ai-edge-torch-nightly 0.3.0.dev20250114__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- ai_edge_torch/__init__.py +32 -0
- ai_edge_torch/_config.py +69 -0
- ai_edge_torch/_convert/__init__.py +14 -0
- ai_edge_torch/_convert/conversion.py +153 -0
- ai_edge_torch/_convert/conversion_utils.py +64 -0
- ai_edge_torch/_convert/converter.py +270 -0
- ai_edge_torch/_convert/fx_passes/__init__.py +23 -0
- ai_edge_torch/_convert/fx_passes/build_aten_composite_pass.py +288 -0
- ai_edge_torch/_convert/fx_passes/build_interpolate_composite_pass.py +131 -0
- ai_edge_torch/_convert/fx_passes/inject_mlir_debuginfo_pass.py +73 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/__init__.py +16 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_check.py +258 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_mark.py +50 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +18 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +68 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +216 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +449 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +30 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/pass_body.py +303 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/utils.py +64 -0
- ai_edge_torch/_convert/fx_passes/remove_non_user_outputs_pass.py +52 -0
- ai_edge_torch/_convert/signature.py +66 -0
- ai_edge_torch/_convert/test/__init__.py +14 -0
- ai_edge_torch/_convert/test/test_convert.py +558 -0
- ai_edge_torch/_convert/test/test_convert_composites.py +234 -0
- ai_edge_torch/_convert/test/test_convert_multisig.py +189 -0
- ai_edge_torch/_convert/test/test_to_channel_last_io.py +96 -0
- ai_edge_torch/_convert/to_channel_last_io.py +92 -0
- ai_edge_torch/conftest.py +20 -0
- ai_edge_torch/debug/__init__.py +17 -0
- ai_edge_torch/debug/culprit.py +496 -0
- ai_edge_torch/debug/test/__init__.py +14 -0
- ai_edge_torch/debug/test/test_culprit.py +140 -0
- ai_edge_torch/debug/test/test_search_model.py +51 -0
- ai_edge_torch/debug/utils.py +59 -0
- ai_edge_torch/experimental/__init__.py +14 -0
- ai_edge_torch/fx_pass_base.py +110 -0
- ai_edge_torch/generative/__init__.py +14 -0
- ai_edge_torch/generative/examples/__init__.py +14 -0
- ai_edge_torch/generative/examples/amd_llama_135m/__init__.py +14 -0
- ai_edge_torch/generative/examples/amd_llama_135m/amd_llama_135m.py +87 -0
- ai_edge_torch/generative/examples/amd_llama_135m/convert_to_tflite.py +70 -0
- ai_edge_torch/generative/examples/amd_llama_135m/verify.py +72 -0
- ai_edge_torch/generative/examples/gemma/__init__.py +14 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/gemma/gemma1.py +107 -0
- ai_edge_torch/generative/examples/gemma/gemma2.py +295 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma1.py +56 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma2.py +43 -0
- ai_edge_torch/generative/examples/gemma/verify_util.py +157 -0
- ai_edge_torch/generative/examples/llama/__init__.py +14 -0
- ai_edge_torch/generative/examples/llama/convert_to_tflite.py +91 -0
- ai_edge_torch/generative/examples/llama/llama.py +196 -0
- ai_edge_torch/generative/examples/llama/verify.py +88 -0
- ai_edge_torch/generative/examples/moonshine/__init__.py +14 -0
- ai_edge_torch/generative/examples/moonshine/convert_moonshine_to_tflite.py +50 -0
- ai_edge_torch/generative/examples/moonshine/moonshine.py +103 -0
- ai_edge_torch/generative/examples/openelm/__init__.py +14 -0
- ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/openelm/openelm.py +127 -0
- ai_edge_torch/generative/examples/openelm/verify.py +71 -0
- ai_edge_torch/generative/examples/paligemma/__init__.py +14 -0
- ai_edge_torch/generative/examples/paligemma/convert_to_tflite.py +95 -0
- ai_edge_torch/generative/examples/paligemma/decoder.py +151 -0
- ai_edge_torch/generative/examples/paligemma/decoder2.py +177 -0
- ai_edge_torch/generative/examples/paligemma/image_encoder.py +160 -0
- ai_edge_torch/generative/examples/paligemma/paligemma.py +179 -0
- ai_edge_torch/generative/examples/paligemma/verify.py +161 -0
- ai_edge_torch/generative/examples/paligemma/verify_decoder.py +75 -0
- ai_edge_torch/generative/examples/paligemma/verify_decoder2.py +72 -0
- ai_edge_torch/generative/examples/paligemma/verify_image_encoder.py +99 -0
- ai_edge_torch/generative/examples/phi/__init__.py +14 -0
- ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/phi/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/phi/phi2.py +107 -0
- ai_edge_torch/generative/examples/phi/phi3.py +219 -0
- ai_edge_torch/generative/examples/phi/verify.py +64 -0
- ai_edge_torch/generative/examples/phi/verify_phi3.py +69 -0
- ai_edge_torch/generative/examples/qwen/__init__.py +14 -0
- ai_edge_torch/generative/examples/qwen/convert_to_tflite.py +93 -0
- ai_edge_torch/generative/examples/qwen/qwen.py +134 -0
- ai_edge_torch/generative/examples/qwen/verify.py +88 -0
- ai_edge_torch/generative/examples/smollm/__init__.py +14 -0
- ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/smollm/convert_v2_to_tflite.py +71 -0
- ai_edge_torch/generative/examples/smollm/smollm.py +125 -0
- ai_edge_torch/generative/examples/smollm/verify.py +86 -0
- ai_edge_torch/generative/examples/stable_diffusion/__init__.py +14 -0
- ai_edge_torch/generative/examples/stable_diffusion/attention.py +108 -0
- ai_edge_torch/generative/examples/stable_diffusion/clip.py +185 -0
- ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +173 -0
- ai_edge_torch/generative/examples/stable_diffusion/decoder.py +398 -0
- ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +749 -0
- ai_edge_torch/generative/examples/stable_diffusion/encoder.py +119 -0
- ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +254 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/__init__.py +19 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +62 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +66 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +74 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +39 -0
- ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +111 -0
- ai_edge_torch/generative/examples/stable_diffusion/util.py +77 -0
- ai_edge_torch/generative/examples/t5/__init__.py +14 -0
- ai_edge_torch/generative/examples/t5/convert_to_tflite.py +138 -0
- ai_edge_torch/generative/examples/t5/t5.py +655 -0
- ai_edge_torch/generative/examples/t5/t5_attention.py +246 -0
- ai_edge_torch/generative/examples/test_models/__init__.py +14 -0
- ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
- ai_edge_torch/generative/examples/test_models/toy_model.py +156 -0
- ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +138 -0
- ai_edge_torch/generative/examples/tiny_llama/__init__.py +14 -0
- ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +88 -0
- ai_edge_torch/generative/examples/tiny_llama/verify.py +72 -0
- ai_edge_torch/generative/fx_passes/__init__.py +30 -0
- ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +50 -0
- ai_edge_torch/generative/layers/__init__.py +14 -0
- ai_edge_torch/generative/layers/attention.py +399 -0
- ai_edge_torch/generative/layers/attention_utils.py +210 -0
- ai_edge_torch/generative/layers/builder.py +160 -0
- ai_edge_torch/generative/layers/feed_forward.py +120 -0
- ai_edge_torch/generative/layers/kv_cache.py +204 -0
- ai_edge_torch/generative/layers/lora.py +557 -0
- ai_edge_torch/generative/layers/model_config.py +238 -0
- ai_edge_torch/generative/layers/normalization.py +222 -0
- ai_edge_torch/generative/layers/rotary_position_embedding.py +94 -0
- ai_edge_torch/generative/layers/scaled_dot_product_attention.py +144 -0
- ai_edge_torch/generative/layers/unet/__init__.py +14 -0
- ai_edge_torch/generative/layers/unet/blocks_2d.py +806 -0
- ai_edge_torch/generative/layers/unet/builder.py +50 -0
- ai_edge_torch/generative/layers/unet/model_config.py +282 -0
- ai_edge_torch/generative/quantize/__init__.py +14 -0
- ai_edge_torch/generative/quantize/example.py +47 -0
- ai_edge_torch/generative/quantize/quant_attrs.py +68 -0
- ai_edge_torch/generative/quantize/quant_recipe.py +154 -0
- ai_edge_torch/generative/quantize/quant_recipe_utils.py +62 -0
- ai_edge_torch/generative/quantize/quant_recipes.py +56 -0
- ai_edge_torch/generative/quantize/supported_schemes.py +32 -0
- ai_edge_torch/generative/test/__init__.py +14 -0
- ai_edge_torch/generative/test/test_custom_dus.py +107 -0
- ai_edge_torch/generative/test/test_kv_cache.py +120 -0
- ai_edge_torch/generative/test/test_loader.py +83 -0
- ai_edge_torch/generative/test/test_lora.py +147 -0
- ai_edge_torch/generative/test/test_model_conversion.py +191 -0
- ai_edge_torch/generative/test/test_model_conversion_large.py +362 -0
- ai_edge_torch/generative/test/test_quantize.py +183 -0
- ai_edge_torch/generative/test/utils.py +82 -0
- ai_edge_torch/generative/utilities/__init__.py +15 -0
- ai_edge_torch/generative/utilities/converter.py +215 -0
- ai_edge_torch/generative/utilities/dynamic_update_slice.py +56 -0
- ai_edge_torch/generative/utilities/loader.py +398 -0
- ai_edge_torch/generative/utilities/model_builder.py +180 -0
- ai_edge_torch/generative/utilities/moonshine_loader.py +154 -0
- ai_edge_torch/generative/utilities/stable_diffusion_loader.py +1032 -0
- ai_edge_torch/generative/utilities/t5_loader.py +512 -0
- ai_edge_torch/generative/utilities/transformers_verifier.py +42 -0
- ai_edge_torch/generative/utilities/verifier.py +335 -0
- ai_edge_torch/hlfb/__init__.py +16 -0
- ai_edge_torch/hlfb/mark_pattern/__init__.py +153 -0
- ai_edge_torch/hlfb/mark_pattern/fx_utils.py +69 -0
- ai_edge_torch/hlfb/mark_pattern/pattern.py +288 -0
- ai_edge_torch/hlfb/test/__init__.py +14 -0
- ai_edge_torch/hlfb/test/test_mark_pattern.py +185 -0
- ai_edge_torch/lowertools/__init__.py +18 -0
- ai_edge_torch/lowertools/_shim.py +86 -0
- ai_edge_torch/lowertools/common_utils.py +142 -0
- ai_edge_torch/lowertools/odml_torch_utils.py +260 -0
- ai_edge_torch/lowertools/test_utils.py +62 -0
- ai_edge_torch/lowertools/torch_xla_utils.py +301 -0
- ai_edge_torch/lowertools/translate_recipe.py +163 -0
- ai_edge_torch/model.py +177 -0
- ai_edge_torch/odml_torch/__init__.py +20 -0
- ai_edge_torch/odml_torch/_torch_future.py +88 -0
- ai_edge_torch/odml_torch/_torch_library.py +19 -0
- ai_edge_torch/odml_torch/composite/__init__.py +16 -0
- ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
- ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
- ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
- ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
- ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
- ai_edge_torch/odml_torch/export.py +403 -0
- ai_edge_torch/odml_torch/export_utils.py +157 -0
- ai_edge_torch/odml_torch/jax_bridge/__init__.py +18 -0
- ai_edge_torch/odml_torch/jax_bridge/_wrap.py +180 -0
- ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
- ai_edge_torch/odml_torch/lowerings/__init__.py +27 -0
- ai_edge_torch/odml_torch/lowerings/_basic.py +294 -0
- ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
- ai_edge_torch/odml_torch/lowerings/_convolution.py +243 -0
- ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +285 -0
- ai_edge_torch/odml_torch/lowerings/_layer_norm.py +87 -0
- ai_edge_torch/odml_torch/lowerings/_quantized_decomposed.py +177 -0
- ai_edge_torch/odml_torch/lowerings/_rand.py +142 -0
- ai_edge_torch/odml_torch/lowerings/context.py +42 -0
- ai_edge_torch/odml_torch/lowerings/decomp.py +69 -0
- ai_edge_torch/odml_torch/lowerings/registry.py +65 -0
- ai_edge_torch/odml_torch/lowerings/utils.py +201 -0
- ai_edge_torch/odml_torch/passes/__init__.py +38 -0
- ai_edge_torch/odml_torch/tf_integration.py +156 -0
- ai_edge_torch/quantize/__init__.py +16 -0
- ai_edge_torch/quantize/pt2e_quantizer.py +466 -0
- ai_edge_torch/quantize/pt2e_quantizer_utils.py +1061 -0
- ai_edge_torch/quantize/quant_config.py +85 -0
- ai_edge_torch/testing/__init__.py +14 -0
- ai_edge_torch/testing/model_coverage/__init__.py +16 -0
- ai_edge_torch/testing/model_coverage/model_coverage.py +145 -0
- ai_edge_torch/version.py +16 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/LICENSE +202 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/METADATA +44 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/RECORD +213 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/WHEEL +5 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/top_level.txt +1 -0
@@ -0,0 +1,399 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Common building blocks for Attention layer."""
|
17
|
+
|
18
|
+
from typing import Optional, Tuple, Union
|
19
|
+
|
20
|
+
from ai_edge_torch.generative.layers import builder
|
21
|
+
from ai_edge_torch.generative.layers import kv_cache as kv_utils
|
22
|
+
from ai_edge_torch.generative.layers import lora as lora_utils
|
23
|
+
from ai_edge_torch.generative.layers import scaled_dot_product_attention as sdpa
|
24
|
+
import ai_edge_torch.generative.layers.model_config as cfg
|
25
|
+
import ai_edge_torch.generative.layers.rotary_position_embedding as rotary_pos_emb
|
26
|
+
import torch
|
27
|
+
from torch import nn
|
28
|
+
|
29
|
+
|
30
|
+
class TransformerBlock(nn.Module):
|
31
|
+
|
32
|
+
def __init__(
|
33
|
+
self,
|
34
|
+
config: cfg.TransformerBlockConfig,
|
35
|
+
model_config: cfg.ModelConfig,
|
36
|
+
) -> None:
|
37
|
+
"""Initialize an instance of the TransformerBlock.
|
38
|
+
|
39
|
+
Args:
|
40
|
+
config (cfg.TransformerBlockConfig): the configuration object for this
|
41
|
+
transformer block.
|
42
|
+
model_config (cfg.ModelConfig): the configuration object for the model
|
43
|
+
this transformer block belongs to.
|
44
|
+
"""
|
45
|
+
super().__init__()
|
46
|
+
self.pre_atten_norm = builder.build_norm(
|
47
|
+
model_config.embedding_dim,
|
48
|
+
config.pre_attention_norm_config,
|
49
|
+
)
|
50
|
+
self.atten_func = CausalSelfAttention(
|
51
|
+
model_config.batch_size,
|
52
|
+
model_config.embedding_dim,
|
53
|
+
config.attn_config,
|
54
|
+
model_config.enable_hlfb,
|
55
|
+
)
|
56
|
+
self.post_atten_norm = builder.build_norm(
|
57
|
+
model_config.embedding_dim,
|
58
|
+
config.post_attention_norm_config,
|
59
|
+
)
|
60
|
+
self.ff = builder.build_ff(model_config.embedding_dim, config.ff_config)
|
61
|
+
self.config = config
|
62
|
+
|
63
|
+
def forward(
|
64
|
+
self,
|
65
|
+
x: torch.Tensor,
|
66
|
+
rope: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
67
|
+
mask: Optional[torch.Tensor] = None,
|
68
|
+
input_pos: Optional[torch.Tensor] = None,
|
69
|
+
kv_cache: kv_utils.KVCacheEntry = None,
|
70
|
+
lora: Optional[lora_utils.LoRAEntry] = None,
|
71
|
+
) -> Union[torch.Tensor, Tuple[torch.Tensor, kv_utils.KVCacheEntry]]:
|
72
|
+
"""Forward function of the TransformerBlock.
|
73
|
+
|
74
|
+
Args:
|
75
|
+
x (torch.Tensor): the input tensor.
|
76
|
+
rope (Tuple[torch.Tensor, torch.Tensor]): the input rope tensor.
|
77
|
+
mask (torch.Tensor): the optional mask tensor.
|
78
|
+
input_pos (torch.Tensor): the optional input position tensor.
|
79
|
+
kv_cache (KVCacheEntry): the optional kv cache entry.
|
80
|
+
lora (LoRAEntry): the optional lora entry.
|
81
|
+
|
82
|
+
Returns:
|
83
|
+
output activation from this transformer block, and updated kv cache (if
|
84
|
+
passed in).
|
85
|
+
"""
|
86
|
+
kv = None
|
87
|
+
if self.config.parallel_residual:
|
88
|
+
x_norm = self.pre_atten_norm(x)
|
89
|
+
atten_func_out = self.atten_func(
|
90
|
+
x_norm, rope, mask, input_pos, kv_cache, lora
|
91
|
+
)
|
92
|
+
if kv_cache is None:
|
93
|
+
attn_out = atten_func_out
|
94
|
+
else:
|
95
|
+
attn_out, kv = atten_func_out
|
96
|
+
ff_out = self.ff(x_norm)
|
97
|
+
output = x + attn_out + ff_out
|
98
|
+
else:
|
99
|
+
x_norm = self.pre_atten_norm(x)
|
100
|
+
atten_func_out = self.atten_func(
|
101
|
+
x_norm, rope, mask, input_pos, kv_cache, lora
|
102
|
+
)
|
103
|
+
if kv_cache is None:
|
104
|
+
attn_out = atten_func_out
|
105
|
+
else:
|
106
|
+
attn_out, kv = atten_func_out
|
107
|
+
x = x + attn_out
|
108
|
+
x_norm = self.post_atten_norm(x)
|
109
|
+
output = x + self.ff(x_norm)
|
110
|
+
|
111
|
+
return output if kv is None else (output, kv)
|
112
|
+
|
113
|
+
|
114
|
+
class CausalSelfAttention(nn.Module):
|
115
|
+
|
116
|
+
def __init__(
|
117
|
+
self,
|
118
|
+
batch_size: int,
|
119
|
+
dim: int,
|
120
|
+
config: cfg.AttentionConfig,
|
121
|
+
enable_hlfb: bool,
|
122
|
+
) -> None:
|
123
|
+
"""Initialize an instance of CausalSelfAttention.
|
124
|
+
|
125
|
+
Args:
|
126
|
+
batch_size (int): batch size of the input tensor.
|
127
|
+
dim (int): causal attention's input/output dimmension.
|
128
|
+
config (cfg.AttentionConfig): attention specific configurations.
|
129
|
+
enable_hlfb (bool): whether hlfb is enabled or not.
|
130
|
+
"""
|
131
|
+
super().__init__()
|
132
|
+
self.kv_cache = None
|
133
|
+
self.batch_size = batch_size
|
134
|
+
qkv_shape = (
|
135
|
+
config.num_heads + 2 * config.num_query_groups
|
136
|
+
) * config.head_dim
|
137
|
+
output_shape = config.num_heads * config.head_dim
|
138
|
+
# Key, query, value projections for all heads.
|
139
|
+
self.qkv_projection = nn.Linear(dim, qkv_shape, bias=config.qkv_use_bias)
|
140
|
+
self.output_projection = nn.Linear(
|
141
|
+
output_shape, dim, bias=config.output_proj_use_bias
|
142
|
+
)
|
143
|
+
self.query_norm = builder.build_norm(
|
144
|
+
config.head_dim, config.query_norm_config
|
145
|
+
)
|
146
|
+
self.key_norm = builder.build_norm(config.head_dim, config.key_norm_config)
|
147
|
+
self.config = config
|
148
|
+
self.enable_hlfb = enable_hlfb
|
149
|
+
self.sdpa_func = (
|
150
|
+
sdpa.scaled_dot_product_attention_with_hlfb
|
151
|
+
if enable_hlfb
|
152
|
+
else sdpa.scaled_dot_product_attention
|
153
|
+
)
|
154
|
+
|
155
|
+
def forward(
|
156
|
+
self,
|
157
|
+
x: torch.Tensor,
|
158
|
+
rope: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
159
|
+
mask: Optional[torch.Tensor] = None,
|
160
|
+
input_pos: Optional[torch.Tensor] = None,
|
161
|
+
kv_cache: Optional[kv_utils.KVCacheEntry] = None,
|
162
|
+
lora: Optional[lora_utils.LoRAEntry] = None,
|
163
|
+
) -> Union[torch.Tensor, Tuple[torch.Tensor, kv_utils.KVCacheEntry]]:
|
164
|
+
"""Forward function of the CausalSelfAttention layer, which can support
|
165
|
+
|
166
|
+
MQA, GQA and MHA.
|
167
|
+
|
168
|
+
Args:
|
169
|
+
x (torch.Tensor): the input tensor.
|
170
|
+
rope (Tuple[torch.Tensor, torch.Tensor]): the input rope tensor.
|
171
|
+
mask (torch.Tensor): the optional mask tensor.
|
172
|
+
input_pos (torch.Tensor): the optional input position tensor.
|
173
|
+
kv_cache (KVCacheEntry): the KV cache entry corresponding to this module.
|
174
|
+
lora (LoRAEntry): the optional lora entry.
|
175
|
+
|
176
|
+
Returns:
|
177
|
+
output activation from this self attention layer, and the updated
|
178
|
+
KV Cach Entry (if passed in).
|
179
|
+
"""
|
180
|
+
# Batch size, sequence length, embedding dimensionality.
|
181
|
+
B, T, E = x.size()
|
182
|
+
assert B == self.batch_size, (
|
183
|
+
"batch size of input tensor must match with the batch size specified in"
|
184
|
+
" the model configuration."
|
185
|
+
)
|
186
|
+
|
187
|
+
qkv = self.qkv_projection(x)
|
188
|
+
|
189
|
+
# Assemble into a number of query groups to support MHA, MQA and GQA.
|
190
|
+
q_per_kv = self.config.num_heads // self.config.num_query_groups
|
191
|
+
# Each group has >=1 queries, 1 key, and 1 value.
|
192
|
+
if self.config.qkv_transpose_before_split:
|
193
|
+
qkv = qkv.view(B, T, -1, self.config.head_dim)
|
194
|
+
q, k, v = qkv.split(
|
195
|
+
(
|
196
|
+
q_per_kv * self.config.num_query_groups,
|
197
|
+
self.config.num_query_groups,
|
198
|
+
self.config.num_query_groups,
|
199
|
+
),
|
200
|
+
dim=-2,
|
201
|
+
)
|
202
|
+
else:
|
203
|
+
qkv = qkv.view(B, T, self.config.num_query_groups, -1)
|
204
|
+
q, k, v = qkv.split(
|
205
|
+
(
|
206
|
+
q_per_kv * self.config.head_dim,
|
207
|
+
self.config.head_dim,
|
208
|
+
self.config.head_dim,
|
209
|
+
),
|
210
|
+
dim=-1,
|
211
|
+
)
|
212
|
+
|
213
|
+
if lora is not None:
|
214
|
+
q += lora_utils.apply_lora(x, lora.attention.query, shape=q.shape)
|
215
|
+
k += lora_utils.apply_lora(x, lora.attention.key, shape=k.shape)
|
216
|
+
v += lora_utils.apply_lora(x, lora.attention.value, shape=v.shape)
|
217
|
+
|
218
|
+
q = self.query_norm(q)
|
219
|
+
k = self.key_norm(k)
|
220
|
+
|
221
|
+
q = q.reshape(B, T, -1, self.config.head_dim)
|
222
|
+
k = k.reshape(B, T, -1, self.config.head_dim)
|
223
|
+
v = v.reshape(B, T, -1, self.config.head_dim)
|
224
|
+
|
225
|
+
if rope is not None:
|
226
|
+
# Compute rotary positional embedding for query and key.
|
227
|
+
n_elem = int(self.config.rotary_percentage * self.config.head_dim)
|
228
|
+
cos, sin = rope
|
229
|
+
q, k = rotary_pos_emb.apply_rope_inline(q, k, cos, sin)
|
230
|
+
|
231
|
+
if kv_cache is not None:
|
232
|
+
kv_cache = kv_utils.update(kv_cache, input_pos, k, v)
|
233
|
+
k, v = kv_cache.k_cache, kv_cache.v_cache
|
234
|
+
|
235
|
+
sdpa_out = self.sdpa_func(
|
236
|
+
q,
|
237
|
+
k,
|
238
|
+
v,
|
239
|
+
self.config.head_dim,
|
240
|
+
mask=mask,
|
241
|
+
softcap=self.config.logit_softcap,
|
242
|
+
)
|
243
|
+
sdpa_out = sdpa_out.reshape(B, T, -1)
|
244
|
+
|
245
|
+
# Compute the output projection.
|
246
|
+
y = self.output_projection(sdpa_out)
|
247
|
+
if lora is not None:
|
248
|
+
y += lora_utils.apply_lora(sdpa_out, lora.attention.output)
|
249
|
+
|
250
|
+
return y if kv_cache is None else (y, kv_cache)
|
251
|
+
|
252
|
+
|
253
|
+
class SelfAttention(CausalSelfAttention):
|
254
|
+
"""Non-causal Self Attention module, which is equivalent to CausalSelfAttention without mask."""
|
255
|
+
|
256
|
+
def forward(
|
257
|
+
self,
|
258
|
+
x: torch.Tensor,
|
259
|
+
rope: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
260
|
+
input_pos: Optional[torch.Tensor] = None,
|
261
|
+
kv_cache: Optional[kv_utils.KVCacheEntry] = None,
|
262
|
+
lora: Optional[lora_utils.LoRAEntry] = None,
|
263
|
+
) -> Union[torch.Tensor, Tuple[torch.Tensor, kv_utils.KVCacheEntry]]:
|
264
|
+
"""Forward function of the SelfAttention layer, which can support MQA, GQA and MHA.
|
265
|
+
|
266
|
+
Args:
|
267
|
+
x (torch.Tensor): the input tensor.
|
268
|
+
rope (Tuple[torch.Tensor, torch.Tensor]): the input rope tensor.
|
269
|
+
input_pos (torch.Tensor): the optional input position tensor.
|
270
|
+
kv_cache (KVCacheEntry): the KV cache entry corresponding to this module.
|
271
|
+
lora (LoRAEntry): the optional lora entry.
|
272
|
+
|
273
|
+
Returns:
|
274
|
+
output activation from this self attention layer, and the updated
|
275
|
+
KV Cach Entry (if passed in).
|
276
|
+
"""
|
277
|
+
B, T, _ = x.size()
|
278
|
+
assert (
|
279
|
+
kv_cache is None
|
280
|
+
), "KV cache is not supported in non-causal SelfAttention."
|
281
|
+
return super().forward(
|
282
|
+
x,
|
283
|
+
rope=rope,
|
284
|
+
mask=torch.zeros((B, 1, T, T), dtype=torch.float32),
|
285
|
+
input_pos=input_pos,
|
286
|
+
lora=lora,
|
287
|
+
)
|
288
|
+
|
289
|
+
|
290
|
+
class CrossAttention(nn.Module):
|
291
|
+
|
292
|
+
def __init__(
|
293
|
+
self,
|
294
|
+
batch_size: int,
|
295
|
+
query_dim: int,
|
296
|
+
cross_dim: int,
|
297
|
+
hidden_dim: int,
|
298
|
+
output_dim: int,
|
299
|
+
config: cfg.AttentionConfig,
|
300
|
+
enable_hlfb: bool,
|
301
|
+
):
|
302
|
+
"""Initialize an instance of CrossAttention.
|
303
|
+
|
304
|
+
Args:
|
305
|
+
batch_size (int): batch size of the input tensor.
|
306
|
+
query_dim (int): query tensor's dimension.
|
307
|
+
cross_dim (int): cross attention's dimensions, for key and value tensors.
|
308
|
+
hidden_dim (int): hidden dimension that q, k, v tensors project to.
|
309
|
+
output_dim (int): output tensor's dimension.
|
310
|
+
config (cfg.AttentionConfig): attention specific configurations.
|
311
|
+
enable_hlfb (bool): whether hlfb is enabled or not.
|
312
|
+
"""
|
313
|
+
super().__init__()
|
314
|
+
self.config = config
|
315
|
+
self.n_heads = config.num_heads
|
316
|
+
self.q_projection = nn.Linear(
|
317
|
+
query_dim, hidden_dim, bias=config.qkv_use_bias
|
318
|
+
)
|
319
|
+
self.k_projection = nn.Linear(
|
320
|
+
cross_dim, hidden_dim, bias=config.qkv_use_bias
|
321
|
+
)
|
322
|
+
self.v_projection = nn.Linear(
|
323
|
+
cross_dim, hidden_dim, bias=config.qkv_use_bias
|
324
|
+
)
|
325
|
+
self.output_projection = nn.Linear(
|
326
|
+
hidden_dim, output_dim, bias=config.output_proj_use_bias
|
327
|
+
)
|
328
|
+
|
329
|
+
self.sdpa_func = (
|
330
|
+
sdpa.scaled_dot_product_attention_with_hlfb
|
331
|
+
if enable_hlfb
|
332
|
+
else sdpa.scaled_dot_product_attention
|
333
|
+
)
|
334
|
+
|
335
|
+
def forward(
|
336
|
+
self,
|
337
|
+
x: torch.Tensor,
|
338
|
+
y: torch.Tensor,
|
339
|
+
rope: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
340
|
+
mask: Optional[torch.Tensor] = None,
|
341
|
+
input_pos: Optional[torch.Tensor] = None,
|
342
|
+
kv_cache: Optional[kv_utils.KVCacheEntry] = None,
|
343
|
+
lora: Optional[lora_utils.LoRAEntry] = None,
|
344
|
+
):
|
345
|
+
"""Forward function of the CrossAttention layer.
|
346
|
+
|
347
|
+
Args:
|
348
|
+
x (torch.Tensor): the target tensor, with shape [B, target_seq_len, ...].
|
349
|
+
y (torch.Tensor): the source tensor, with shape [B, source_seq_len, ...].
|
350
|
+
rope (Tuple[torch.Tensor, torch.Tensor]): the optional input rope tensor.
|
351
|
+
mask (torch.Tensor): the optional mask tensor can be broadcaseted to shape
|
352
|
+
[B, n_heads, target_seq_len, source_seq_len].
|
353
|
+
input_pos (torch.Tensor): the optional input position tensor.
|
354
|
+
kv_cache (KVCacheEntry): the KV cache entry corresponding to this module.
|
355
|
+
lora (LoRAEntry): the optional lora entry.
|
356
|
+
|
357
|
+
Returns:
|
358
|
+
output activation from this cross attention layer.
|
359
|
+
"""
|
360
|
+
batch_size = x.size()[0]
|
361
|
+
target_seq_len = x.size()[1]
|
362
|
+
source_seq_len = y.size()[1]
|
363
|
+
|
364
|
+
q = self.q_projection(x)
|
365
|
+
k = self.k_projection(y)
|
366
|
+
v = self.v_projection(y)
|
367
|
+
|
368
|
+
if lora is not None:
|
369
|
+
q += lora_utils.apply_lora(x, lora.attention.query, shape=q.shape)
|
370
|
+
k += lora_utils.apply_lora(x, lora.attention.key, shape=k.shape)
|
371
|
+
v += lora_utils.apply_lora(x, lora.attention.value, shape=v.shape)
|
372
|
+
|
373
|
+
interim_shape = (batch_size, -1, self.n_heads, self.config.head_dim)
|
374
|
+
q = q.view(interim_shape)
|
375
|
+
k = k.view(interim_shape)
|
376
|
+
v = v.view(interim_shape)
|
377
|
+
|
378
|
+
if rope is not None:
|
379
|
+
# Compute rotary positional embedding for query and key.
|
380
|
+
n_elem = int(self.config.rotary_percentage * self.config.head_dim)
|
381
|
+
cos, sin = rope
|
382
|
+
q, k = rotary_pos_emb.apply_rope_inline(q, k, cos, sin)
|
383
|
+
|
384
|
+
if kv_cache is not None:
|
385
|
+
kv_cache = kv_utils.update(kv_cache, input_pos, k, v)
|
386
|
+
k, v = kv_cache.k_cache, kv_cache.v_cache
|
387
|
+
if mask is None:
|
388
|
+
mask = torch.zeros(
|
389
|
+
(batch_size, 1, target_seq_len, source_seq_len), dtype=torch.float32
|
390
|
+
)
|
391
|
+
y = self.sdpa_func(q, k, v, self.config.head_dim, mask=mask)
|
392
|
+
y = y.reshape(batch_size, target_seq_len, -1)
|
393
|
+
|
394
|
+
# Compute the output projection.
|
395
|
+
y = self.output_projection(y)
|
396
|
+
if lora is not None:
|
397
|
+
y += lora_utils.apply_lora(y, lora.attention.output)
|
398
|
+
|
399
|
+
return y if kv_cache is None else (y, kv_cache)
|
@@ -0,0 +1,210 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
# Common utility functions used with attention module.
|
16
|
+
|
17
|
+
import math
|
18
|
+
from typing import Tuple
|
19
|
+
|
20
|
+
import torch
|
21
|
+
|
22
|
+
|
23
|
+
def build_rope_cache(
|
24
|
+
size: int,
|
25
|
+
dim: int,
|
26
|
+
base: int = 10000,
|
27
|
+
condense_ratio: int = 1,
|
28
|
+
dtype: torch.dtype = torch.float32,
|
29
|
+
device: torch.device = None,
|
30
|
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
31
|
+
"""Precomputes Rotary Positional Embeddings.
|
32
|
+
|
33
|
+
Precompute Rotary Positional Embedding Sin and Cos values for quick lookup
|
34
|
+
during the inference.
|
35
|
+
|
36
|
+
Args:
|
37
|
+
size (int): The size of the built cache.
|
38
|
+
dim (int): Each sequence's dimmension.
|
39
|
+
base (int, optional): Rope base value. Defaults to 10000.
|
40
|
+
condense_ratio (int, optional): The ratio by which sequence indicies are
|
41
|
+
condensed. Defaults to 1.
|
42
|
+
dtype (torch.dtype, optional): Output tensor's data type. Defaults to
|
43
|
+
torch.float32.
|
44
|
+
device (torch.device, optional): Output tensor's data type. Defaults to
|
45
|
+
None in which case "cpu" is used.
|
46
|
+
|
47
|
+
Returns:
|
48
|
+
Tuple[torch.Tensor, torch.Tensor]: Rope's Cosine and Sine waves.
|
49
|
+
"""
|
50
|
+
if device is None:
|
51
|
+
device = torch.device('cpu')
|
52
|
+
theta = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
|
53
|
+
seq_idx = torch.arange(size) / condense_ratio
|
54
|
+
idx_theta = torch.outer(seq_idx, theta)
|
55
|
+
cos = torch.cos(idx_theta).to(dtype=dtype, device=device)
|
56
|
+
sin = torch.sin(idx_theta).to(dtype=dtype, device=device)
|
57
|
+
return cos, sin
|
58
|
+
|
59
|
+
|
60
|
+
def build_causal_mask_cache(
|
61
|
+
size: int,
|
62
|
+
dtype: torch.dtype = torch.float32,
|
63
|
+
device: torch.device = None,
|
64
|
+
) -> torch.Tensor:
|
65
|
+
"""Build a cache for causal attention mask.
|
66
|
+
|
67
|
+
Args:
|
68
|
+
size (int): The size of the built mask cache.
|
69
|
+
dtype (torch.dtype, optional): Output tensor's data type. Defaults to
|
70
|
+
torch.float32.
|
71
|
+
device (torch.device, optional): Output tensor's data type. Defaults to
|
72
|
+
None in which case "cpu" is used.
|
73
|
+
|
74
|
+
Returns:
|
75
|
+
torch.Tensor: Causal attention mask.
|
76
|
+
"""
|
77
|
+
|
78
|
+
if device is None:
|
79
|
+
device = torch.device('cpu')
|
80
|
+
mask = torch.full((size, size), float('-inf'), dtype=dtype, device=device)
|
81
|
+
return torch.triu(mask, diagonal=1).unsqueeze(0).unsqueeze(0)
|
82
|
+
|
83
|
+
|
84
|
+
def build_sliding_window_mask_cache(
|
85
|
+
size: int,
|
86
|
+
window_size: int,
|
87
|
+
dtype: torch.dtype = torch.float32,
|
88
|
+
device: torch.device = None,
|
89
|
+
) -> torch.Tensor:
|
90
|
+
"""Build a cache for a sliding window mask.
|
91
|
+
|
92
|
+
Args:
|
93
|
+
size (int): The size of the built mask cache.
|
94
|
+
window_size (int): The window size that is "seen" by a token.
|
95
|
+
dtype (torch.dtype, optional): Output tensor's data type. Defaults to
|
96
|
+
torch.float32.
|
97
|
+
device (torch.device, optional): Output tensor's data type. Defaults to
|
98
|
+
None in which case "cpu" is used.
|
99
|
+
|
100
|
+
Returns:
|
101
|
+
torch.Tensor: Causal attention mask.
|
102
|
+
"""
|
103
|
+
|
104
|
+
mask = build_causal_mask_cache(size, dtype, device)
|
105
|
+
all_ones = torch.ones_like(mask)
|
106
|
+
window_size = min(size, window_size)
|
107
|
+
sliding_mask = torch.triu(all_ones, -1 * window_size + 1) * torch.tril(
|
108
|
+
all_ones, window_size - 1
|
109
|
+
)
|
110
|
+
return torch.where(sliding_mask == 1, mask, float('-inf'))
|
111
|
+
|
112
|
+
|
113
|
+
def relative_position_bucket(
|
114
|
+
relative_position: torch.Tensor,
|
115
|
+
bidirectional: bool,
|
116
|
+
num_buckets: int,
|
117
|
+
max_distance: int,
|
118
|
+
) -> torch.Tensor:
|
119
|
+
"""Adapted from Mesh Tensorflow:
|
120
|
+
|
121
|
+
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
|
122
|
+
|
123
|
+
Translate relative position to a bucket number for relative attention. The
|
124
|
+
relative position is defined as
|
125
|
+
memory_position - query_position, i.e. the distance in tokens from the
|
126
|
+
attending position to the attended-to
|
127
|
+
position. If bidirectional=False, then positive relative positions are
|
128
|
+
invalid. We use smaller buckets for
|
129
|
+
small absolute relative_position and larger buckets for larger absolute
|
130
|
+
relative_positions. All relative
|
131
|
+
positions >=max_distance map to the same bucket. All relative positions
|
132
|
+
<=-max_distance map to the same bucket.
|
133
|
+
This should allow for more graceful generalization to longer sequences than
|
134
|
+
the model has been trained on
|
135
|
+
|
136
|
+
Args:
|
137
|
+
relative_position: an int32 Tensor
|
138
|
+
bidirectional: a boolean - whether the attention is bidirectional
|
139
|
+
num_buckets: an integer for number of buckets.
|
140
|
+
max_distance: an integer for max distance.
|
141
|
+
|
142
|
+
Returns:
|
143
|
+
a Tensor with the same shape as relative_position, containing int32 values
|
144
|
+
in the range [0, num_buckets)
|
145
|
+
"""
|
146
|
+
relative_buckets = 0
|
147
|
+
if bidirectional:
|
148
|
+
num_buckets //= 2
|
149
|
+
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
|
150
|
+
relative_position = torch.abs(relative_position)
|
151
|
+
else:
|
152
|
+
relative_position = -torch.min(
|
153
|
+
relative_position, torch.zeros_like(relative_position)
|
154
|
+
)
|
155
|
+
# now relative_position is in the range [0, inf)
|
156
|
+
|
157
|
+
# half of the buckets are for exact increments in positions
|
158
|
+
max_exact = num_buckets // 2
|
159
|
+
is_small = relative_position < max_exact
|
160
|
+
|
161
|
+
# The other half of the buckets are for logarithmically bigger bins in
|
162
|
+
# positions up to max_distance
|
163
|
+
relative_position_if_large = max_exact + (
|
164
|
+
torch.log(relative_position.float() / max_exact)
|
165
|
+
/ math.log(max_distance / max_exact)
|
166
|
+
* (num_buckets - max_exact)
|
167
|
+
).to(torch.long)
|
168
|
+
relative_position_if_large = torch.min(
|
169
|
+
relative_position_if_large,
|
170
|
+
torch.full_like(relative_position_if_large, num_buckets - 1),
|
171
|
+
)
|
172
|
+
|
173
|
+
relative_buckets += torch.where(
|
174
|
+
is_small, relative_position, relative_position_if_large
|
175
|
+
)
|
176
|
+
return relative_buckets
|
177
|
+
|
178
|
+
|
179
|
+
def build_relative_position_buckets(
|
180
|
+
query_length: int,
|
181
|
+
key_length: int,
|
182
|
+
bidirectional: bool = True,
|
183
|
+
num_buckets: int = 32,
|
184
|
+
max_distance: int = 128,
|
185
|
+
) -> torch.Tensor:
|
186
|
+
"""Relative position buckets for computing bias.
|
187
|
+
|
188
|
+
Args:
|
189
|
+
query_length: an integer of length of current query tensor.
|
190
|
+
key_length: an integer of length of current key tensor.
|
191
|
+
bidirectional: a boolean - whether the attention is bidirectional, default
|
192
|
+
is True.
|
193
|
+
num_buckets: an integer for number of buckets, default is 32.
|
194
|
+
max_distance: an integer for max distance, default is 128.
|
195
|
+
|
196
|
+
Returns:
|
197
|
+
A torch.Tensor of computed relative position buckets.
|
198
|
+
"""
|
199
|
+
context_position = torch.arange(query_length, dtype=torch.long)[:, None]
|
200
|
+
memory_position = torch.arange(key_length, dtype=torch.long)[None, :]
|
201
|
+
relative_position = (
|
202
|
+
memory_position - context_position
|
203
|
+
) # shape (query_length, key_length)
|
204
|
+
rel_pos_bucket = relative_position_bucket(
|
205
|
+
relative_position, # shape (query_length, key_length)
|
206
|
+
bidirectional=bidirectional,
|
207
|
+
num_buckets=num_buckets,
|
208
|
+
max_distance=max_distance,
|
209
|
+
)
|
210
|
+
return rel_pos_bucket.unsqueeze(0).unsqueeze(0)
|