ai-edge-torch-nightly 0.3.0.dev20250114__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (213) hide show
  1. ai_edge_torch/__init__.py +32 -0
  2. ai_edge_torch/_config.py +69 -0
  3. ai_edge_torch/_convert/__init__.py +14 -0
  4. ai_edge_torch/_convert/conversion.py +153 -0
  5. ai_edge_torch/_convert/conversion_utils.py +64 -0
  6. ai_edge_torch/_convert/converter.py +270 -0
  7. ai_edge_torch/_convert/fx_passes/__init__.py +23 -0
  8. ai_edge_torch/_convert/fx_passes/build_aten_composite_pass.py +288 -0
  9. ai_edge_torch/_convert/fx_passes/build_interpolate_composite_pass.py +131 -0
  10. ai_edge_torch/_convert/fx_passes/inject_mlir_debuginfo_pass.py +73 -0
  11. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/__init__.py +16 -0
  12. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_check.py +258 -0
  13. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_mark.py +50 -0
  14. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +18 -0
  15. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +68 -0
  16. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +216 -0
  17. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +449 -0
  18. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +30 -0
  19. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/pass_body.py +303 -0
  20. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/utils.py +64 -0
  21. ai_edge_torch/_convert/fx_passes/remove_non_user_outputs_pass.py +52 -0
  22. ai_edge_torch/_convert/signature.py +66 -0
  23. ai_edge_torch/_convert/test/__init__.py +14 -0
  24. ai_edge_torch/_convert/test/test_convert.py +558 -0
  25. ai_edge_torch/_convert/test/test_convert_composites.py +234 -0
  26. ai_edge_torch/_convert/test/test_convert_multisig.py +189 -0
  27. ai_edge_torch/_convert/test/test_to_channel_last_io.py +96 -0
  28. ai_edge_torch/_convert/to_channel_last_io.py +92 -0
  29. ai_edge_torch/conftest.py +20 -0
  30. ai_edge_torch/debug/__init__.py +17 -0
  31. ai_edge_torch/debug/culprit.py +496 -0
  32. ai_edge_torch/debug/test/__init__.py +14 -0
  33. ai_edge_torch/debug/test/test_culprit.py +140 -0
  34. ai_edge_torch/debug/test/test_search_model.py +51 -0
  35. ai_edge_torch/debug/utils.py +59 -0
  36. ai_edge_torch/experimental/__init__.py +14 -0
  37. ai_edge_torch/fx_pass_base.py +110 -0
  38. ai_edge_torch/generative/__init__.py +14 -0
  39. ai_edge_torch/generative/examples/__init__.py +14 -0
  40. ai_edge_torch/generative/examples/amd_llama_135m/__init__.py +14 -0
  41. ai_edge_torch/generative/examples/amd_llama_135m/amd_llama_135m.py +87 -0
  42. ai_edge_torch/generative/examples/amd_llama_135m/convert_to_tflite.py +70 -0
  43. ai_edge_torch/generative/examples/amd_llama_135m/verify.py +72 -0
  44. ai_edge_torch/generative/examples/gemma/__init__.py +14 -0
  45. ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +80 -0
  46. ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +80 -0
  47. ai_edge_torch/generative/examples/gemma/gemma1.py +107 -0
  48. ai_edge_torch/generative/examples/gemma/gemma2.py +295 -0
  49. ai_edge_torch/generative/examples/gemma/verify_gemma1.py +56 -0
  50. ai_edge_torch/generative/examples/gemma/verify_gemma2.py +43 -0
  51. ai_edge_torch/generative/examples/gemma/verify_util.py +157 -0
  52. ai_edge_torch/generative/examples/llama/__init__.py +14 -0
  53. ai_edge_torch/generative/examples/llama/convert_to_tflite.py +91 -0
  54. ai_edge_torch/generative/examples/llama/llama.py +196 -0
  55. ai_edge_torch/generative/examples/llama/verify.py +88 -0
  56. ai_edge_torch/generative/examples/moonshine/__init__.py +14 -0
  57. ai_edge_torch/generative/examples/moonshine/convert_moonshine_to_tflite.py +50 -0
  58. ai_edge_torch/generative/examples/moonshine/moonshine.py +103 -0
  59. ai_edge_torch/generative/examples/openelm/__init__.py +14 -0
  60. ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +80 -0
  61. ai_edge_torch/generative/examples/openelm/openelm.py +127 -0
  62. ai_edge_torch/generative/examples/openelm/verify.py +71 -0
  63. ai_edge_torch/generative/examples/paligemma/__init__.py +14 -0
  64. ai_edge_torch/generative/examples/paligemma/convert_to_tflite.py +95 -0
  65. ai_edge_torch/generative/examples/paligemma/decoder.py +151 -0
  66. ai_edge_torch/generative/examples/paligemma/decoder2.py +177 -0
  67. ai_edge_torch/generative/examples/paligemma/image_encoder.py +160 -0
  68. ai_edge_torch/generative/examples/paligemma/paligemma.py +179 -0
  69. ai_edge_torch/generative/examples/paligemma/verify.py +161 -0
  70. ai_edge_torch/generative/examples/paligemma/verify_decoder.py +75 -0
  71. ai_edge_torch/generative/examples/paligemma/verify_decoder2.py +72 -0
  72. ai_edge_torch/generative/examples/paligemma/verify_image_encoder.py +99 -0
  73. ai_edge_torch/generative/examples/phi/__init__.py +14 -0
  74. ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +80 -0
  75. ai_edge_torch/generative/examples/phi/convert_to_tflite.py +80 -0
  76. ai_edge_torch/generative/examples/phi/phi2.py +107 -0
  77. ai_edge_torch/generative/examples/phi/phi3.py +219 -0
  78. ai_edge_torch/generative/examples/phi/verify.py +64 -0
  79. ai_edge_torch/generative/examples/phi/verify_phi3.py +69 -0
  80. ai_edge_torch/generative/examples/qwen/__init__.py +14 -0
  81. ai_edge_torch/generative/examples/qwen/convert_to_tflite.py +93 -0
  82. ai_edge_torch/generative/examples/qwen/qwen.py +134 -0
  83. ai_edge_torch/generative/examples/qwen/verify.py +88 -0
  84. ai_edge_torch/generative/examples/smollm/__init__.py +14 -0
  85. ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +80 -0
  86. ai_edge_torch/generative/examples/smollm/convert_v2_to_tflite.py +71 -0
  87. ai_edge_torch/generative/examples/smollm/smollm.py +125 -0
  88. ai_edge_torch/generative/examples/smollm/verify.py +86 -0
  89. ai_edge_torch/generative/examples/stable_diffusion/__init__.py +14 -0
  90. ai_edge_torch/generative/examples/stable_diffusion/attention.py +108 -0
  91. ai_edge_torch/generative/examples/stable_diffusion/clip.py +185 -0
  92. ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +173 -0
  93. ai_edge_torch/generative/examples/stable_diffusion/decoder.py +398 -0
  94. ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +749 -0
  95. ai_edge_torch/generative/examples/stable_diffusion/encoder.py +119 -0
  96. ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +254 -0
  97. ai_edge_torch/generative/examples/stable_diffusion/samplers/__init__.py +19 -0
  98. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +62 -0
  99. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +66 -0
  100. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +74 -0
  101. ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +39 -0
  102. ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +111 -0
  103. ai_edge_torch/generative/examples/stable_diffusion/util.py +77 -0
  104. ai_edge_torch/generative/examples/t5/__init__.py +14 -0
  105. ai_edge_torch/generative/examples/t5/convert_to_tflite.py +138 -0
  106. ai_edge_torch/generative/examples/t5/t5.py +655 -0
  107. ai_edge_torch/generative/examples/t5/t5_attention.py +246 -0
  108. ai_edge_torch/generative/examples/test_models/__init__.py +14 -0
  109. ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
  110. ai_edge_torch/generative/examples/test_models/toy_model.py +156 -0
  111. ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +138 -0
  112. ai_edge_torch/generative/examples/tiny_llama/__init__.py +14 -0
  113. ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +80 -0
  114. ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +88 -0
  115. ai_edge_torch/generative/examples/tiny_llama/verify.py +72 -0
  116. ai_edge_torch/generative/fx_passes/__init__.py +30 -0
  117. ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +50 -0
  118. ai_edge_torch/generative/layers/__init__.py +14 -0
  119. ai_edge_torch/generative/layers/attention.py +399 -0
  120. ai_edge_torch/generative/layers/attention_utils.py +210 -0
  121. ai_edge_torch/generative/layers/builder.py +160 -0
  122. ai_edge_torch/generative/layers/feed_forward.py +120 -0
  123. ai_edge_torch/generative/layers/kv_cache.py +204 -0
  124. ai_edge_torch/generative/layers/lora.py +557 -0
  125. ai_edge_torch/generative/layers/model_config.py +238 -0
  126. ai_edge_torch/generative/layers/normalization.py +222 -0
  127. ai_edge_torch/generative/layers/rotary_position_embedding.py +94 -0
  128. ai_edge_torch/generative/layers/scaled_dot_product_attention.py +144 -0
  129. ai_edge_torch/generative/layers/unet/__init__.py +14 -0
  130. ai_edge_torch/generative/layers/unet/blocks_2d.py +806 -0
  131. ai_edge_torch/generative/layers/unet/builder.py +50 -0
  132. ai_edge_torch/generative/layers/unet/model_config.py +282 -0
  133. ai_edge_torch/generative/quantize/__init__.py +14 -0
  134. ai_edge_torch/generative/quantize/example.py +47 -0
  135. ai_edge_torch/generative/quantize/quant_attrs.py +68 -0
  136. ai_edge_torch/generative/quantize/quant_recipe.py +154 -0
  137. ai_edge_torch/generative/quantize/quant_recipe_utils.py +62 -0
  138. ai_edge_torch/generative/quantize/quant_recipes.py +56 -0
  139. ai_edge_torch/generative/quantize/supported_schemes.py +32 -0
  140. ai_edge_torch/generative/test/__init__.py +14 -0
  141. ai_edge_torch/generative/test/test_custom_dus.py +107 -0
  142. ai_edge_torch/generative/test/test_kv_cache.py +120 -0
  143. ai_edge_torch/generative/test/test_loader.py +83 -0
  144. ai_edge_torch/generative/test/test_lora.py +147 -0
  145. ai_edge_torch/generative/test/test_model_conversion.py +191 -0
  146. ai_edge_torch/generative/test/test_model_conversion_large.py +362 -0
  147. ai_edge_torch/generative/test/test_quantize.py +183 -0
  148. ai_edge_torch/generative/test/utils.py +82 -0
  149. ai_edge_torch/generative/utilities/__init__.py +15 -0
  150. ai_edge_torch/generative/utilities/converter.py +215 -0
  151. ai_edge_torch/generative/utilities/dynamic_update_slice.py +56 -0
  152. ai_edge_torch/generative/utilities/loader.py +398 -0
  153. ai_edge_torch/generative/utilities/model_builder.py +180 -0
  154. ai_edge_torch/generative/utilities/moonshine_loader.py +154 -0
  155. ai_edge_torch/generative/utilities/stable_diffusion_loader.py +1032 -0
  156. ai_edge_torch/generative/utilities/t5_loader.py +512 -0
  157. ai_edge_torch/generative/utilities/transformers_verifier.py +42 -0
  158. ai_edge_torch/generative/utilities/verifier.py +335 -0
  159. ai_edge_torch/hlfb/__init__.py +16 -0
  160. ai_edge_torch/hlfb/mark_pattern/__init__.py +153 -0
  161. ai_edge_torch/hlfb/mark_pattern/fx_utils.py +69 -0
  162. ai_edge_torch/hlfb/mark_pattern/pattern.py +288 -0
  163. ai_edge_torch/hlfb/test/__init__.py +14 -0
  164. ai_edge_torch/hlfb/test/test_mark_pattern.py +185 -0
  165. ai_edge_torch/lowertools/__init__.py +18 -0
  166. ai_edge_torch/lowertools/_shim.py +86 -0
  167. ai_edge_torch/lowertools/common_utils.py +142 -0
  168. ai_edge_torch/lowertools/odml_torch_utils.py +260 -0
  169. ai_edge_torch/lowertools/test_utils.py +62 -0
  170. ai_edge_torch/lowertools/torch_xla_utils.py +301 -0
  171. ai_edge_torch/lowertools/translate_recipe.py +163 -0
  172. ai_edge_torch/model.py +177 -0
  173. ai_edge_torch/odml_torch/__init__.py +20 -0
  174. ai_edge_torch/odml_torch/_torch_future.py +88 -0
  175. ai_edge_torch/odml_torch/_torch_library.py +19 -0
  176. ai_edge_torch/odml_torch/composite/__init__.py +16 -0
  177. ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
  178. ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
  179. ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
  180. ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
  181. ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
  182. ai_edge_torch/odml_torch/export.py +403 -0
  183. ai_edge_torch/odml_torch/export_utils.py +157 -0
  184. ai_edge_torch/odml_torch/jax_bridge/__init__.py +18 -0
  185. ai_edge_torch/odml_torch/jax_bridge/_wrap.py +180 -0
  186. ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
  187. ai_edge_torch/odml_torch/lowerings/__init__.py +27 -0
  188. ai_edge_torch/odml_torch/lowerings/_basic.py +294 -0
  189. ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
  190. ai_edge_torch/odml_torch/lowerings/_convolution.py +243 -0
  191. ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +285 -0
  192. ai_edge_torch/odml_torch/lowerings/_layer_norm.py +87 -0
  193. ai_edge_torch/odml_torch/lowerings/_quantized_decomposed.py +177 -0
  194. ai_edge_torch/odml_torch/lowerings/_rand.py +142 -0
  195. ai_edge_torch/odml_torch/lowerings/context.py +42 -0
  196. ai_edge_torch/odml_torch/lowerings/decomp.py +69 -0
  197. ai_edge_torch/odml_torch/lowerings/registry.py +65 -0
  198. ai_edge_torch/odml_torch/lowerings/utils.py +201 -0
  199. ai_edge_torch/odml_torch/passes/__init__.py +38 -0
  200. ai_edge_torch/odml_torch/tf_integration.py +156 -0
  201. ai_edge_torch/quantize/__init__.py +16 -0
  202. ai_edge_torch/quantize/pt2e_quantizer.py +466 -0
  203. ai_edge_torch/quantize/pt2e_quantizer_utils.py +1061 -0
  204. ai_edge_torch/quantize/quant_config.py +85 -0
  205. ai_edge_torch/testing/__init__.py +14 -0
  206. ai_edge_torch/testing/model_coverage/__init__.py +16 -0
  207. ai_edge_torch/testing/model_coverage/model_coverage.py +145 -0
  208. ai_edge_torch/version.py +16 -0
  209. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/LICENSE +202 -0
  210. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/METADATA +44 -0
  211. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/RECORD +213 -0
  212. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/WHEEL +5 -0
  213. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/top_level.txt +1 -0
@@ -0,0 +1,303 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ """Optimize layout transposes pass."""
16
+
17
+ import operator
18
+ import os
19
+ from typing import Union
20
+
21
+ from ai_edge_torch import fx_pass_base
22
+ from ai_edge_torch._convert.fx_passes.optimize_layout_transposes_pass import layout_check # NOQA
23
+ from ai_edge_torch._convert.fx_passes.optimize_layout_transposes_pass import layout_mark # NOQA
24
+ from ai_edge_torch._convert.fx_passes.optimize_layout_transposes_pass import layout_partitioners # NOQA
25
+ from ai_edge_torch._convert.fx_passes.optimize_layout_transposes_pass import layout_rewrite # NOQA
26
+ from ai_edge_torch._convert.fx_passes.optimize_layout_transposes_pass import utils # NOQA
27
+ import torch
28
+ import torch.ao.quantization.quantize_pt2e
29
+
30
+ TransposeFunc = Union[utils.tensor_to_nchw, utils.tensor_to_nhwc]
31
+
32
+
33
+ class OptimizeLayoutTransposesPass(fx_pass_base.ExportedProgramPassBase):
34
+
35
+ def get_source_meta(self, node: torch.fx.Node):
36
+ keys = ["stack_trace", "nn_module_stack", "source_fn_stack", "from_node"]
37
+ meta = {}
38
+ for key in keys:
39
+ if key in node.meta:
40
+ meta[key] = node.meta[key]
41
+ return meta
42
+
43
+ def insert_t_q_dq(
44
+ self,
45
+ graph: torch.fx.Graph,
46
+ input_dq: torch.fx.Node,
47
+ target: torch.fx.Node,
48
+ transpose_func: TransposeFunc,
49
+ transpose_node_meta: dict,
50
+ ) -> list[torch.fx.Node]:
51
+ """original:
52
+
53
+ input_dq -> target
54
+ insert the node as:
55
+ input_dq -> (T q dq) -> target
56
+ """
57
+ assert utils.is_dq_node(input_dq)
58
+
59
+ q_args = input_dq.args[1:]
60
+ q_kwargs = input_dq.kwargs
61
+ q_op, dq_op = utils.get_paired_q_dq_ops(input_dq.target)
62
+ with graph.inserting_before(target):
63
+ t = graph.call_function(transpose_func, (input_dq,))
64
+ # Q and DQ inserted here may required updating the `axis` arg when they
65
+ # are per_channel ops. However, instead of updating here, the nodes would
66
+ # be marked as NHWC/NCHW and applied rewriters after partitioning.
67
+ q = graph.call_function(q_op, (t,) + q_args, q_kwargs)
68
+ dq = graph.call_function(dq_op, (q,) + q_args, q_kwargs)
69
+
70
+ input_dq.meta = transpose_node_meta
71
+ t.meta = transpose_node_meta
72
+ q.meta = transpose_node_meta
73
+ dq.meta = self.get_source_meta(target)
74
+
75
+ target.replace_input_with(input_dq, dq)
76
+ return [t, q, dq]
77
+
78
+ def insert_dq_t_q(
79
+ self,
80
+ graph: torch.fx.Graph,
81
+ input_q: torch.fx.Node,
82
+ target: torch.fx.Node,
83
+ transpose_func: TransposeFunc,
84
+ transpose_node_meta: dict,
85
+ ) -> list[torch.fx.Node]:
86
+ """original:
87
+
88
+ input_q -> target
89
+ insert the node as:
90
+ input_q -> (dq T q) -> target
91
+ """
92
+ assert utils.is_q_node(input_q)
93
+
94
+ q_args = input_q.args[1:]
95
+ q_kwargs = input_q.kwargs
96
+ q_op, dq_op = utils.get_paired_q_dq_ops(input_q.target)
97
+ with graph.inserting_before(target):
98
+ # Q and DQ inserted here may required updating the `axis` arg when they
99
+ # are per_channel ops. However, instead of updating here, the nodes would
100
+ # be marked as NHWC/NCHW and applied rewriters after partitioning.
101
+ dq = graph.call_function(dq_op, (input_q,) + q_args, q_kwargs)
102
+ t = graph.call_function(transpose_func, (dq,))
103
+ q = graph.call_function(q_op, (t,) + q_args, q_kwargs)
104
+
105
+ dq.meta = transpose_node_meta
106
+ t.meta = transpose_node_meta
107
+ q.meta = transpose_node_meta
108
+
109
+ target.replace_input_with(input_q, q)
110
+ return [dq, t, q]
111
+
112
+ def insert_layout_transpose(
113
+ self,
114
+ graph: torch.fx.Graph,
115
+ input_node: torch.fx.Node,
116
+ target_node: torch.fx.Node,
117
+ transpose_func: TransposeFunc,
118
+ transpose_node_meta: dict,
119
+ ) -> None:
120
+ assert transpose_func in (utils.tensor_to_nchw, utils.tensor_to_nhwc)
121
+
122
+ # new_nodes only contains Q/DQ/Transpose nodes, which are all SISO.
123
+ # Insertion order input nodes -> output nodes
124
+ new_nodes = []
125
+
126
+ # Constraint Q2: the NHWC partition's entry and exit must not be output
127
+ # edges of Q/DQ ops that are connected to a constant/weight tensor.
128
+ while layout_mark.is_const_node(input_node) and (
129
+ utils.is_dq_node(input_node) or utils.is_q_node(input_node)
130
+ ):
131
+ with graph.inserting_before(target_node):
132
+ new_input_node = graph.node_copy(input_node)
133
+
134
+ target_node.replace_input_with(input_node, new_input_node)
135
+
136
+ new_nodes = [new_input_node] + new_nodes
137
+ input_node, target_node = new_input_node.args[0], new_input_node
138
+
139
+ if utils.is_q_node(input_node):
140
+ # Constraint Q3: when the entry and exit is right after a q op (occur after a (dq-op-q)
141
+ # triplet), the transpose must be added as a quantized transpose in (dq-T-q)
142
+ # input_q -> (dq T q) -> target
143
+ new_nodes = (
144
+ self.insert_dq_t_q(
145
+ graph,
146
+ input_node,
147
+ target_node,
148
+ transpose_func,
149
+ transpose_node_meta,
150
+ )
151
+ + new_nodes
152
+ )
153
+ elif utils.is_dq_node(input_node):
154
+ # Constraint Q1: the NHWC partition's entry and exit cannot be edges
155
+ # within (dq-op-q) triplet.
156
+ # input_dq -> (T q dq) -> target
157
+ new_nodes = (
158
+ self.insert_t_q_dq(
159
+ graph,
160
+ input_node,
161
+ target_node,
162
+ transpose_func,
163
+ transpose_node_meta,
164
+ )
165
+ + new_nodes
166
+ )
167
+ else:
168
+ # input -> target
169
+ with graph.inserting_before(target_node):
170
+ t = graph.call_function(transpose_func, (input_node,))
171
+ t.meta = transpose_node_meta
172
+ target_node.replace_input_with(input_node, t)
173
+ new_nodes = [t] + new_nodes
174
+
175
+ # Mark new nodes as NCHW or NHWC
176
+ # For all nodes before the transpose, mark it as input_marker
177
+ # For all nodes after the transpose (incl. transpose), mark it as output_marker
178
+ if transpose_func == utils.tensor_to_nchw:
179
+ input_marker, target_marker = (
180
+ layout_mark.mark_as_nhwc_node,
181
+ layout_mark.mark_as_nchw_node,
182
+ )
183
+ else:
184
+ input_marker, target_marker = (
185
+ layout_mark.mark_as_nchw_node,
186
+ layout_mark.mark_as_nhwc_node,
187
+ )
188
+
189
+ marker = input_marker
190
+ for node in new_nodes:
191
+ if node.target == transpose_func:
192
+ marker = target_marker
193
+ marker(node)
194
+ assert marker == target_marker
195
+
196
+ def input_to_nhwc(
197
+ self,
198
+ graph: torch.fx.Graph,
199
+ input_node: torch.fx.Node,
200
+ target_node: torch.fx.Node,
201
+ ) -> None:
202
+ if layout_mark.is_nhwc_node(input_node):
203
+ return
204
+
205
+ if not layout_check.is_4d(input_node):
206
+ raise AssertionError(
207
+ "Attempting to convert non-NHWC compatible node to NHWC:"
208
+ f" {input_node}"
209
+ )
210
+
211
+ # Assign target node's source meta to the to_NHWC node, because the transpose
212
+ # is added for the existence of target node.
213
+ self.insert_layout_transpose(
214
+ graph,
215
+ input_node,
216
+ target_node,
217
+ utils.tensor_to_nhwc,
218
+ self.get_source_meta(target_node),
219
+ )
220
+
221
+ def input_to_nchw(
222
+ self,
223
+ graph: torch.fx.Graph,
224
+ input_node: torch.fx.Node,
225
+ target_node: torch.fx.Node,
226
+ ) -> None:
227
+ if layout_mark.is_nchw_node(input_node):
228
+ return
229
+
230
+ self.insert_layout_transpose(
231
+ graph,
232
+ input_node,
233
+ target_node,
234
+ utils.tensor_to_nchw,
235
+ self.get_source_meta(input_node),
236
+ )
237
+
238
+ def mark_const_nodes(self, exported_program: torch.export.ExportedProgram):
239
+ graph_module = exported_program.graph_module
240
+ graph = graph_module.graph
241
+
242
+ input_specs = exported_program.graph_signature.input_specs
243
+ non_user_input_names = set()
244
+ for spec in input_specs:
245
+ if spec.kind != torch.export.graph_signature.InputKind.USER_INPUT:
246
+ non_user_input_names.add(spec.arg.name)
247
+
248
+ for node in graph.nodes:
249
+ has_input_nodes = len(node.all_input_nodes) > 0
250
+ all_inputs_are_const = all(
251
+ map(layout_mark.is_const_node, node.all_input_nodes)
252
+ )
253
+ if (
254
+ node.name in non_user_input_names
255
+ or (has_input_nodes and all_inputs_are_const)
256
+ or (node.op != "placeholder" and not has_input_nodes)
257
+ ):
258
+ layout_mark.mark_as_const_node(node)
259
+
260
+ def call(self, exported_program: torch.export.ExportedProgram):
261
+ self.mark_const_nodes(exported_program)
262
+
263
+ graph_module = exported_program.graph_module
264
+ partitioner = os.environ.get(
265
+ "AIEDGETORCH_LAYOUT_OPTIMIZE_PARTITIONER", None
266
+ )
267
+ if partitioner == "MINCUT":
268
+ graph_module = layout_partitioners.min_cut.partition(graph_module)
269
+ elif partitioner == "GREEDY":
270
+ graph_module = layout_partitioners.greedy.partition(graph_module)
271
+ else:
272
+ # By default use min cut partitioner if possible
273
+ if layout_partitioners.min_cut.can_partition(graph_module):
274
+ graph_module = layout_partitioners.min_cut.partition(graph_module)
275
+ else:
276
+ graph_module = layout_partitioners.greedy.partition(graph_module)
277
+
278
+ graph = graph_module.graph
279
+ for node in list(graph.nodes):
280
+ if node.target == operator.getitem:
281
+ # force the layout mark of a getitem node to follow its producer.
282
+ if layout_mark.is_nchw_node(node.args[0]):
283
+ layout_mark.mark_as_nchw_node(node)
284
+ else:
285
+ layout_mark.mark_as_nhwc_node(node)
286
+
287
+ for node in list(graph.nodes):
288
+ if layout_mark.is_nhwc_node(node):
289
+ for input_node in layout_check.get_layout_sensitive_inputs(node):
290
+ self.input_to_nhwc(graph, input_node, node)
291
+ layout_rewrite.rewrite_nhwc_node(node)
292
+ else:
293
+ for input_node in layout_check.get_layout_sensitive_inputs(node):
294
+ # Note: for non-4D tensors input_to_nchw is always noop.
295
+ self.input_to_nchw(graph, input_node, node)
296
+
297
+ graph_module.graph.eliminate_dead_code()
298
+ graph_module.recompile()
299
+ graph_module.graph.lint()
300
+ # Mark const node again for debugging
301
+ self.mark_const_nodes(exported_program)
302
+
303
+ return fx_pass_base.ExportedProgramPassResult(exported_program, True)
@@ -0,0 +1,64 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ """Utils for the optimized layout transposes pass."""
16
+
17
+ from typing import Callable
18
+
19
+ import torch
20
+ import torch.ao.quantization.quantize_pt2e
21
+
22
+
23
+ def tensor_to_nhwc(t: torch.Tensor):
24
+ return torch.ops.aten.permute(t.contiguous(), [0, 2, 3, 1]).contiguous()
25
+
26
+
27
+ def tensor_to_nchw(t: torch.Tensor):
28
+ return torch.ops.aten.permute(t.contiguous(), [0, 3, 1, 2]).contiguous()
29
+
30
+
31
+ def flatten_torch_op_overloads(op):
32
+ if isinstance(op, torch._ops.OpOverloadPacket):
33
+ return [getattr(op, overload) for overload in op.overloads()]
34
+ return [op]
35
+
36
+
37
+ _TORCH_Q_OPS = [
38
+ torch.ops.quantized_decomposed.quantize_per_tensor.default,
39
+ torch.ops.quantized_decomposed.quantize_per_tensor.tensor,
40
+ torch.ops.quantized_decomposed.quantize_per_tensor.tensor2,
41
+ torch.ops.quantized_decomposed.quantize_per_channel.default,
42
+ ]
43
+
44
+ _TORCH_DQ_OPS = [
45
+ torch.ops.quantized_decomposed.dequantize_per_tensor.default,
46
+ torch.ops.quantized_decomposed.dequantize_per_tensor.tensor,
47
+ torch.ops.quantized_decomposed.dequantize_per_tensor.tensor2,
48
+ torch.ops.quantized_decomposed.dequantize_per_channel.default,
49
+ ]
50
+
51
+
52
+ def is_q_node(node: torch.fx.Node):
53
+ return node.target in _TORCH_Q_OPS
54
+
55
+
56
+ def is_dq_node(node: torch.fx.Node):
57
+ return node.target in _TORCH_DQ_OPS
58
+
59
+
60
+ def get_paired_q_dq_ops(op: Callable) -> tuple[Callable, Callable]:
61
+ for q, dq in zip(_TORCH_Q_OPS, _TORCH_DQ_OPS):
62
+ if op in (q, dq):
63
+ return q, dq
64
+ raise AssertionError(f"{op} is not a Q/DQ op.")
@@ -0,0 +1,52 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ """Pass to remove all non user outputs from exported program."""
16
+
17
+
18
+ from ai_edge_torch import fx_pass_base
19
+ import torch
20
+
21
+
22
+ class RemoveNonUserOutputsPass(fx_pass_base.ExportedProgramPassBase):
23
+ """This pass removes all non user outputs from the exported program's output.
24
+
25
+ The FX graph may output more tensors/data than what user's original model
26
+ returns. Those additional outputs include user input mutations, gradient to
27
+ parameter, etc. Those outputs are not supported by our inference only
28
+ conversion or runtime. This pass remove all those outputs to ensure the
29
+ converted models' outputs match what returned from user's model in eval mode.
30
+ """
31
+
32
+ def call(self, exported_program: torch.export.ExportedProgram):
33
+ for node in exported_program.graph.nodes:
34
+ if node.op != "output":
35
+ continue
36
+
37
+ outputs = node.args[0]
38
+ output_specs = exported_program.graph_signature.output_specs
39
+
40
+ new_outputs = []
41
+ new_output_specs = []
42
+ for output, spec in zip(outputs, output_specs):
43
+ if spec.kind == torch.export.graph_signature.OutputKind.USER_OUTPUT:
44
+ new_outputs.append(output)
45
+ new_output_specs.append(spec)
46
+
47
+ node.args = (tuple(new_outputs),)
48
+ exported_program.graph_signature.output_specs = new_output_specs
49
+
50
+ exported_program.graph_module.graph.lint()
51
+ exported_program.graph_module.recompile()
52
+ return fx_pass_base.ExportedProgramPassResult(exported_program, True)
@@ -0,0 +1,66 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ import dataclasses
17
+ from typing import Any, Dict, List, Optional, Tuple, Union
18
+
19
+ from ai_edge_torch import lowertools
20
+ import torch
21
+ import torch.utils._pytree as pytree
22
+
23
+
24
+ @dataclasses.dataclass
25
+ class Signature:
26
+ name: str
27
+ module: torch.nn.Module
28
+ sample_args: tuple[torch.Tensor]
29
+ sample_kwargs: dict[str, torch.Tensor]
30
+ dynamic_shapes: Optional[Union[Dict[str, Any], Tuple[Any]]] = None
31
+
32
+ @property
33
+ def _normalized_sample_args_kwargs(self):
34
+ args, kwargs = self.sample_args, self.sample_kwargs
35
+ if args is not None:
36
+ if not isinstance(args, tuple):
37
+ # TODO(b/352584188): Check value types
38
+ raise ValueError("sample_args must be a tuple of torch tensors.")
39
+ if kwargs is not None:
40
+ if not isinstance(kwargs, dict) or not all(
41
+ isinstance(key, str) for key in kwargs.keys()
42
+ ):
43
+ # TODO(b/352584188): Check value types
44
+ raise ValueError("sample_kwargs must be a dict of string to tensor.")
45
+ args = args if args is not None else tuple()
46
+ kwargs = kwargs if kwargs is not None else {}
47
+ return args, kwargs
48
+
49
+ @property
50
+ def flat_arg_names(self) -> list[str]:
51
+ spec = pytree.tree_flatten(self._normalized_sample_args_kwargs)[1]
52
+ args_spec, kwargs_spec = spec.children_specs
53
+ names = []
54
+ for i in range(args_spec.num_leaves):
55
+ names.append(f"args_{i}")
56
+
57
+ kwargs_names = lowertools.flat_dict_names(
58
+ kwargs_spec.children_specs, kwargs_spec.context
59
+ )
60
+ names.extend(kwargs_names)
61
+ return names
62
+
63
+ @property
64
+ def flat_args(self) -> tuple[Any]:
65
+ args, kwargs = self._normalized_sample_args_kwargs
66
+ return tuple([*args, *kwargs.values()])
@@ -0,0 +1,14 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================