utility class for holding KV cache entries per layer."""
|
60
|
+
|
61
|
+
caches: Tuple[KVCacheEntry, ...]
|
62
|
+
|
63
|
+
@classmethod
|
64
|
+
def from_model_config(
|
65
|
+
cls,
|
66
|
+
config: model_config.ModelConfig,
|
67
|
+
dtype: torch.dtype = torch.float32,
|
68
|
+
device: torch.device = None,
|
69
|
+
) -> "KVCache":
|
70
|
+
"""Build an instance of the class based on model config.
|
71
|
+
|
72
|
+
Args:
|
73
|
+
config (ModelConfig): Model config used for building the cache.
|
74
|
+
dtype (torch.dtype, optional): The data type of the cache tensor.
|
75
|
+
Defaults to torch.float32.
|
76
|
+
device (torch.device, optional): The device placement of the cache
|
77
|
+
tensors. Defaults to None.
|
78
|
+
|
79
|
+
Returns:
|
80
|
+
KVCache: The created cache object.
|
81
|
+
"""
|
82
|
+
caches = [
|
83
|
+
KVCacheEntry.from_model_config(
|
84
|
+
config.kv_cache_max,
|
85
|
+
config.block_config(idx).attn_config,
|
86
|
+
dtype,
|
87
|
+
device,
|
88
|
+
)
|
89
|
+
for idx in range(config.num_layers)
|
90
|
+
]
|
91
|
+
obj = cls(caches=tuple(caches))
|
92
|
+
return obj
|
93
|
+
|
94
|
+
def flatten(self) -> List[torch.Tensor]:
|
95
|
+
"""Flatten the cache entries into a list of tensors with order k_i, v_i."""
|
96
|
+
flattened, _ = _flatten_kvc(self)
|
97
|
+
return flattened
|
98
|
+
|
99
|
+
|
100
|
+
def _flatten_kvc(kvc: KVCache) -> Tuple[List[str], List[str]]:
|
101
|
+
flattened = []
|
102
|
+
flat_names = []
|
103
|
+
none_names = []
|
104
|
+
for i, kv_entry in enumerate(kvc.caches):
|
105
|
+
flattened.append(kv_entry.k_cache)
|
106
|
+
flat_names.append(f"k_{i}")
|
107
|
+
flattened.append(kv_entry.v_cache)
|
108
|
+
flat_names.append(f"v_{i}")
|
109
|
+
return flattened, [flat_names, none_names]
|
110
|
+
|
111
|
+
|
112
|
+
def _flatten_kvc_with_keys(kvc: KVCache) -> Tuple[List, List]:
|
113
|
+
flattened, (flat_names, none_names) = _flatten_kvc(kvc)
|
114
|
+
return [
|
115
|
+
(pytree.MappingKey(k), v) for k, v in zip(flat_names, flattened)
|
116
|
+
], flat_names
|
117
|
+
|
118
|
+
|
119
|
+
def _unflatten_kvc(
|
120
|
+
values: List[torch.Tensor], context: Tuple[List, List]
|
121
|
+
) -> KVCache:
|
122
|
+
assert len(values) % 2 == 0, "Found odd number of K and V entries."
|
123
|
+
num_layers = len(values) // 2
|
124
|
+
flat_names = context[0]
|
125
|
+
kv_entries = []
|
126
|
+
for i in range(num_layers):
|
127
|
+
k_cache_idx = flat_names.index(f"k_{i}")
|
128
|
+
v_cache_idx = flat_names.index(f"v_{i}")
|
129
|
+
kv_entries.append(
|
130
|
+
KVCacheEntry(k_cache=values[k_cache_idx], v_cache=values[v_cache_idx])
|
131
|
+
)
|
132
|
+
obj = KVCache(tuple(kv_entries))
|
133
|
+
return obj
|
134
|
+
|
135
|
+
|
136
|
+
pytree.register_pytree_node(
|
137
|
+
KVCache,
|
138
|
+
_flatten_kvc,
|
139
|
+
_unflatten_kvc,
|
140
|
+
flatten_with_keys_fn=_flatten_kvc_with_keys,
|
141
|
+
serialized_type_name="",
|
142
|
+
)
|
143
|
+
|
144
|
+
|
145
|
+
def update(
|
146
|
+
cache: KVCacheEntry,
|
147
|
+
input_pos: torch.Tensor,
|
148
|
+
k_slice: torch.Tensor,
|
149
|
+
v_slice: torch.Tensor,
|
150
|
+
use_dus: bool = True,
|
151
|
+
) -> KVCacheEntry:
|
152
|
+
"""Out of place update of Cache buffer.
|
153
|
+
|
154
|
+
Args:
|
155
|
+
cache (KVCacheEntry): The original cache buffer.
|
156
|
+
input_pos (torch.Tensor): The update slice positions.
|
157
|
+
k_slice (torch.Tensor): The K slice to be updated in the new cache.
|
158
|
+
v_slice (torch.Tensor): The V slice to be updated in the new cache.
|
159
|
+
|
160
|
+
Returns:
|
161
|
+
KVCacheEntry: The updated KVCache entry based on the passed inputs.
|
162
|
+
"""
|
163
|
+
update_kv_cache = _update_kv_impl if use_dus else _update_kv_base_impl
|
164
|
+
return update_kv_cache(cache, input_pos, k_slice, v_slice)
|
165
|
+
|
166
|
+
|
167
|
+
def _update_kv_base_impl(
|
168
|
+
cache: KVCacheEntry,
|
169
|
+
input_pos: torch.Tensor,
|
170
|
+
k_slice: torch.Tensor,
|
171
|
+
v_slice: torch.Tensor,
|
172
|
+
) -> KVCacheEntry:
|
173
|
+
"""Update the cache buffer without High Level Function Boundary annotation."""
|
174
|
+
k = cache.k_cache.index_copy(1, input_pos.to(torch.long), k_slice)
|
175
|
+
v = cache.v_cache.index_copy(1, input_pos.to(torch.long), v_slice)
|
176
|
+
updated_cache = KVCacheEntry(k, v)
|
177
|
+
return updated_cache
|
178
|
+
|
179
|
+
|
180
|
+
def _get_slice_indices(positions: torch.Tensor) -> torch.Tensor:
|
181
|
+
"""Dynamic Update Slice updates are a variadic sequence of 0-rank tensors."""
|
182
|
+
|
183
|
+
zero = torch.zeros([]).int()
|
184
|
+
positions = positions.int()[0].reshape([])
|
185
|
+
return [zero, positions, zero, zero]
|
186
|
+
|
187
|
+
|
188
|
+
def _update_kv_impl(
|
189
|
+
cache: KVCacheEntry,
|
190
|
+
input_pos: torch.Tensor,
|
191
|
+
k_slice: torch.Tensor,
|
192
|
+
v_slice: torch.Tensor,
|
193
|
+
) -> KVCacheEntry:
|
194
|
+
"""Update the cache buffer for K and V caches."""
|
195
|
+
# NB: Here assume that input_pos == range(input_pos[0], len(input_pos))
|
196
|
+
|
197
|
+
k_slice_indices = _get_slice_indices(input_pos)
|
198
|
+
v_slice_indices = _get_slice_indices(input_pos)
|
199
|
+
|
200
|
+
k = dynamic_update_slice(cache.k_cache, k_slice, k_slice_indices)
|
201
|
+
v = dynamic_update_slice(cache.v_cache, v_slice, v_slice_indices)
|
202
|
+
|
203
|
+
updated_cache = KVCacheEntry(k, v)
|
204
|
+
return updated_cache
|