ai-edge-torch-nightly 0.3.0.dev20250114__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- ai_edge_torch/__init__.py +32 -0
- ai_edge_torch/_config.py +69 -0
- ai_edge_torch/_convert/__init__.py +14 -0
- ai_edge_torch/_convert/conversion.py +153 -0
- ai_edge_torch/_convert/conversion_utils.py +64 -0
- ai_edge_torch/_convert/converter.py +270 -0
- ai_edge_torch/_convert/fx_passes/__init__.py +23 -0
- ai_edge_torch/_convert/fx_passes/build_aten_composite_pass.py +288 -0
- ai_edge_torch/_convert/fx_passes/build_interpolate_composite_pass.py +131 -0
- ai_edge_torch/_convert/fx_passes/inject_mlir_debuginfo_pass.py +73 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/__init__.py +16 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_check.py +258 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_mark.py +50 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +18 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +68 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +216 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +449 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +30 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/pass_body.py +303 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/utils.py +64 -0
- ai_edge_torch/_convert/fx_passes/remove_non_user_outputs_pass.py +52 -0
- ai_edge_torch/_convert/signature.py +66 -0
- ai_edge_torch/_convert/test/__init__.py +14 -0
- ai_edge_torch/_convert/test/test_convert.py +558 -0
- ai_edge_torch/_convert/test/test_convert_composites.py +234 -0
- ai_edge_torch/_convert/test/test_convert_multisig.py +189 -0
- ai_edge_torch/_convert/test/test_to_channel_last_io.py +96 -0
- ai_edge_torch/_convert/to_channel_last_io.py +92 -0
- ai_edge_torch/conftest.py +20 -0
- ai_edge_torch/debug/__init__.py +17 -0
- ai_edge_torch/debug/culprit.py +496 -0
- ai_edge_torch/debug/test/__init__.py +14 -0
- ai_edge_torch/debug/test/test_culprit.py +140 -0
- ai_edge_torch/debug/test/test_search_model.py +51 -0
- ai_edge_torch/debug/utils.py +59 -0
- ai_edge_torch/experimental/__init__.py +14 -0
- ai_edge_torch/fx_pass_base.py +110 -0
- ai_edge_torch/generative/__init__.py +14 -0
- ai_edge_torch/generative/examples/__init__.py +14 -0
- ai_edge_torch/generative/examples/amd_llama_135m/__init__.py +14 -0
- ai_edge_torch/generative/examples/amd_llama_135m/amd_llama_135m.py +87 -0
- ai_edge_torch/generative/examples/amd_llama_135m/convert_to_tflite.py +70 -0
- ai_edge_torch/generative/examples/amd_llama_135m/verify.py +72 -0
- ai_edge_torch/generative/examples/gemma/__init__.py +14 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/gemma/gemma1.py +107 -0
- ai_edge_torch/generative/examples/gemma/gemma2.py +295 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma1.py +56 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma2.py +43 -0
- ai_edge_torch/generative/examples/gemma/verify_util.py +157 -0
- ai_edge_torch/generative/examples/llama/__init__.py +14 -0
- ai_edge_torch/generative/examples/llama/convert_to_tflite.py +91 -0
- ai_edge_torch/generative/examples/llama/llama.py +196 -0
- ai_edge_torch/generative/examples/llama/verify.py +88 -0
- ai_edge_torch/generative/examples/moonshine/__init__.py +14 -0
- ai_edge_torch/generative/examples/moonshine/convert_moonshine_to_tflite.py +50 -0
- ai_edge_torch/generative/examples/moonshine/moonshine.py +103 -0
- ai_edge_torch/generative/examples/openelm/__init__.py +14 -0
- ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/openelm/openelm.py +127 -0
- ai_edge_torch/generative/examples/openelm/verify.py +71 -0
- ai_edge_torch/generative/examples/paligemma/__init__.py +14 -0
- ai_edge_torch/generative/examples/paligemma/convert_to_tflite.py +95 -0
- ai_edge_torch/generative/examples/paligemma/decoder.py +151 -0
- ai_edge_torch/generative/examples/paligemma/decoder2.py +177 -0
- ai_edge_torch/generative/examples/paligemma/image_encoder.py +160 -0
- ai_edge_torch/generative/examples/paligemma/paligemma.py +179 -0
- ai_edge_torch/generative/examples/paligemma/verify.py +161 -0
- ai_edge_torch/generative/examples/paligemma/verify_decoder.py +75 -0
- ai_edge_torch/generative/examples/paligemma/verify_decoder2.py +72 -0
- ai_edge_torch/generative/examples/paligemma/verify_image_encoder.py +99 -0
- ai_edge_torch/generative/examples/phi/__init__.py +14 -0
- ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/phi/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/phi/phi2.py +107 -0
- ai_edge_torch/generative/examples/phi/phi3.py +219 -0
- ai_edge_torch/generative/examples/phi/verify.py +64 -0
- ai_edge_torch/generative/examples/phi/verify_phi3.py +69 -0
- ai_edge_torch/generative/examples/qwen/__init__.py +14 -0
- ai_edge_torch/generative/examples/qwen/convert_to_tflite.py +93 -0
- ai_edge_torch/generative/examples/qwen/qwen.py +134 -0
- ai_edge_torch/generative/examples/qwen/verify.py +88 -0
- ai_edge_torch/generative/examples/smollm/__init__.py +14 -0
- ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/smollm/convert_v2_to_tflite.py +71 -0
- ai_edge_torch/generative/examples/smollm/smollm.py +125 -0
- ai_edge_torch/generative/examples/smollm/verify.py +86 -0
- ai_edge_torch/generative/examples/stable_diffusion/__init__.py +14 -0
- ai_edge_torch/generative/examples/stable_diffusion/attention.py +108 -0
- ai_edge_torch/generative/examples/stable_diffusion/clip.py +185 -0
- ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +173 -0
- ai_edge_torch/generative/examples/stable_diffusion/decoder.py +398 -0
- ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +749 -0
- ai_edge_torch/generative/examples/stable_diffusion/encoder.py +119 -0
- ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +254 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/__init__.py +19 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +62 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +66 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +74 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +39 -0
- ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +111 -0
- ai_edge_torch/generative/examples/stable_diffusion/util.py +77 -0
- ai_edge_torch/generative/examples/t5/__init__.py +14 -0
- ai_edge_torch/generative/examples/t5/convert_to_tflite.py +138 -0
- ai_edge_torch/generative/examples/t5/t5.py +655 -0
- ai_edge_torch/generative/examples/t5/t5_attention.py +246 -0
- ai_edge_torch/generative/examples/test_models/__init__.py +14 -0
- ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
- ai_edge_torch/generative/examples/test_models/toy_model.py +156 -0
- ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +138 -0
- ai_edge_torch/generative/examples/tiny_llama/__init__.py +14 -0
- ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +88 -0
- ai_edge_torch/generative/examples/tiny_llama/verify.py +72 -0
- ai_edge_torch/generative/fx_passes/__init__.py +30 -0
- ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +50 -0
- ai_edge_torch/generative/layers/__init__.py +14 -0
- ai_edge_torch/generative/layers/attention.py +399 -0
- ai_edge_torch/generative/layers/attention_utils.py +210 -0
- ai_edge_torch/generative/layers/builder.py +160 -0
- ai_edge_torch/generative/layers/feed_forward.py +120 -0
- ai_edge_torch/generative/layers/kv_cache.py +204 -0
- ai_edge_torch/generative/layers/lora.py +557 -0
- ai_edge_torch/generative/layers/model_config.py +238 -0
- ai_edge_torch/generative/layers/normalization.py +222 -0
- ai_edge_torch/generative/layers/rotary_position_embedding.py +94 -0
- ai_edge_torch/generative/layers/scaled_dot_product_attention.py +144 -0
- ai_edge_torch/generative/layers/unet/__init__.py +14 -0
- ai_edge_torch/generative/layers/unet/blocks_2d.py +806 -0
- ai_edge_torch/generative/layers/unet/builder.py +50 -0
- ai_edge_torch/generative/layers/unet/model_config.py +282 -0
- ai_edge_torch/generative/quantize/__init__.py +14 -0
- ai_edge_torch/generative/quantize/example.py +47 -0
- ai_edge_torch/generative/quantize/quant_attrs.py +68 -0
- ai_edge_torch/generative/quantize/quant_recipe.py +154 -0
- ai_edge_torch/generative/quantize/quant_recipe_utils.py +62 -0
- ai_edge_torch/generative/quantize/quant_recipes.py +56 -0
- ai_edge_torch/generative/quantize/supported_schemes.py +32 -0
- ai_edge_torch/generative/test/__init__.py +14 -0
- ai_edge_torch/generative/test/test_custom_dus.py +107 -0
- ai_edge_torch/generative/test/test_kv_cache.py +120 -0
- ai_edge_torch/generative/test/test_loader.py +83 -0
- ai_edge_torch/generative/test/test_lora.py +147 -0
- ai_edge_torch/generative/test/test_model_conversion.py +191 -0
- ai_edge_torch/generative/test/test_model_conversion_large.py +362 -0
- ai_edge_torch/generative/test/test_quantize.py +183 -0
- ai_edge_torch/generative/test/utils.py +82 -0
- ai_edge_torch/generative/utilities/__init__.py +15 -0
- ai_edge_torch/generative/utilities/converter.py +215 -0
- ai_edge_torch/generative/utilities/dynamic_update_slice.py +56 -0
- ai_edge_torch/generative/utilities/loader.py +398 -0
- ai_edge_torch/generative/utilities/model_builder.py +180 -0
- ai_edge_torch/generative/utilities/moonshine_loader.py +154 -0
- ai_edge_torch/generative/utilities/stable_diffusion_loader.py +1032 -0
- ai_edge_torch/generative/utilities/t5_loader.py +512 -0
- ai_edge_torch/generative/utilities/transformers_verifier.py +42 -0
- ai_edge_torch/generative/utilities/verifier.py +335 -0
- ai_edge_torch/hlfb/__init__.py +16 -0
- ai_edge_torch/hlfb/mark_pattern/__init__.py +153 -0
- ai_edge_torch/hlfb/mark_pattern/fx_utils.py +69 -0
- ai_edge_torch/hlfb/mark_pattern/pattern.py +288 -0
- ai_edge_torch/hlfb/test/__init__.py +14 -0
- ai_edge_torch/hlfb/test/test_mark_pattern.py +185 -0
- ai_edge_torch/lowertools/__init__.py +18 -0
- ai_edge_torch/lowertools/_shim.py +86 -0
- ai_edge_torch/lowertools/common_utils.py +142 -0
- ai_edge_torch/lowertools/odml_torch_utils.py +260 -0
- ai_edge_torch/lowertools/test_utils.py +62 -0
- ai_edge_torch/lowertools/torch_xla_utils.py +301 -0
- ai_edge_torch/lowertools/translate_recipe.py +163 -0
- ai_edge_torch/model.py +177 -0
- ai_edge_torch/odml_torch/__init__.py +20 -0
- ai_edge_torch/odml_torch/_torch_future.py +88 -0
- ai_edge_torch/odml_torch/_torch_library.py +19 -0
- ai_edge_torch/odml_torch/composite/__init__.py +16 -0
- ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
- ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
- ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
- ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
- ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
- ai_edge_torch/odml_torch/export.py +403 -0
- ai_edge_torch/odml_torch/export_utils.py +157 -0
- ai_edge_torch/odml_torch/jax_bridge/__init__.py +18 -0
- ai_edge_torch/odml_torch/jax_bridge/_wrap.py +180 -0
- ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
- ai_edge_torch/odml_torch/lowerings/__init__.py +27 -0
- ai_edge_torch/odml_torch/lowerings/_basic.py +294 -0
- ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
- ai_edge_torch/odml_torch/lowerings/_convolution.py +243 -0
- ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +285 -0
- ai_edge_torch/odml_torch/lowerings/_layer_norm.py +87 -0
- ai_edge_torch/odml_torch/lowerings/_quantized_decomposed.py +177 -0
- ai_edge_torch/odml_torch/lowerings/_rand.py +142 -0
- ai_edge_torch/odml_torch/lowerings/context.py +42 -0
- ai_edge_torch/odml_torch/lowerings/decomp.py +69 -0
- ai_edge_torch/odml_torch/lowerings/registry.py +65 -0
- ai_edge_torch/odml_torch/lowerings/utils.py +201 -0
- ai_edge_torch/odml_torch/passes/__init__.py +38 -0
- ai_edge_torch/odml_torch/tf_integration.py +156 -0
- ai_edge_torch/quantize/__init__.py +16 -0
- ai_edge_torch/quantize/pt2e_quantizer.py +466 -0
- ai_edge_torch/quantize/pt2e_quantizer_utils.py +1061 -0
- ai_edge_torch/quantize/quant_config.py +85 -0
- ai_edge_torch/testing/__init__.py +14 -0
- ai_edge_torch/testing/model_coverage/__init__.py +16 -0
- ai_edge_torch/testing/model_coverage/model_coverage.py +145 -0
- ai_edge_torch/version.py +16 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/LICENSE +202 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/METADATA +44 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/RECORD +213 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/WHEEL +5 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/top_level.txt +1 -0
@@ -0,0 +1,403 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
"""APIs to convert and lower a PyTorch ExportedProgram to MLIR."""
|
16
|
+
|
17
|
+
import dataclasses
|
18
|
+
import enum
|
19
|
+
import io
|
20
|
+
import operator
|
21
|
+
from typing import Any, Callable, Optional
|
22
|
+
|
23
|
+
from jax.lib import xla_extension
|
24
|
+
from jax._src.lib.mlir import ir
|
25
|
+
from jax._src.lib.mlir.dialects import func
|
26
|
+
from jax._src.lib.mlir.dialects import hlo as stablehlo
|
27
|
+
import torch
|
28
|
+
import torch.utils._pytree as pytree
|
29
|
+
|
30
|
+
from . import _torch_future
|
31
|
+
from . import debuginfo
|
32
|
+
from . import export_utils
|
33
|
+
from . import lowerings
|
34
|
+
|
35
|
+
LoweringContext = lowerings.context.LoweringContext
|
36
|
+
|
37
|
+
|
38
|
+
def _build_flat_inputs(exported_program: torch.export.ExportedProgram):
|
39
|
+
"""Build flattened inputs and metadata from exported program's signature."""
|
40
|
+
placeholder_nodes = [
|
41
|
+
n for n in exported_program.graph.nodes if n.op == "placeholder"
|
42
|
+
]
|
43
|
+
export_flat_args = _torch_future.graph_module_flat_inputs(
|
44
|
+
exported_program, *exported_program.example_inputs
|
45
|
+
)
|
46
|
+
|
47
|
+
ir_inputs = []
|
48
|
+
tensor_metas = []
|
49
|
+
for node, arg in zip(placeholder_nodes, export_flat_args):
|
50
|
+
tensor_meta = node.meta.get("tensor_meta") or node.meta.get("val")
|
51
|
+
if tensor_meta is None:
|
52
|
+
raise RuntimeError(
|
53
|
+
f"{type(arg)} (for {node.name}) does not have tensor meta"
|
54
|
+
)
|
55
|
+
|
56
|
+
tensor_metas.append(tensor_meta)
|
57
|
+
# Assume all dynamic dimensions are unbounded.
|
58
|
+
# TODO: Add checks for ep.range_constraints in MLIR.
|
59
|
+
shape = tuple(
|
60
|
+
export_utils.IR_DYNAMIC if export_utils.is_torch_dynamic(s) else s
|
61
|
+
for s in tensor_meta.shape
|
62
|
+
)
|
63
|
+
ir_inputs.append(
|
64
|
+
ir.RankedTensorType.get(
|
65
|
+
shape,
|
66
|
+
export_utils.torch_dtype_to_ir_element_type(tensor_meta.dtype),
|
67
|
+
)
|
68
|
+
)
|
69
|
+
return tuple(ir_inputs), tuple(export_flat_args), tuple(tensor_metas)
|
70
|
+
|
71
|
+
|
72
|
+
def _get_output_metas(exported_program: torch.export.ExportedProgram):
|
73
|
+
"""Get the output node's tensor_meta from the exported program."""
|
74
|
+
outputs = [n for n in exported_program.graph.nodes if n.op == "output"]
|
75
|
+
assert len(outputs) == 1
|
76
|
+
outputs, _ = pytree.tree_flatten(outputs[0].args[0])
|
77
|
+
assert all(isinstance(output, torch.fx.Node) for output in outputs)
|
78
|
+
return tuple(output.meta["tensor_meta"] for output in outputs)
|
79
|
+
|
80
|
+
|
81
|
+
class LoweringInterpreter(torch.fx.Interpreter):
|
82
|
+
"""The FX interpreter to iterate and invoke corresponding lowering for each PyTorch op in the graph."""
|
83
|
+
|
84
|
+
def __init__(self, module: torch.fx.GraphModule, lctx: LoweringContext):
|
85
|
+
super().__init__(module)
|
86
|
+
self.lctx = lctx
|
87
|
+
self.outputs = None
|
88
|
+
|
89
|
+
def _build_loc(self, node: torch.fx.Node):
|
90
|
+
|
91
|
+
info = debuginfo.build_mlir_debuginfo(node)
|
92
|
+
if info is None:
|
93
|
+
return ir.Location.unknown()
|
94
|
+
|
95
|
+
return ir.Location.name(name=info)
|
96
|
+
|
97
|
+
def run_node(self, node: torch.fx.Node):
|
98
|
+
loc = self._build_loc(node)
|
99
|
+
with loc:
|
100
|
+
self.lctx = self.lctx.replace(ir_location=loc, node=node)
|
101
|
+
res = super().run_node(node)
|
102
|
+
self.lctx = self.lctx.replace(ir_location=None, node=None)
|
103
|
+
return res
|
104
|
+
|
105
|
+
def call_function(self, target, args, kwargs):
|
106
|
+
if target is operator.getitem:
|
107
|
+
return super().call_function(target, args, kwargs)
|
108
|
+
|
109
|
+
if hasattr(target, "_schema"):
|
110
|
+
new_args = []
|
111
|
+
for arg, spec in zip(args, target._schema.arguments):
|
112
|
+
if isinstance(spec.type, torch.TensorType):
|
113
|
+
if isinstance(arg, int):
|
114
|
+
arg = lowerings.utils.splat(arg, ir.IntegerType.get_signless(32))
|
115
|
+
elif isinstance(arg, float):
|
116
|
+
arg = lowerings.utils.splat(arg, ir.F32Type.get())
|
117
|
+
|
118
|
+
new_args.append(arg)
|
119
|
+
args = tuple(new_args)
|
120
|
+
|
121
|
+
lowering = lowerings.lookup(target)
|
122
|
+
if lowering is None:
|
123
|
+
raise RuntimeError(f"Lowering not found: {target}")
|
124
|
+
return lowering(self.lctx, *args, **kwargs)
|
125
|
+
|
126
|
+
def output(self, target, args, kwargs):
|
127
|
+
flat_outputs = pytree.tree_flatten(args[0])[0]
|
128
|
+
self.outputs = flat_outputs
|
129
|
+
|
130
|
+
|
131
|
+
@dataclasses.dataclass
|
132
|
+
class InputSpec:
|
133
|
+
|
134
|
+
class VariableType(enum.Enum):
|
135
|
+
USER_INPUT = "user_input"
|
136
|
+
PARAMETER = "parameter"
|
137
|
+
|
138
|
+
type_: VariableType
|
139
|
+
i: int = -1
|
140
|
+
name: str = ""
|
141
|
+
|
142
|
+
@classmethod
|
143
|
+
def parameter(cls, name: str):
|
144
|
+
return cls(type_=cls.VariableType.PARAMETER, name=name)
|
145
|
+
|
146
|
+
@classmethod
|
147
|
+
def user_input(cls, i: int):
|
148
|
+
return cls(type_=cls.VariableType.USER_INPUT, i=i)
|
149
|
+
|
150
|
+
@property
|
151
|
+
def is_parameter(self):
|
152
|
+
return self.type_ == self.VariableType.PARAMETER
|
153
|
+
|
154
|
+
@property
|
155
|
+
def is_user_input(self):
|
156
|
+
return self.type_ == self.VariableType.USER_INPUT
|
157
|
+
|
158
|
+
|
159
|
+
@dataclasses.dataclass
|
160
|
+
class VariableSignature: # either argument or parameters
|
161
|
+
shape: list[int]
|
162
|
+
dtype: str
|
163
|
+
input_spec: InputSpec = None
|
164
|
+
|
165
|
+
|
166
|
+
@dataclasses.dataclass
|
167
|
+
class MlirLowered:
|
168
|
+
"""The lowered MLIR module, metadata, and weight tensors bundle from exported program."""
|
169
|
+
|
170
|
+
ctx: ir.Context
|
171
|
+
module: ir.Module
|
172
|
+
state_dict: dict[str, torch.Tensor]
|
173
|
+
input_signature: list[VariableSignature]
|
174
|
+
output_signature: list[VariableSignature]
|
175
|
+
|
176
|
+
_tf_function: Optional[Callable[Any, Any]] = None
|
177
|
+
|
178
|
+
def __str__(self):
|
179
|
+
return str(self.get_text(enable_debug_info=False))
|
180
|
+
|
181
|
+
def __repr__(self):
|
182
|
+
return str(self.get_text(enable_debug_info=False))
|
183
|
+
|
184
|
+
def get_text(self, enable_debug_info=False):
|
185
|
+
return str(
|
186
|
+
self.module.operation.get_asm(enable_debug_info=enable_debug_info)
|
187
|
+
)
|
188
|
+
|
189
|
+
@property
|
190
|
+
def module_bytecode(self) -> bytes:
|
191
|
+
output = io.BytesIO()
|
192
|
+
self.module.operation.write_bytecode(file=output)
|
193
|
+
return output.getvalue()
|
194
|
+
|
195
|
+
@property
|
196
|
+
def module_bytecode_vhlo(self) -> bytes:
|
197
|
+
# HACK: In OSS, we use MLIR pybinding and StableHLO dialect from JAX's
|
198
|
+
# build, which may not have the same StableHLO version as what used in
|
199
|
+
# TFLite converter. Therefore we always serialize MLIR module in VHLO.
|
200
|
+
# TODO(b/362798610) Build MLIR pybinding in ai-edge-torch release.
|
201
|
+
if stablehlo.get_api_version() < 9:
|
202
|
+
target_version = stablehlo.get_minimum_version()
|
203
|
+
else:
|
204
|
+
target_version = stablehlo.get_version_from_compatibility_requirement(
|
205
|
+
stablehlo.StablehloCompatibilityRequirement.WEEK_12
|
206
|
+
)
|
207
|
+
module_bytecode = xla_extension.mlir.serialize_portable_artifact(
|
208
|
+
self.module_bytecode, target_version
|
209
|
+
)
|
210
|
+
return module_bytecode
|
211
|
+
|
212
|
+
@property
|
213
|
+
def tf_function(self):
|
214
|
+
# Lazy import
|
215
|
+
from . import tf_integration
|
216
|
+
|
217
|
+
if self._tf_function is None:
|
218
|
+
self._tf_function = tf_integration.mlir_to_tf_function(self)
|
219
|
+
return self._tf_function
|
220
|
+
|
221
|
+
def __call__(self, *args):
|
222
|
+
# Lazy importing TF when execution is needed.
|
223
|
+
return self.tf_function(*args)
|
224
|
+
|
225
|
+
|
226
|
+
# TODO(b/331481564) Make this a ai_edge_torch FX pass.
|
227
|
+
def _convert_i64_to_i32(exported_program: torch.export.ExportedProgram):
|
228
|
+
"""Convert internal constant aten ops' output from int64 to int32.
|
229
|
+
|
230
|
+
Int32 generally has better performance and compatibility than int64 in
|
231
|
+
runtime. This pass converts aten op where the output(s) are int64 constant
|
232
|
+
tensors to return int32 constant tensors.
|
233
|
+
|
234
|
+
Args:
|
235
|
+
exported_program: The exported program to apply the pass.
|
236
|
+
"""
|
237
|
+
|
238
|
+
def in_i32(x: int):
|
239
|
+
return -2147483648 <= x <= 2147483647
|
240
|
+
|
241
|
+
def to_int32(x: torch.Tensor):
|
242
|
+
return torch.ops.aten._to_copy.default(x, dtype=torch.int32)
|
243
|
+
|
244
|
+
def rewrite_arange(node: torch.fx.Node):
|
245
|
+
tensor_meta = node.meta.get("tensor_meta", None)
|
246
|
+
if not tensor_meta:
|
247
|
+
return
|
248
|
+
|
249
|
+
start, end = node.args[:2]
|
250
|
+
if tensor_meta.dtype != torch.int64:
|
251
|
+
return
|
252
|
+
if not (in_i32(start) and in_i32(end)):
|
253
|
+
return
|
254
|
+
op = node.target
|
255
|
+
node.target = lambda *args, **kwargs: to_int32(op(*args, **kwargs))
|
256
|
+
|
257
|
+
graph_module = exported_program.graph_module
|
258
|
+
for node in graph_module.graph.nodes:
|
259
|
+
|
260
|
+
if node.target == torch.ops.aten.arange.start_step:
|
261
|
+
rewrite_arange(node)
|
262
|
+
|
263
|
+
|
264
|
+
# TODO(b/331481564) Make this a ai_edge_torch FX pass.
|
265
|
+
def _convert_q_dq_per_channel_args_to_list(
|
266
|
+
exported_program: torch.export.ExportedProgram,
|
267
|
+
):
|
268
|
+
"""Resolve tensor inputs to Q/DQ ops as static number list for lowering.
|
269
|
+
|
270
|
+
This pass makes the ExportedProgram in a non-executable state. This pass must
|
271
|
+
be run after all run_decompositions calls.
|
272
|
+
"""
|
273
|
+
placeholder_nodes = [
|
274
|
+
n for n in exported_program.graph.nodes if n.op == "placeholder"
|
275
|
+
]
|
276
|
+
export_flat_args = _torch_future.graph_module_flat_inputs(
|
277
|
+
exported_program, *exported_program.example_inputs
|
278
|
+
)
|
279
|
+
|
280
|
+
placeholder_tensor = {
|
281
|
+
n: tensor for n, tensor in zip(placeholder_nodes, export_flat_args)
|
282
|
+
}
|
283
|
+
|
284
|
+
graph_module = exported_program.graph_module
|
285
|
+
for node in graph_module.graph.nodes:
|
286
|
+
if node.target in (
|
287
|
+
torch.ops.quantized_decomposed.quantize_per_channel.default,
|
288
|
+
torch.ops.quantized_decomposed.quantize_per_tensor.tensor,
|
289
|
+
torch.ops.quantized_decomposed.dequantize_per_channel.default,
|
290
|
+
torch.ops.quantized_decomposed.dequantize_per_tensor.tensor,
|
291
|
+
):
|
292
|
+
input, scale_node, zero_point_node = node.args[:3]
|
293
|
+
scale = placeholder_tensor[scale_node]
|
294
|
+
zero_point = placeholder_tensor[zero_point_node]
|
295
|
+
|
296
|
+
scale = scale.detach().numpy().tolist()
|
297
|
+
zero_point = zero_point.detach().numpy().tolist()
|
298
|
+
node.args = (input, scale, zero_point, *node.args[3:])
|
299
|
+
|
300
|
+
|
301
|
+
def exported_program_to_mlir(
|
302
|
+
exported_program: torch.export.ExportedProgram,
|
303
|
+
) -> MlirLowered:
|
304
|
+
"""Lower the exported program to MLIR."""
|
305
|
+
exported_program = _torch_future.safe_run_decompositions(
|
306
|
+
exported_program, lowerings.decompositions()
|
307
|
+
)
|
308
|
+
|
309
|
+
_convert_i64_to_i32(exported_program)
|
310
|
+
|
311
|
+
# No decompositions but just retracing/cananicalization.
|
312
|
+
exported_program = _torch_future.safe_run_decompositions(
|
313
|
+
exported_program, _torch_future.dummy_decomp_table()
|
314
|
+
)
|
315
|
+
|
316
|
+
# Passes below mutate the exported program to a state not executable by torch.
|
317
|
+
# Do not call run_decompositions after applying the passes.
|
318
|
+
_convert_q_dq_per_channel_args_to_list(exported_program)
|
319
|
+
|
320
|
+
with export_utils.create_ir_context() as context, ir.Location.unknown():
|
321
|
+
|
322
|
+
module = ir.Module.create()
|
323
|
+
lctx = LoweringContext(context, module)
|
324
|
+
interpreter = LoweringInterpreter(exported_program.graph_module, lctx)
|
325
|
+
ir_flat_inputs, export_flat_args, tensor_metas = _build_flat_inputs(
|
326
|
+
exported_program
|
327
|
+
)
|
328
|
+
|
329
|
+
# HACK: OSS MLIR pybinding could mysteriously transform func.func under
|
330
|
+
# construction into a func.return op after calling ir.Module.parse(..)
|
331
|
+
# in the context, which happens in JAX bridge. This is a bug in MLIR
|
332
|
+
# pybinding.
|
333
|
+
# Workaround steps:
|
334
|
+
# 1. Create a temp func.func.
|
335
|
+
# 2. Create and insert ops to temp's entry block. During the process
|
336
|
+
# the temp func.func would be broken, but the ops in the block are fine.
|
337
|
+
# 3. Create the main func.func and copy all the ops in temp's entry block
|
338
|
+
# to main.
|
339
|
+
# 4. Erase the temp func.func.
|
340
|
+
temp_func = func.FuncOp(
|
341
|
+
"temp",
|
342
|
+
ir.FunctionType.get(ir_flat_inputs, []),
|
343
|
+
ip=ir.InsertionPoint.at_block_begin(module.body),
|
344
|
+
)
|
345
|
+
with ir.InsertionPoint(temp_func.add_entry_block()):
|
346
|
+
interpreter.run(*temp_func.arguments, enable_io_processing=False)
|
347
|
+
num_mutations = len(exported_program.graph_signature.buffers_to_mutate)
|
348
|
+
outputs = interpreter.outputs[num_mutations:]
|
349
|
+
func.ReturnOp(interpreter.outputs[num_mutations:])
|
350
|
+
|
351
|
+
main_func = func.FuncOp(
|
352
|
+
"main",
|
353
|
+
ir.FunctionType.get(ir_flat_inputs, [o.type for o in outputs]),
|
354
|
+
ip=ir.InsertionPoint.at_block_begin(module.body),
|
355
|
+
)
|
356
|
+
with ir.InsertionPoint(main_func.add_entry_block()):
|
357
|
+
outputs = export_utils.clone_func_body_ops(temp_func, main_func.arguments)
|
358
|
+
func.ReturnOp(outputs)
|
359
|
+
|
360
|
+
main_func.attributes["sym_visibility"] = ir.StringAttr.get("public")
|
361
|
+
temp_func.erase()
|
362
|
+
|
363
|
+
module.operation.verify()
|
364
|
+
|
365
|
+
input_signature = []
|
366
|
+
state_dict = {}
|
367
|
+
|
368
|
+
user_inputs_cnt = 0
|
369
|
+
for arg, tensor_meta, input_spec in zip(
|
370
|
+
export_flat_args,
|
371
|
+
tensor_metas,
|
372
|
+
exported_program.graph_signature.input_specs,
|
373
|
+
):
|
374
|
+
# Assumption:
|
375
|
+
# All states comes first in the list of args, and user provided inputs
|
376
|
+
# comes later. Also there is no kwargs.
|
377
|
+
if input_spec.kind == torch.export.graph_signature.InputKind.USER_INPUT:
|
378
|
+
input_signature.append(
|
379
|
+
VariableSignature(
|
380
|
+
tensor_meta.shape,
|
381
|
+
tensor_meta.dtype,
|
382
|
+
input_spec=InputSpec.user_input(user_inputs_cnt),
|
383
|
+
)
|
384
|
+
)
|
385
|
+
user_inputs_cnt += 1
|
386
|
+
else:
|
387
|
+
# Parameter or constant
|
388
|
+
state_dict[input_spec.target] = arg
|
389
|
+
input_signature.append(
|
390
|
+
VariableSignature(
|
391
|
+
tensor_meta.shape,
|
392
|
+
tensor_meta.dtype,
|
393
|
+
input_spec=InputSpec.parameter(input_spec.target),
|
394
|
+
)
|
395
|
+
)
|
396
|
+
|
397
|
+
output_signature = [
|
398
|
+
VariableSignature(tensor_meta.shape, tensor_meta.dtype)
|
399
|
+
for tensor_meta in _get_output_metas(exported_program)
|
400
|
+
]
|
401
|
+
return MlirLowered(
|
402
|
+
context, module, state_dict, input_signature, output_signature
|
403
|
+
)
|
@@ -0,0 +1,157 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
"""Utilities for ODML Torch export."""
|
16
|
+
|
17
|
+
import re
|
18
|
+
from typing import Sequence, cast
|
19
|
+
from ai_edge_torch.odml_torch.lowerings import utils as lowering_utils
|
20
|
+
import jax._src.interpreters.mlir
|
21
|
+
from jax._src.lib.mlir import ir
|
22
|
+
from jax._src.lib.mlir.dialects import func
|
23
|
+
import torch
|
24
|
+
|
25
|
+
# std::numeric_limits<int64_t>::min()
|
26
|
+
IR_DYNAMIC = -9223372036854775808
|
27
|
+
|
28
|
+
|
29
|
+
def is_ir_dynamic(v):
|
30
|
+
return v == IR_DYNAMIC
|
31
|
+
|
32
|
+
|
33
|
+
def is_torch_dynamic(v):
|
34
|
+
return isinstance(v, torch.SymInt)
|
35
|
+
|
36
|
+
|
37
|
+
def is_iterable(v):
|
38
|
+
try:
|
39
|
+
iter(v)
|
40
|
+
except TypeError:
|
41
|
+
return False
|
42
|
+
return True
|
43
|
+
|
44
|
+
|
45
|
+
def create_ir_context():
|
46
|
+
# HACK: Use ir context from JAX as base for better stability in OSS.
|
47
|
+
# TODO(b/362798610) Build MLIR pybinding in ai-edge-torch release.
|
48
|
+
context = jax._src.interpreters.mlir.make_ir_context()
|
49
|
+
context.allow_unregistered_dialects = True
|
50
|
+
return context
|
51
|
+
|
52
|
+
|
53
|
+
def inline(
|
54
|
+
symbol_table: ir.SymbolTable,
|
55
|
+
block: ir.Block,
|
56
|
+
):
|
57
|
+
"""Recursively inlines all func.call ops in the block.
|
58
|
+
|
59
|
+
The symbol_table must include all func.func called by func.call ops.
|
60
|
+
This inliner in Python is implemented because MLIR inline pass from JAX's
|
61
|
+
MLIR pybinding build in OSS cannot properly inline func.call ops.
|
62
|
+
"""
|
63
|
+
while True:
|
64
|
+
is_changed = False
|
65
|
+
for op in block.operations:
|
66
|
+
if op.OPERATION_NAME != func.CallOp.OPERATION_NAME:
|
67
|
+
continue
|
68
|
+
|
69
|
+
call_op = cast(func.CallOp, op)
|
70
|
+
func_op = cast(func.FuncOp, symbol_table[call_op.callee.value])
|
71
|
+
with ir.InsertionPoint(op):
|
72
|
+
new_results = clone_func_body_ops(func_op, call_op.operands)
|
73
|
+
|
74
|
+
for old_result, new_result in zip(call_op.results, new_results):
|
75
|
+
old_result = cast(ir.Value, old_result)
|
76
|
+
old_result.replace_all_uses_with(new_result)
|
77
|
+
call_op.erase()
|
78
|
+
is_changed = True
|
79
|
+
|
80
|
+
if not is_changed:
|
81
|
+
break
|
82
|
+
|
83
|
+
for op in block.operations:
|
84
|
+
for region in op.regions:
|
85
|
+
for block in region.blocks:
|
86
|
+
inline(symbol_table, block)
|
87
|
+
|
88
|
+
|
89
|
+
def clone_func_body_ops(func_op: func.FuncOp, ir_inputs: Sequence[ir.Value]):
|
90
|
+
"""Clone operations in the func_op's body by one into the current context."""
|
91
|
+
func_args = list(func_op.arguments)
|
92
|
+
ir_inputs = list(ir_inputs)
|
93
|
+
assert len(func_args) == len(ir_inputs)
|
94
|
+
|
95
|
+
value_mapping = {arg: ir_input for arg, ir_input in zip(func_args, ir_inputs)}
|
96
|
+
|
97
|
+
for op in list(func_op.entry_block.operations):
|
98
|
+
cloned_operands = [value_mapping[val] for val in op.operands]
|
99
|
+
if op.OPERATION_NAME == func.ReturnOp.OPERATION_NAME:
|
100
|
+
return cloned_operands
|
101
|
+
|
102
|
+
cloned = cast(ir.Operation, op.operation.clone())
|
103
|
+
|
104
|
+
for i in range(len(op.operands)):
|
105
|
+
cloned.operands[i] = cloned_operands[i]
|
106
|
+
|
107
|
+
for i in range(len(op.results)):
|
108
|
+
value_mapping[op.results[i]] = cloned.results[i]
|
109
|
+
|
110
|
+
return []
|
111
|
+
|
112
|
+
|
113
|
+
def sanitize_aten_op_name(op, chars=":."):
|
114
|
+
return re.sub("[{}]".format(chars), "_", str(op))
|
115
|
+
|
116
|
+
|
117
|
+
def build_ir_attr(val):
|
118
|
+
if val is None:
|
119
|
+
return ir.StringAttr.get("py_None")
|
120
|
+
if isinstance(val, bool):
|
121
|
+
return ir.BoolAttr.get(val)
|
122
|
+
if isinstance(val, int):
|
123
|
+
return ir.IntegerAttr.get(ir.IntegerType.get_signless(64), val)
|
124
|
+
if isinstance(val, float):
|
125
|
+
return ir.BoolAttr.get(val)
|
126
|
+
if isinstance(val, str):
|
127
|
+
return ir.StringAttr.get(val)
|
128
|
+
if isinstance(val, dict):
|
129
|
+
return ir.DictAttr.get({k: build_ir_attr(v) for k, v in val.items()})
|
130
|
+
if isinstance(val, (list, tuple)):
|
131
|
+
return ir.ArrayAttr.get([build_ir_attr(v) for v in val])
|
132
|
+
|
133
|
+
# Stringify the value to a StringAttr by default
|
134
|
+
return ir.StringAttr.get(str(val))
|
135
|
+
|
136
|
+
|
137
|
+
torch_dtype_to_ir_element_type = lowering_utils.torch_dtype_to_ir_element_type
|
138
|
+
|
139
|
+
|
140
|
+
def ir_element_type_to_torch_dtype(ty):
|
141
|
+
if isinstance(ty, ir.F32Type):
|
142
|
+
return torch.float32
|
143
|
+
if isinstance(ty, ir.F64Type):
|
144
|
+
return torch.float64
|
145
|
+
if isinstance(ty, ir.F16Type):
|
146
|
+
return torch.half
|
147
|
+
if isinstance(ty, ir.IntegerType):
|
148
|
+
if ty.is_signless:
|
149
|
+
if ty.width == 64:
|
150
|
+
return torch.long
|
151
|
+
if ty.width == 32:
|
152
|
+
return torch.int32
|
153
|
+
if ty.width == 16:
|
154
|
+
return torch.int16
|
155
|
+
if ty.width == 1:
|
156
|
+
return torch.bool
|
157
|
+
raise RuntimeError(f"Unsupported ir element type: {ty}")
|
@@ -0,0 +1,18 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
from ai_edge_torch.odml_torch.jax_bridge import _wrap
|
16
|
+
from ai_edge_torch.odml_torch.jax_bridge import utils
|
17
|
+
|
18
|
+
wrap = _wrap.wrap
|