ai-edge-torch-nightly 0.3.0.dev20250114__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- ai_edge_torch/__init__.py +32 -0
- ai_edge_torch/_config.py +69 -0
- ai_edge_torch/_convert/__init__.py +14 -0
- ai_edge_torch/_convert/conversion.py +153 -0
- ai_edge_torch/_convert/conversion_utils.py +64 -0
- ai_edge_torch/_convert/converter.py +270 -0
- ai_edge_torch/_convert/fx_passes/__init__.py +23 -0
- ai_edge_torch/_convert/fx_passes/build_aten_composite_pass.py +288 -0
- ai_edge_torch/_convert/fx_passes/build_interpolate_composite_pass.py +131 -0
- ai_edge_torch/_convert/fx_passes/inject_mlir_debuginfo_pass.py +73 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/__init__.py +16 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_check.py +258 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_mark.py +50 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +18 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +68 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +216 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +449 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +30 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/pass_body.py +303 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/utils.py +64 -0
- ai_edge_torch/_convert/fx_passes/remove_non_user_outputs_pass.py +52 -0
- ai_edge_torch/_convert/signature.py +66 -0
- ai_edge_torch/_convert/test/__init__.py +14 -0
- ai_edge_torch/_convert/test/test_convert.py +558 -0
- ai_edge_torch/_convert/test/test_convert_composites.py +234 -0
- ai_edge_torch/_convert/test/test_convert_multisig.py +189 -0
- ai_edge_torch/_convert/test/test_to_channel_last_io.py +96 -0
- ai_edge_torch/_convert/to_channel_last_io.py +92 -0
- ai_edge_torch/conftest.py +20 -0
- ai_edge_torch/debug/__init__.py +17 -0
- ai_edge_torch/debug/culprit.py +496 -0
- ai_edge_torch/debug/test/__init__.py +14 -0
- ai_edge_torch/debug/test/test_culprit.py +140 -0
- ai_edge_torch/debug/test/test_search_model.py +51 -0
- ai_edge_torch/debug/utils.py +59 -0
- ai_edge_torch/experimental/__init__.py +14 -0
- ai_edge_torch/fx_pass_base.py +110 -0
- ai_edge_torch/generative/__init__.py +14 -0
- ai_edge_torch/generative/examples/__init__.py +14 -0
- ai_edge_torch/generative/examples/amd_llama_135m/__init__.py +14 -0
- ai_edge_torch/generative/examples/amd_llama_135m/amd_llama_135m.py +87 -0
- ai_edge_torch/generative/examples/amd_llama_135m/convert_to_tflite.py +70 -0
- ai_edge_torch/generative/examples/amd_llama_135m/verify.py +72 -0
- ai_edge_torch/generative/examples/gemma/__init__.py +14 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/gemma/gemma1.py +107 -0
- ai_edge_torch/generative/examples/gemma/gemma2.py +295 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma1.py +56 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma2.py +43 -0
- ai_edge_torch/generative/examples/gemma/verify_util.py +157 -0
- ai_edge_torch/generative/examples/llama/__init__.py +14 -0
- ai_edge_torch/generative/examples/llama/convert_to_tflite.py +91 -0
- ai_edge_torch/generative/examples/llama/llama.py +196 -0
- ai_edge_torch/generative/examples/llama/verify.py +88 -0
- ai_edge_torch/generative/examples/moonshine/__init__.py +14 -0
- ai_edge_torch/generative/examples/moonshine/convert_moonshine_to_tflite.py +50 -0
- ai_edge_torch/generative/examples/moonshine/moonshine.py +103 -0
- ai_edge_torch/generative/examples/openelm/__init__.py +14 -0
- ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/openelm/openelm.py +127 -0
- ai_edge_torch/generative/examples/openelm/verify.py +71 -0
- ai_edge_torch/generative/examples/paligemma/__init__.py +14 -0
- ai_edge_torch/generative/examples/paligemma/convert_to_tflite.py +95 -0
- ai_edge_torch/generative/examples/paligemma/decoder.py +151 -0
- ai_edge_torch/generative/examples/paligemma/decoder2.py +177 -0
- ai_edge_torch/generative/examples/paligemma/image_encoder.py +160 -0
- ai_edge_torch/generative/examples/paligemma/paligemma.py +179 -0
- ai_edge_torch/generative/examples/paligemma/verify.py +161 -0
- ai_edge_torch/generative/examples/paligemma/verify_decoder.py +75 -0
- ai_edge_torch/generative/examples/paligemma/verify_decoder2.py +72 -0
- ai_edge_torch/generative/examples/paligemma/verify_image_encoder.py +99 -0
- ai_edge_torch/generative/examples/phi/__init__.py +14 -0
- ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/phi/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/phi/phi2.py +107 -0
- ai_edge_torch/generative/examples/phi/phi3.py +219 -0
- ai_edge_torch/generative/examples/phi/verify.py +64 -0
- ai_edge_torch/generative/examples/phi/verify_phi3.py +69 -0
- ai_edge_torch/generative/examples/qwen/__init__.py +14 -0
- ai_edge_torch/generative/examples/qwen/convert_to_tflite.py +93 -0
- ai_edge_torch/generative/examples/qwen/qwen.py +134 -0
- ai_edge_torch/generative/examples/qwen/verify.py +88 -0
- ai_edge_torch/generative/examples/smollm/__init__.py +14 -0
- ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/smollm/convert_v2_to_tflite.py +71 -0
- ai_edge_torch/generative/examples/smollm/smollm.py +125 -0
- ai_edge_torch/generative/examples/smollm/verify.py +86 -0
- ai_edge_torch/generative/examples/stable_diffusion/__init__.py +14 -0
- ai_edge_torch/generative/examples/stable_diffusion/attention.py +108 -0
- ai_edge_torch/generative/examples/stable_diffusion/clip.py +185 -0
- ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +173 -0
- ai_edge_torch/generative/examples/stable_diffusion/decoder.py +398 -0
- ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +749 -0
- ai_edge_torch/generative/examples/stable_diffusion/encoder.py +119 -0
- ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +254 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/__init__.py +19 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +62 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +66 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +74 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +39 -0
- ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +111 -0
- ai_edge_torch/generative/examples/stable_diffusion/util.py +77 -0
- ai_edge_torch/generative/examples/t5/__init__.py +14 -0
- ai_edge_torch/generative/examples/t5/convert_to_tflite.py +138 -0
- ai_edge_torch/generative/examples/t5/t5.py +655 -0
- ai_edge_torch/generative/examples/t5/t5_attention.py +246 -0
- ai_edge_torch/generative/examples/test_models/__init__.py +14 -0
- ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
- ai_edge_torch/generative/examples/test_models/toy_model.py +156 -0
- ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +138 -0
- ai_edge_torch/generative/examples/tiny_llama/__init__.py +14 -0
- ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +88 -0
- ai_edge_torch/generative/examples/tiny_llama/verify.py +72 -0
- ai_edge_torch/generative/fx_passes/__init__.py +30 -0
- ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +50 -0
- ai_edge_torch/generative/layers/__init__.py +14 -0
- ai_edge_torch/generative/layers/attention.py +399 -0
- ai_edge_torch/generative/layers/attention_utils.py +210 -0
- ai_edge_torch/generative/layers/builder.py +160 -0
- ai_edge_torch/generative/layers/feed_forward.py +120 -0
- ai_edge_torch/generative/layers/kv_cache.py +204 -0
- ai_edge_torch/generative/layers/lora.py +557 -0
- ai_edge_torch/generative/layers/model_config.py +238 -0
- ai_edge_torch/generative/layers/normalization.py +222 -0
- ai_edge_torch/generative/layers/rotary_position_embedding.py +94 -0
- ai_edge_torch/generative/layers/scaled_dot_product_attention.py +144 -0
- ai_edge_torch/generative/layers/unet/__init__.py +14 -0
- ai_edge_torch/generative/layers/unet/blocks_2d.py +806 -0
- ai_edge_torch/generative/layers/unet/builder.py +50 -0
- ai_edge_torch/generative/layers/unet/model_config.py +282 -0
- ai_edge_torch/generative/quantize/__init__.py +14 -0
- ai_edge_torch/generative/quantize/example.py +47 -0
- ai_edge_torch/generative/quantize/quant_attrs.py +68 -0
- ai_edge_torch/generative/quantize/quant_recipe.py +154 -0
- ai_edge_torch/generative/quantize/quant_recipe_utils.py +62 -0
- ai_edge_torch/generative/quantize/quant_recipes.py +56 -0
- ai_edge_torch/generative/quantize/supported_schemes.py +32 -0
- ai_edge_torch/generative/test/__init__.py +14 -0
- ai_edge_torch/generative/test/test_custom_dus.py +107 -0
- ai_edge_torch/generative/test/test_kv_cache.py +120 -0
- ai_edge_torch/generative/test/test_loader.py +83 -0
- ai_edge_torch/generative/test/test_lora.py +147 -0
- ai_edge_torch/generative/test/test_model_conversion.py +191 -0
- ai_edge_torch/generative/test/test_model_conversion_large.py +362 -0
- ai_edge_torch/generative/test/test_quantize.py +183 -0
- ai_edge_torch/generative/test/utils.py +82 -0
- ai_edge_torch/generative/utilities/__init__.py +15 -0
- ai_edge_torch/generative/utilities/converter.py +215 -0
- ai_edge_torch/generative/utilities/dynamic_update_slice.py +56 -0
- ai_edge_torch/generative/utilities/loader.py +398 -0
- ai_edge_torch/generative/utilities/model_builder.py +180 -0
- ai_edge_torch/generative/utilities/moonshine_loader.py +154 -0
- ai_edge_torch/generative/utilities/stable_diffusion_loader.py +1032 -0
- ai_edge_torch/generative/utilities/t5_loader.py +512 -0
- ai_edge_torch/generative/utilities/transformers_verifier.py +42 -0
- ai_edge_torch/generative/utilities/verifier.py +335 -0
- ai_edge_torch/hlfb/__init__.py +16 -0
- ai_edge_torch/hlfb/mark_pattern/__init__.py +153 -0
- ai_edge_torch/hlfb/mark_pattern/fx_utils.py +69 -0
- ai_edge_torch/hlfb/mark_pattern/pattern.py +288 -0
- ai_edge_torch/hlfb/test/__init__.py +14 -0
- ai_edge_torch/hlfb/test/test_mark_pattern.py +185 -0
- ai_edge_torch/lowertools/__init__.py +18 -0
- ai_edge_torch/lowertools/_shim.py +86 -0
- ai_edge_torch/lowertools/common_utils.py +142 -0
- ai_edge_torch/lowertools/odml_torch_utils.py +260 -0
- ai_edge_torch/lowertools/test_utils.py +62 -0
- ai_edge_torch/lowertools/torch_xla_utils.py +301 -0
- ai_edge_torch/lowertools/translate_recipe.py +163 -0
- ai_edge_torch/model.py +177 -0
- ai_edge_torch/odml_torch/__init__.py +20 -0
- ai_edge_torch/odml_torch/_torch_future.py +88 -0
- ai_edge_torch/odml_torch/_torch_library.py +19 -0
- ai_edge_torch/odml_torch/composite/__init__.py +16 -0
- ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
- ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
- ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
- ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
- ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
- ai_edge_torch/odml_torch/export.py +403 -0
- ai_edge_torch/odml_torch/export_utils.py +157 -0
- ai_edge_torch/odml_torch/jax_bridge/__init__.py +18 -0
- ai_edge_torch/odml_torch/jax_bridge/_wrap.py +180 -0
- ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
- ai_edge_torch/odml_torch/lowerings/__init__.py +27 -0
- ai_edge_torch/odml_torch/lowerings/_basic.py +294 -0
- ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
- ai_edge_torch/odml_torch/lowerings/_convolution.py +243 -0
- ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +285 -0
- ai_edge_torch/odml_torch/lowerings/_layer_norm.py +87 -0
- ai_edge_torch/odml_torch/lowerings/_quantized_decomposed.py +177 -0
- ai_edge_torch/odml_torch/lowerings/_rand.py +142 -0
- ai_edge_torch/odml_torch/lowerings/context.py +42 -0
- ai_edge_torch/odml_torch/lowerings/decomp.py +69 -0
- ai_edge_torch/odml_torch/lowerings/registry.py +65 -0
- ai_edge_torch/odml_torch/lowerings/utils.py +201 -0
- ai_edge_torch/odml_torch/passes/__init__.py +38 -0
- ai_edge_torch/odml_torch/tf_integration.py +156 -0
- ai_edge_torch/quantize/__init__.py +16 -0
- ai_edge_torch/quantize/pt2e_quantizer.py +466 -0
- ai_edge_torch/quantize/pt2e_quantizer_utils.py +1061 -0
- ai_edge_torch/quantize/quant_config.py +85 -0
- ai_edge_torch/testing/__init__.py +14 -0
- ai_edge_torch/testing/model_coverage/__init__.py +16 -0
- ai_edge_torch/testing/model_coverage/model_coverage.py +145 -0
- ai_edge_torch/version.py +16 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/LICENSE +202 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/METADATA +44 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/RECORD +213 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/WHEEL +5 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/top_level.txt +1 -0
@@ -0,0 +1,246 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
# Attention modules for the T5 encoder-decoder model family.
|
16
|
+
|
17
|
+
from typing import Optional, Tuple
|
18
|
+
|
19
|
+
from ai_edge_torch.generative.layers.attention import CrossAttention
|
20
|
+
import ai_edge_torch.generative.layers.builder as builder
|
21
|
+
from ai_edge_torch.generative.layers.kv_cache import KVCache
|
22
|
+
import ai_edge_torch.generative.layers.model_config as cfg
|
23
|
+
from ai_edge_torch.generative.layers.scaled_dot_product_attention import scaled_dot_product_attention # NOQA
|
24
|
+
from ai_edge_torch.generative.layers.scaled_dot_product_attention import scaled_dot_product_attention_with_hlfb # NOQA
|
25
|
+
import torch
|
26
|
+
from torch import nn
|
27
|
+
|
28
|
+
BATCH_SIZE = 1
|
29
|
+
|
30
|
+
|
31
|
+
class EncoderDecoderBlock(nn.Module):
|
32
|
+
|
33
|
+
def __init__(
|
34
|
+
self,
|
35
|
+
config: cfg.TransformerBlockConfig,
|
36
|
+
model_config: cfg.ModelConfig,
|
37
|
+
has_relative_attention_bias: bool = False,
|
38
|
+
) -> None:
|
39
|
+
"""Initialize an instance of the EncoderDecoderBlock.
|
40
|
+
|
41
|
+
Args:
|
42
|
+
config (cfg.TransformerBlockConfig): the configuration object for this
|
43
|
+
transformer block.
|
44
|
+
model_config (cfg.ModelConfig): the configuration object for the model
|
45
|
+
this transformer block belongs to.
|
46
|
+
has_relative_attention_bias (bool): whether the self attention block has
|
47
|
+
relative bias.
|
48
|
+
"""
|
49
|
+
|
50
|
+
super().__init__()
|
51
|
+
self.atten_func = T5Attention(
|
52
|
+
BATCH_SIZE,
|
53
|
+
model_config.embedding_dim,
|
54
|
+
config.attn_config,
|
55
|
+
config.pre_attention_norm_config,
|
56
|
+
model_config.kv_cache_max,
|
57
|
+
model_config.enable_hlfb,
|
58
|
+
has_relative_attention_bias=has_relative_attention_bias,
|
59
|
+
)
|
60
|
+
# For a decoder, we add a cross attention.
|
61
|
+
if model_config.is_decoder:
|
62
|
+
self.cross_atten_func = T5Attention(
|
63
|
+
BATCH_SIZE,
|
64
|
+
model_config.embedding_dim,
|
65
|
+
config.attn_config,
|
66
|
+
config.pre_attention_norm_config,
|
67
|
+
model_config.kv_cache_max,
|
68
|
+
model_config.enable_hlfb,
|
69
|
+
# Cross Attention does not have relative attention bias.
|
70
|
+
has_relative_attention_bias=False,
|
71
|
+
)
|
72
|
+
else:
|
73
|
+
self.cross_atten_func = None
|
74
|
+
|
75
|
+
self.post_atten_norm = builder.build_norm(
|
76
|
+
model_config.embedding_dim,
|
77
|
+
config.post_attention_norm_config,
|
78
|
+
)
|
79
|
+
self.ff = builder.build_ff(model_config.embedding_dim, config.ff_config)
|
80
|
+
self.config = config
|
81
|
+
|
82
|
+
def forward(
|
83
|
+
self,
|
84
|
+
x: torch.Tensor,
|
85
|
+
input_pos: Optional[torch.Tensor] = None,
|
86
|
+
mask: Optional[torch.Tensor] = None,
|
87
|
+
relative_position: Optional[torch.Tensor] = None,
|
88
|
+
position_bias: Optional[torch.Tensor] = None,
|
89
|
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
90
|
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
91
|
+
encoder_decoder_position_bias: Optional[torch.Tensor] = None,
|
92
|
+
) -> torch.Tensor:
|
93
|
+
"""Forward function of the EncoderDecoderBlock.
|
94
|
+
|
95
|
+
Args:
|
96
|
+
x (torch.Tensor): the input tensor.
|
97
|
+
rope (Tuple[torch.Tensor, torch.Tensor]): the input rope tensor.
|
98
|
+
mask (torch.Tensor): the optional mask tensor.
|
99
|
+
input_pos (torch.Tensor): the optional input position tensor.
|
100
|
+
|
101
|
+
Returns:
|
102
|
+
output activation from this transformer block.
|
103
|
+
"""
|
104
|
+
|
105
|
+
hidden_states, position_bias = self.atten_func(
|
106
|
+
x,
|
107
|
+
input_pos=input_pos,
|
108
|
+
mask=mask,
|
109
|
+
relative_position=relative_position,
|
110
|
+
position_bias=position_bias,
|
111
|
+
)
|
112
|
+
|
113
|
+
attn_out = hidden_states + x
|
114
|
+
|
115
|
+
if self.cross_atten_func:
|
116
|
+
hidden_states, encoder_decoder_position_bias = self.cross_atten_func(
|
117
|
+
attn_out,
|
118
|
+
input_pos=input_pos,
|
119
|
+
key_value_states=encoder_hidden_states,
|
120
|
+
mask=encoder_attention_mask,
|
121
|
+
relative_position=relative_position,
|
122
|
+
position_bias=encoder_decoder_position_bias,
|
123
|
+
)
|
124
|
+
attn_out = hidden_states + attn_out
|
125
|
+
|
126
|
+
forwarded = self.post_atten_norm(attn_out)
|
127
|
+
forwarded = self.ff(forwarded)
|
128
|
+
hidden_states = attn_out + forwarded
|
129
|
+
|
130
|
+
# encoder_deocder_position_bias is from CrossAttention
|
131
|
+
return hidden_states, position_bias, encoder_decoder_position_bias
|
132
|
+
|
133
|
+
|
134
|
+
class T5Attention(CrossAttention):
|
135
|
+
|
136
|
+
def __init__(
|
137
|
+
self,
|
138
|
+
batch: int,
|
139
|
+
dim: int,
|
140
|
+
config: cfg.AttentionConfig,
|
141
|
+
norm_config: cfg.NormalizationConfig,
|
142
|
+
kv_cache_max: int,
|
143
|
+
enable_hlfb: bool,
|
144
|
+
has_relative_attention_bias=False,
|
145
|
+
) -> None:
|
146
|
+
"""Initialize an instance of T5Attention.
|
147
|
+
|
148
|
+
Args:
|
149
|
+
dim (int): causal attention's input/output dimmension.
|
150
|
+
config (cfg.AttentionConfig): attention specific configurations.
|
151
|
+
norm_config (cfg.NormalizationConfig): normalization configure before
|
152
|
+
attention.
|
153
|
+
kv_cache_max (int): determines the size of the KV Cache buffer, if
|
154
|
+
enabled.
|
155
|
+
enable_hlfb (bool): whether hlfb is enabled or not.
|
156
|
+
has_relative_attention_bias (bool): whether we compute relative bias.
|
157
|
+
"""
|
158
|
+
super().__init__(batch, dim, dim, config, kv_cache_max, enable_hlfb)
|
159
|
+
self.pre_atten_norm = builder.build_norm(dim, norm_config)
|
160
|
+
|
161
|
+
self.has_relative_attention_bias = has_relative_attention_bias
|
162
|
+
self.relative_attention_num_buckets = config.relative_attention_num_buckets
|
163
|
+
if self.has_relative_attention_bias:
|
164
|
+
self.relative_attention_bias = nn.Embedding(
|
165
|
+
self.relative_attention_num_buckets, self.n_heads
|
166
|
+
)
|
167
|
+
|
168
|
+
def forward(
|
169
|
+
self,
|
170
|
+
x: torch.Tensor,
|
171
|
+
input_pos: Optional[torch.Tensor] = None,
|
172
|
+
key_value_states: Optional[torch.Tensor] = None,
|
173
|
+
mask: Optional[torch.Tensor] = None,
|
174
|
+
relative_position: Optional[torch.Tensor] = None,
|
175
|
+
position_bias: Optional[torch.Tensor] = None,
|
176
|
+
) -> torch.Tensor:
|
177
|
+
"""Forward function of the T5Attention layer.
|
178
|
+
|
179
|
+
Args:
|
180
|
+
x (torch.Tensor): the input tensor.
|
181
|
+
rope (Tuple[torch.Tensor, torch.Tensor]): the input rope tensor.
|
182
|
+
mask (torch.Tensor): the optional mask tensor.
|
183
|
+
input_pos (torch.Tensor): the optional input position tensor.
|
184
|
+
|
185
|
+
Returns:
|
186
|
+
output activation from this self attention layer.
|
187
|
+
"""
|
188
|
+
|
189
|
+
x = self.pre_atten_norm(x)
|
190
|
+
B, T, C = (
|
191
|
+
x.size()
|
192
|
+
) # batch size, sequence length, embedding dimensionality (n_embd)
|
193
|
+
query_states = self.q_projection(x)
|
194
|
+
query_states = query_states.reshape(
|
195
|
+
B, T, -1, self.config.head_dim
|
196
|
+
) # (B, T, nh_q, hs)
|
197
|
+
|
198
|
+
if key_value_states is not None:
|
199
|
+
(
|
200
|
+
kvB,
|
201
|
+
kvT,
|
202
|
+
kvC,
|
203
|
+
) = (
|
204
|
+
key_value_states.size()
|
205
|
+
) # batch size, sequence length, embedding dimensionality (n_embd)
|
206
|
+
key_states = self.k_projection(key_value_states)
|
207
|
+
value_states = self.v_projection(key_value_states)
|
208
|
+
key_states = key_states.reshape(kvB, kvT, -1, self.config.head_dim)
|
209
|
+
value_states = value_states.reshape(kvB, kvT, -1, self.config.head_dim)
|
210
|
+
else:
|
211
|
+
key_states = self.k_projection(x)
|
212
|
+
value_states = self.v_projection(x)
|
213
|
+
key_states = key_states.reshape(B, T, -1, self.config.head_dim)
|
214
|
+
value_states = value_states.reshape(B, T, -1, self.config.head_dim)
|
215
|
+
|
216
|
+
if key_value_states is None and self.kv_cache is not None:
|
217
|
+
key_states, value_states = self.kv_cache.update_cache(
|
218
|
+
input_pos, key_states, value_states
|
219
|
+
)
|
220
|
+
|
221
|
+
if position_bias is None:
|
222
|
+
# handle the encoder case first
|
223
|
+
if self.has_relative_attention_bias:
|
224
|
+
position_bias = self.relative_attention_bias(
|
225
|
+
relative_position
|
226
|
+
) # shape (query_length, key_length, num_heads)
|
227
|
+
position_bias = position_bias.permute([0, 1, 4, 2, 3]).squeeze(
|
228
|
+
0
|
229
|
+
) # shape (1, num_heads, query_length, key_length)
|
230
|
+
else:
|
231
|
+
# position_bias = torch.zeros(B, self.n_heads, T, self.config.head_dim, dtype=torch.float32)
|
232
|
+
position_bias = torch.zeros_like(mask, dtype=torch.float32)
|
233
|
+
|
234
|
+
mask = mask + position_bias
|
235
|
+
y = self.sdpa_func(
|
236
|
+
query_states,
|
237
|
+
key_states,
|
238
|
+
value_states,
|
239
|
+
self.config.head_dim,
|
240
|
+
mask=mask,
|
241
|
+
scale=1.0,
|
242
|
+
)
|
243
|
+
y = y.reshape(B, T, C) # re-assemble all head outputs side by side
|
244
|
+
# output projection
|
245
|
+
y = self.output_projection(y)
|
246
|
+
return y, position_bias
|
@@ -0,0 +1,14 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
@@ -0,0 +1,105 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
# A toy example which has a single-layer transformer block.
|
16
|
+
from absl import app
|
17
|
+
import ai_edge_torch
|
18
|
+
from ai_edge_torch import lowertools
|
19
|
+
from ai_edge_torch.generative.examples.test_models import toy_model
|
20
|
+
from ai_edge_torch.generative.examples.test_models import toy_model_with_kv_cache
|
21
|
+
from ai_edge_torch.generative.layers import kv_cache as kv_utils
|
22
|
+
import torch
|
23
|
+
|
24
|
+
KV_CACHE_MAX_LEN = 100
|
25
|
+
|
26
|
+
|
27
|
+
def convert_toy_model(_) -> None:
|
28
|
+
"""Converts a toy model to tflite."""
|
29
|
+
model = toy_model.ToySingleLayerModel(toy_model.get_model_config())
|
30
|
+
idx = torch.unsqueeze(torch.arange(0, KV_CACHE_MAX_LEN), 0)
|
31
|
+
input_pos = torch.arange(0, KV_CACHE_MAX_LEN)
|
32
|
+
print('running an inference')
|
33
|
+
print(
|
34
|
+
model.forward(
|
35
|
+
idx,
|
36
|
+
input_pos,
|
37
|
+
)
|
38
|
+
)
|
39
|
+
|
40
|
+
# Convert model to tflite.
|
41
|
+
print('converting model to tflite')
|
42
|
+
edge_model = ai_edge_torch.convert(
|
43
|
+
model,
|
44
|
+
(
|
45
|
+
idx,
|
46
|
+
input_pos,
|
47
|
+
),
|
48
|
+
)
|
49
|
+
edge_model.export('/tmp/toy_model.tflite')
|
50
|
+
|
51
|
+
|
52
|
+
def _export_stablehlo_mlir(model, args):
|
53
|
+
ep = torch.export.export(model, args)
|
54
|
+
return lowertools.exported_program_to_mlir_text(ep)
|
55
|
+
|
56
|
+
|
57
|
+
def convert_toy_model_with_kv_cache(_) -> None:
|
58
|
+
"""Converts a toy model with kv cache to tflite."""
|
59
|
+
dump_mlir = False
|
60
|
+
|
61
|
+
config = toy_model_with_kv_cache.get_model_config()
|
62
|
+
model = toy_model_with_kv_cache.ToyModelWithKVCache(config)
|
63
|
+
model.eval()
|
64
|
+
print('running an inference')
|
65
|
+
kv = kv_utils.KVCache.from_model_config(config)
|
66
|
+
|
67
|
+
tokens, input_pos = toy_model_with_kv_cache.get_sample_prefill_inputs()
|
68
|
+
decode_token, decode_input_pos = (
|
69
|
+
toy_model_with_kv_cache.get_sample_decode_inputs()
|
70
|
+
)
|
71
|
+
print(model.forward(tokens, input_pos, kv))
|
72
|
+
|
73
|
+
if dump_mlir:
|
74
|
+
mlir_text = _export_stablehlo_mlir(model, (tokens, input_pos, kv))
|
75
|
+
with open('/tmp/toy_model_with_external_kv.stablehlo.mlir', 'w') as f:
|
76
|
+
f.write(mlir_text)
|
77
|
+
|
78
|
+
# Convert model to tflite with 2 signatures (prefill + decode).
|
79
|
+
print('converting toy model to tflite with 2 signatures (prefill + decode)')
|
80
|
+
edge_model = (
|
81
|
+
ai_edge_torch.signature(
|
82
|
+
'prefill',
|
83
|
+
model,
|
84
|
+
sample_kwargs={
|
85
|
+
'tokens': tokens,
|
86
|
+
'input_pos': input_pos,
|
87
|
+
'kv_cache': kv,
|
88
|
+
},
|
89
|
+
)
|
90
|
+
.signature(
|
91
|
+
'decode',
|
92
|
+
model,
|
93
|
+
sample_kwargs={
|
94
|
+
'tokens': decode_token,
|
95
|
+
'input_pos': decode_input_pos,
|
96
|
+
'kv_cache': kv,
|
97
|
+
},
|
98
|
+
)
|
99
|
+
.convert()
|
100
|
+
)
|
101
|
+
edge_model.export('/tmp/toy_external_kv_cache.tflite')
|
102
|
+
|
103
|
+
|
104
|
+
if __name__ == '__main__':
|
105
|
+
app.run(convert_toy_model)
|
@@ -0,0 +1,156 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
# A toy example which has a single-layer transformer block.
|
16
|
+
from typing import Optional, Tuple
|
17
|
+
|
18
|
+
from ai_edge_torch.generative.layers import builder
|
19
|
+
from ai_edge_torch.generative.layers.attention import TransformerBlock
|
20
|
+
import ai_edge_torch.generative.layers.attention_utils as attn_utils
|
21
|
+
import ai_edge_torch.generative.layers.model_config as cfg
|
22
|
+
import torch
|
23
|
+
from torch import nn
|
24
|
+
|
25
|
+
RoPECache = Tuple[torch.Tensor, torch.Tensor]
|
26
|
+
KV_CACHE_MAX_LEN = 100
|
27
|
+
|
28
|
+
|
29
|
+
class ToySingleLayerModel(torch.nn.Module):
|
30
|
+
|
31
|
+
def __init__(self, config: cfg.ModelConfig) -> None:
|
32
|
+
super().__init__()
|
33
|
+
self.lm_head = nn.Linear(
|
34
|
+
config.embedding_dim, config.vocab_size, bias=config.lm_head_use_bias
|
35
|
+
)
|
36
|
+
self.tok_embedding = nn.Embedding(config.vocab_size, config.embedding_dim)
|
37
|
+
self.transformer_block = TransformerBlock(config.block_config(0), config)
|
38
|
+
self.final_norm = builder.build_norm(
|
39
|
+
config.embedding_dim,
|
40
|
+
config.final_norm_config,
|
41
|
+
)
|
42
|
+
# Toy model has only one block config.
|
43
|
+
attn_config = config.block_config(0).attn_config
|
44
|
+
self.rope_cache = attn_utils.build_rope_cache(
|
45
|
+
size=config.max_seq_len,
|
46
|
+
dim=int(attn_config.rotary_percentage * attn_config.head_dim),
|
47
|
+
base=attn_config.rotary_base,
|
48
|
+
)
|
49
|
+
self.mask_cache = attn_utils.build_causal_mask_cache(
|
50
|
+
size=config.max_seq_len,
|
51
|
+
)
|
52
|
+
self.config = config
|
53
|
+
|
54
|
+
@torch.inference_mode
|
55
|
+
def forward(
|
56
|
+
self,
|
57
|
+
idx: torch.Tensor,
|
58
|
+
input_pos: torch.Tensor,
|
59
|
+
mask: Optional[torch.Tensor] = None,
|
60
|
+
) -> torch.Tensor:
|
61
|
+
x = self.tok_embedding(idx)
|
62
|
+
cos, sin = self.rope_cache
|
63
|
+
|
64
|
+
cos = cos.index_select(0, input_pos)
|
65
|
+
sin = sin.index_select(0, input_pos)
|
66
|
+
if mask is None:
|
67
|
+
mask = self.mask_cache.index_select(2, input_pos)
|
68
|
+
mask = mask[:, :, :, : self.config.max_seq_len]
|
69
|
+
|
70
|
+
x = self.transformer_block(x, (cos, sin), mask, input_pos)
|
71
|
+
x = self.final_norm(x)
|
72
|
+
return self.lm_head(x)
|
73
|
+
|
74
|
+
|
75
|
+
class ToySingleLayerModelWeightSharing(torch.nn.Module):
|
76
|
+
|
77
|
+
def __init__(self, config: cfg.ModelConfig) -> None:
|
78
|
+
super().__init__()
|
79
|
+
self.lm_head = nn.Linear(
|
80
|
+
config.embedding_dim, config.vocab_size, bias=config.lm_head_use_bias
|
81
|
+
)
|
82
|
+
self.tok_embedding = nn.Embedding(config.vocab_size, config.embedding_dim)
|
83
|
+
self.lm_head = nn.Linear(
|
84
|
+
config.embedding_dim,
|
85
|
+
config.vocab_size,
|
86
|
+
bias=config.lm_head_use_bias,
|
87
|
+
)
|
88
|
+
self.lm_head.weight.data = self.tok_embedding.weight.data
|
89
|
+
self.transformer_block = TransformerBlock(config.block_config(0), config)
|
90
|
+
self.final_norm = builder.build_norm(
|
91
|
+
config.embedding_dim,
|
92
|
+
config.final_norm_config,
|
93
|
+
)
|
94
|
+
# Toy model has only one block config.
|
95
|
+
attn_config = config.block_config(0).attn_config
|
96
|
+
self.rope_cache = attn_utils.build_rope_cache(
|
97
|
+
size=config.max_seq_len,
|
98
|
+
dim=int(attn_config.rotary_percentage * attn_config.head_dim),
|
99
|
+
base=attn_config.rotary_base,
|
100
|
+
)
|
101
|
+
self.mask_cache = attn_utils.build_causal_mask_cache(
|
102
|
+
size=config.max_seq_len,
|
103
|
+
)
|
104
|
+
self.config = config
|
105
|
+
|
106
|
+
@torch.inference_mode
|
107
|
+
def forward(
|
108
|
+
self,
|
109
|
+
idx: torch.Tensor,
|
110
|
+
input_pos: torch.Tensor,
|
111
|
+
mask: Optional[torch.Tensor] = None,
|
112
|
+
) -> torch.Tensor:
|
113
|
+
x = self.tok_embedding(idx)
|
114
|
+
cos, sin = self.rope_cache
|
115
|
+
|
116
|
+
cos = cos.index_select(0, input_pos)
|
117
|
+
sin = sin.index_select(0, input_pos)
|
118
|
+
mask = self.mask_cache.index_select(2, input_pos)
|
119
|
+
mask = mask[:, :, :, : self.config.max_seq_len]
|
120
|
+
|
121
|
+
x = self.transformer_block(x, (cos, sin), mask, input_pos)
|
122
|
+
x = self.final_norm(x)
|
123
|
+
res = self.lm_head(x)
|
124
|
+
return res
|
125
|
+
|
126
|
+
|
127
|
+
def get_model_config() -> cfg.ModelConfig:
|
128
|
+
attn_config = cfg.AttentionConfig(
|
129
|
+
num_heads=32,
|
130
|
+
head_dim=4,
|
131
|
+
num_query_groups=4,
|
132
|
+
rotary_base=10000,
|
133
|
+
rotary_percentage=1.0,
|
134
|
+
enable_kv_cache=False,
|
135
|
+
)
|
136
|
+
ff_config = cfg.FeedForwardConfig(
|
137
|
+
type=cfg.FeedForwardType.GATED,
|
138
|
+
activation=cfg.ActivationConfig(cfg.ActivationType.SILU),
|
139
|
+
intermediate_size=256,
|
140
|
+
)
|
141
|
+
norm_config = cfg.NormalizationConfig(type=cfg.NormalizationType.RMS_NORM)
|
142
|
+
block_config = cfg.TransformerBlockConfig(
|
143
|
+
attn_config=attn_config,
|
144
|
+
ff_config=ff_config,
|
145
|
+
pre_attention_norm_config=norm_config,
|
146
|
+
post_attention_norm_config=norm_config,
|
147
|
+
)
|
148
|
+
config = cfg.ModelConfig(
|
149
|
+
vocab_size=400,
|
150
|
+
num_layers=1,
|
151
|
+
max_seq_len=KV_CACHE_MAX_LEN,
|
152
|
+
embedding_dim=128,
|
153
|
+
block_configs=block_config,
|
154
|
+
final_norm_config=norm_config,
|
155
|
+
)
|
156
|
+
return config
|
@@ -0,0 +1,138 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""A toy example which has basic transformer block (w/ externalized KV-Cache)."""
|
17
|
+
|
18
|
+
from typing import Optional, Tuple
|
19
|
+
|
20
|
+
from ai_edge_torch.generative.layers import attention
|
21
|
+
from ai_edge_torch.generative.layers import builder
|
22
|
+
from ai_edge_torch.generative.layers import kv_cache as kv_utils
|
23
|
+
import ai_edge_torch.generative.layers.attention_utils as attn_utils
|
24
|
+
import ai_edge_torch.generative.layers.model_config as cfg
|
25
|
+
from ai_edge_torch.generative.utilities.model_builder import ExportConfig
|
26
|
+
import torch
|
27
|
+
from torch import nn
|
28
|
+
|
29
|
+
RoPECache = Tuple[torch.Tensor, torch.Tensor]
|
30
|
+
|
31
|
+
|
32
|
+
class ToyModelWithKVCache(torch.nn.Module):
|
33
|
+
|
34
|
+
def __init__(self, config: cfg.ModelConfig) -> None:
|
35
|
+
super().__init__()
|
36
|
+
self.lm_head = nn.Linear(
|
37
|
+
config.embedding_dim, config.vocab_size, bias=config.lm_head_use_bias
|
38
|
+
)
|
39
|
+
self.tok_embedding = nn.Embedding(config.vocab_size, config.embedding_dim)
|
40
|
+
# Toy model has only one block config.
|
41
|
+
block_config = config.block_config(0)
|
42
|
+
self.transformer_blocks = nn.ModuleList(
|
43
|
+
attention.TransformerBlock(block_config, config)
|
44
|
+
for _ in range(config.num_layers)
|
45
|
+
)
|
46
|
+
self.final_norm = builder.build_norm(
|
47
|
+
config.embedding_dim,
|
48
|
+
config.final_norm_config,
|
49
|
+
)
|
50
|
+
attn_config = block_config.attn_config
|
51
|
+
self.rope_cache = attn_utils.build_rope_cache(
|
52
|
+
size=config.max_seq_len,
|
53
|
+
dim=int(attn_config.rotary_percentage * attn_config.head_dim),
|
54
|
+
base=attn_config.rotary_base,
|
55
|
+
)
|
56
|
+
self.mask_cache = attn_utils.build_causal_mask_cache(
|
57
|
+
size=config.max_seq_len,
|
58
|
+
)
|
59
|
+
self.config = config
|
60
|
+
|
61
|
+
def forward(
|
62
|
+
self,
|
63
|
+
tokens: torch.Tensor,
|
64
|
+
input_pos: torch.Tensor,
|
65
|
+
kv_cache: kv_utils.KVCache,
|
66
|
+
mask: Optional[torch.Tensor] = None,
|
67
|
+
export_config: Optional[ExportConfig] = None,
|
68
|
+
) -> Tuple[torch.Tensor, kv_utils.KVCache]:
|
69
|
+
x = self.tok_embedding(tokens)
|
70
|
+
cos, sin = self.rope_cache
|
71
|
+
cos = cos.index_select(0, input_pos)
|
72
|
+
sin = sin.index_select(0, input_pos)
|
73
|
+
if mask is None:
|
74
|
+
mask = self.mask_cache.index_select(2, input_pos)
|
75
|
+
mask = mask[:, :, :, : self.config.max_seq_len]
|
76
|
+
|
77
|
+
updated_kv_entries = []
|
78
|
+
for i, block in enumerate(self.transformer_blocks):
|
79
|
+
kv_entry = kv_cache.caches[i] if kv_cache else None
|
80
|
+
x, kv_entry = block(x, (cos, sin), mask, input_pos, kv_entry)
|
81
|
+
if kv_entry:
|
82
|
+
updated_kv_entries.append(kv_entry)
|
83
|
+
|
84
|
+
updated_kv_cache = kv_utils.KVCache(tuple(updated_kv_entries))
|
85
|
+
|
86
|
+
if export_config is not None:
|
87
|
+
if (
|
88
|
+
torch.numel(input_pos) > 1
|
89
|
+
and not export_config.output_logits_on_prefill
|
90
|
+
):
|
91
|
+
return {'kv_cache': updated_kv_cache}
|
92
|
+
|
93
|
+
x = self.final_norm(x)
|
94
|
+
return {'logits': self.lm_head(x), 'kv_cache': updated_kv_cache}
|
95
|
+
|
96
|
+
|
97
|
+
def get_model_config() -> cfg.ModelConfig:
|
98
|
+
attn_config = cfg.AttentionConfig(
|
99
|
+
num_heads=32,
|
100
|
+
head_dim=4,
|
101
|
+
num_query_groups=4,
|
102
|
+
rotary_base=10000,
|
103
|
+
rotary_percentage=1.0,
|
104
|
+
)
|
105
|
+
ff_config = cfg.FeedForwardConfig(
|
106
|
+
type=cfg.FeedForwardType.GATED,
|
107
|
+
activation=cfg.ActivationConfig(cfg.ActivationType.SILU),
|
108
|
+
intermediate_size=256,
|
109
|
+
)
|
110
|
+
norm_config = cfg.NormalizationConfig(type=cfg.NormalizationType.RMS_NORM)
|
111
|
+
block_config = cfg.TransformerBlockConfig(
|
112
|
+
attn_config=attn_config,
|
113
|
+
ff_config=ff_config,
|
114
|
+
pre_attention_norm_config=norm_config,
|
115
|
+
post_attention_norm_config=norm_config,
|
116
|
+
)
|
117
|
+
config = cfg.ModelConfig(
|
118
|
+
vocab_size=150,
|
119
|
+
num_layers=2,
|
120
|
+
max_seq_len=100,
|
121
|
+
embedding_dim=128,
|
122
|
+
block_configs=block_config,
|
123
|
+
final_norm_config=norm_config,
|
124
|
+
enable_hlfb=True,
|
125
|
+
)
|
126
|
+
return config
|
127
|
+
|
128
|
+
|
129
|
+
def get_sample_prefill_inputs() -> Tuple[torch.Tensor, torch.Tensor]:
|
130
|
+
tokens = torch.unsqueeze(torch.arange(0, 100, dtype=torch.int), 0)
|
131
|
+
input_pos = torch.arange(0, 100, dtype=torch.int)
|
132
|
+
return tokens, input_pos
|
133
|
+
|
134
|
+
|
135
|
+
def get_sample_decode_inputs() -> Tuple[torch.Tensor, torch.Tensor]:
|
136
|
+
tokens = torch.tensor([[1]], dtype=torch.int)
|
137
|
+
input_pos = torch.tensor([10])
|
138
|
+
return tokens, input_pos
|
@@ -0,0 +1,14 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|