ai-edge-torch-nightly 0.3.0.dev20250114__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- ai_edge_torch/__init__.py +32 -0
- ai_edge_torch/_config.py +69 -0
- ai_edge_torch/_convert/__init__.py +14 -0
- ai_edge_torch/_convert/conversion.py +153 -0
- ai_edge_torch/_convert/conversion_utils.py +64 -0
- ai_edge_torch/_convert/converter.py +270 -0
- ai_edge_torch/_convert/fx_passes/__init__.py +23 -0
- ai_edge_torch/_convert/fx_passes/build_aten_composite_pass.py +288 -0
- ai_edge_torch/_convert/fx_passes/build_interpolate_composite_pass.py +131 -0
- ai_edge_torch/_convert/fx_passes/inject_mlir_debuginfo_pass.py +73 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/__init__.py +16 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_check.py +258 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_mark.py +50 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +18 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +68 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +216 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +449 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +30 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/pass_body.py +303 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/utils.py +64 -0
- ai_edge_torch/_convert/fx_passes/remove_non_user_outputs_pass.py +52 -0
- ai_edge_torch/_convert/signature.py +66 -0
- ai_edge_torch/_convert/test/__init__.py +14 -0
- ai_edge_torch/_convert/test/test_convert.py +558 -0
- ai_edge_torch/_convert/test/test_convert_composites.py +234 -0
- ai_edge_torch/_convert/test/test_convert_multisig.py +189 -0
- ai_edge_torch/_convert/test/test_to_channel_last_io.py +96 -0
- ai_edge_torch/_convert/to_channel_last_io.py +92 -0
- ai_edge_torch/conftest.py +20 -0
- ai_edge_torch/debug/__init__.py +17 -0
- ai_edge_torch/debug/culprit.py +496 -0
- ai_edge_torch/debug/test/__init__.py +14 -0
- ai_edge_torch/debug/test/test_culprit.py +140 -0
- ai_edge_torch/debug/test/test_search_model.py +51 -0
- ai_edge_torch/debug/utils.py +59 -0
- ai_edge_torch/experimental/__init__.py +14 -0
- ai_edge_torch/fx_pass_base.py +110 -0
- ai_edge_torch/generative/__init__.py +14 -0
- ai_edge_torch/generative/examples/__init__.py +14 -0
- ai_edge_torch/generative/examples/amd_llama_135m/__init__.py +14 -0
- ai_edge_torch/generative/examples/amd_llama_135m/amd_llama_135m.py +87 -0
- ai_edge_torch/generative/examples/amd_llama_135m/convert_to_tflite.py +70 -0
- ai_edge_torch/generative/examples/amd_llama_135m/verify.py +72 -0
- ai_edge_torch/generative/examples/gemma/__init__.py +14 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/gemma/gemma1.py +107 -0
- ai_edge_torch/generative/examples/gemma/gemma2.py +295 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma1.py +56 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma2.py +43 -0
- ai_edge_torch/generative/examples/gemma/verify_util.py +157 -0
- ai_edge_torch/generative/examples/llama/__init__.py +14 -0
- ai_edge_torch/generative/examples/llama/convert_to_tflite.py +91 -0
- ai_edge_torch/generative/examples/llama/llama.py +196 -0
- ai_edge_torch/generative/examples/llama/verify.py +88 -0
- ai_edge_torch/generative/examples/moonshine/__init__.py +14 -0
- ai_edge_torch/generative/examples/moonshine/convert_moonshine_to_tflite.py +50 -0
- ai_edge_torch/generative/examples/moonshine/moonshine.py +103 -0
- ai_edge_torch/generative/examples/openelm/__init__.py +14 -0
- ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/openelm/openelm.py +127 -0
- ai_edge_torch/generative/examples/openelm/verify.py +71 -0
- ai_edge_torch/generative/examples/paligemma/__init__.py +14 -0
- ai_edge_torch/generative/examples/paligemma/convert_to_tflite.py +95 -0
- ai_edge_torch/generative/examples/paligemma/decoder.py +151 -0
- ai_edge_torch/generative/examples/paligemma/decoder2.py +177 -0
- ai_edge_torch/generative/examples/paligemma/image_encoder.py +160 -0
- ai_edge_torch/generative/examples/paligemma/paligemma.py +179 -0
- ai_edge_torch/generative/examples/paligemma/verify.py +161 -0
- ai_edge_torch/generative/examples/paligemma/verify_decoder.py +75 -0
- ai_edge_torch/generative/examples/paligemma/verify_decoder2.py +72 -0
- ai_edge_torch/generative/examples/paligemma/verify_image_encoder.py +99 -0
- ai_edge_torch/generative/examples/phi/__init__.py +14 -0
- ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/phi/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/phi/phi2.py +107 -0
- ai_edge_torch/generative/examples/phi/phi3.py +219 -0
- ai_edge_torch/generative/examples/phi/verify.py +64 -0
- ai_edge_torch/generative/examples/phi/verify_phi3.py +69 -0
- ai_edge_torch/generative/examples/qwen/__init__.py +14 -0
- ai_edge_torch/generative/examples/qwen/convert_to_tflite.py +93 -0
- ai_edge_torch/generative/examples/qwen/qwen.py +134 -0
- ai_edge_torch/generative/examples/qwen/verify.py +88 -0
- ai_edge_torch/generative/examples/smollm/__init__.py +14 -0
- ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/smollm/convert_v2_to_tflite.py +71 -0
- ai_edge_torch/generative/examples/smollm/smollm.py +125 -0
- ai_edge_torch/generative/examples/smollm/verify.py +86 -0
- ai_edge_torch/generative/examples/stable_diffusion/__init__.py +14 -0
- ai_edge_torch/generative/examples/stable_diffusion/attention.py +108 -0
- ai_edge_torch/generative/examples/stable_diffusion/clip.py +185 -0
- ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +173 -0
- ai_edge_torch/generative/examples/stable_diffusion/decoder.py +398 -0
- ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +749 -0
- ai_edge_torch/generative/examples/stable_diffusion/encoder.py +119 -0
- ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +254 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/__init__.py +19 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +62 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +66 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +74 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +39 -0
- ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +111 -0
- ai_edge_torch/generative/examples/stable_diffusion/util.py +77 -0
- ai_edge_torch/generative/examples/t5/__init__.py +14 -0
- ai_edge_torch/generative/examples/t5/convert_to_tflite.py +138 -0
- ai_edge_torch/generative/examples/t5/t5.py +655 -0
- ai_edge_torch/generative/examples/t5/t5_attention.py +246 -0
- ai_edge_torch/generative/examples/test_models/__init__.py +14 -0
- ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
- ai_edge_torch/generative/examples/test_models/toy_model.py +156 -0
- ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +138 -0
- ai_edge_torch/generative/examples/tiny_llama/__init__.py +14 -0
- ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +88 -0
- ai_edge_torch/generative/examples/tiny_llama/verify.py +72 -0
- ai_edge_torch/generative/fx_passes/__init__.py +30 -0
- ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +50 -0
- ai_edge_torch/generative/layers/__init__.py +14 -0
- ai_edge_torch/generative/layers/attention.py +399 -0
- ai_edge_torch/generative/layers/attention_utils.py +210 -0
- ai_edge_torch/generative/layers/builder.py +160 -0
- ai_edge_torch/generative/layers/feed_forward.py +120 -0
- ai_edge_torch/generative/layers/kv_cache.py +204 -0
- ai_edge_torch/generative/layers/lora.py +557 -0
- ai_edge_torch/generative/layers/model_config.py +238 -0
- ai_edge_torch/generative/layers/normalization.py +222 -0
- ai_edge_torch/generative/layers/rotary_position_embedding.py +94 -0
- ai_edge_torch/generative/layers/scaled_dot_product_attention.py +144 -0
- ai_edge_torch/generative/layers/unet/__init__.py +14 -0
- ai_edge_torch/generative/layers/unet/blocks_2d.py +806 -0
- ai_edge_torch/generative/layers/unet/builder.py +50 -0
- ai_edge_torch/generative/layers/unet/model_config.py +282 -0
- ai_edge_torch/generative/quantize/__init__.py +14 -0
- ai_edge_torch/generative/quantize/example.py +47 -0
- ai_edge_torch/generative/quantize/quant_attrs.py +68 -0
- ai_edge_torch/generative/quantize/quant_recipe.py +154 -0
- ai_edge_torch/generative/quantize/quant_recipe_utils.py +62 -0
- ai_edge_torch/generative/quantize/quant_recipes.py +56 -0
- ai_edge_torch/generative/quantize/supported_schemes.py +32 -0
- ai_edge_torch/generative/test/__init__.py +14 -0
- ai_edge_torch/generative/test/test_custom_dus.py +107 -0
- ai_edge_torch/generative/test/test_kv_cache.py +120 -0
- ai_edge_torch/generative/test/test_loader.py +83 -0
- ai_edge_torch/generative/test/test_lora.py +147 -0
- ai_edge_torch/generative/test/test_model_conversion.py +191 -0
- ai_edge_torch/generative/test/test_model_conversion_large.py +362 -0
- ai_edge_torch/generative/test/test_quantize.py +183 -0
- ai_edge_torch/generative/test/utils.py +82 -0
- ai_edge_torch/generative/utilities/__init__.py +15 -0
- ai_edge_torch/generative/utilities/converter.py +215 -0
- ai_edge_torch/generative/utilities/dynamic_update_slice.py +56 -0
- ai_edge_torch/generative/utilities/loader.py +398 -0
- ai_edge_torch/generative/utilities/model_builder.py +180 -0
- ai_edge_torch/generative/utilities/moonshine_loader.py +154 -0
- ai_edge_torch/generative/utilities/stable_diffusion_loader.py +1032 -0
- ai_edge_torch/generative/utilities/t5_loader.py +512 -0
- ai_edge_torch/generative/utilities/transformers_verifier.py +42 -0
- ai_edge_torch/generative/utilities/verifier.py +335 -0
- ai_edge_torch/hlfb/__init__.py +16 -0
- ai_edge_torch/hlfb/mark_pattern/__init__.py +153 -0
- ai_edge_torch/hlfb/mark_pattern/fx_utils.py +69 -0
- ai_edge_torch/hlfb/mark_pattern/pattern.py +288 -0
- ai_edge_torch/hlfb/test/__init__.py +14 -0
- ai_edge_torch/hlfb/test/test_mark_pattern.py +185 -0
- ai_edge_torch/lowertools/__init__.py +18 -0
- ai_edge_torch/lowertools/_shim.py +86 -0
- ai_edge_torch/lowertools/common_utils.py +142 -0
- ai_edge_torch/lowertools/odml_torch_utils.py +260 -0
- ai_edge_torch/lowertools/test_utils.py +62 -0
- ai_edge_torch/lowertools/torch_xla_utils.py +301 -0
- ai_edge_torch/lowertools/translate_recipe.py +163 -0
- ai_edge_torch/model.py +177 -0
- ai_edge_torch/odml_torch/__init__.py +20 -0
- ai_edge_torch/odml_torch/_torch_future.py +88 -0
- ai_edge_torch/odml_torch/_torch_library.py +19 -0
- ai_edge_torch/odml_torch/composite/__init__.py +16 -0
- ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
- ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
- ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
- ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
- ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
- ai_edge_torch/odml_torch/export.py +403 -0
- ai_edge_torch/odml_torch/export_utils.py +157 -0
- ai_edge_torch/odml_torch/jax_bridge/__init__.py +18 -0
- ai_edge_torch/odml_torch/jax_bridge/_wrap.py +180 -0
- ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
- ai_edge_torch/odml_torch/lowerings/__init__.py +27 -0
- ai_edge_torch/odml_torch/lowerings/_basic.py +294 -0
- ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
- ai_edge_torch/odml_torch/lowerings/_convolution.py +243 -0
- ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +285 -0
- ai_edge_torch/odml_torch/lowerings/_layer_norm.py +87 -0
- ai_edge_torch/odml_torch/lowerings/_quantized_decomposed.py +177 -0
- ai_edge_torch/odml_torch/lowerings/_rand.py +142 -0
- ai_edge_torch/odml_torch/lowerings/context.py +42 -0
- ai_edge_torch/odml_torch/lowerings/decomp.py +69 -0
- ai_edge_torch/odml_torch/lowerings/registry.py +65 -0
- ai_edge_torch/odml_torch/lowerings/utils.py +201 -0
- ai_edge_torch/odml_torch/passes/__init__.py +38 -0
- ai_edge_torch/odml_torch/tf_integration.py +156 -0
- ai_edge_torch/quantize/__init__.py +16 -0
- ai_edge_torch/quantize/pt2e_quantizer.py +466 -0
- ai_edge_torch/quantize/pt2e_quantizer_utils.py +1061 -0
- ai_edge_torch/quantize/quant_config.py +85 -0
- ai_edge_torch/testing/__init__.py +14 -0
- ai_edge_torch/testing/model_coverage/__init__.py +16 -0
- ai_edge_torch/testing/model_coverage/model_coverage.py +145 -0
- ai_edge_torch/version.py +16 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/LICENSE +202 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/METADATA +44 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/RECORD +213 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/WHEEL +5 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/top_level.txt +1 -0
@@ -0,0 +1,238 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Model configuration class."""
|
17
|
+
|
18
|
+
import dataclasses
|
19
|
+
import enum
|
20
|
+
from typing import Callable, Optional, Sequence, Union
|
21
|
+
from ai_edge_torch.generative.layers import rotary_position_embedding
|
22
|
+
|
23
|
+
@enum.unique
|
24
|
+
class ActivationType(enum.Enum):
|
25
|
+
"""Different activation functions supported by the default builder."""
|
26
|
+
|
27
|
+
LINEAR = enum.auto()
|
28
|
+
SILU = enum.auto()
|
29
|
+
GELU = enum.auto()
|
30
|
+
GELU_TANH = enum.auto()
|
31
|
+
GELU_QUICK = enum.auto()
|
32
|
+
GE_GLU = enum.auto()
|
33
|
+
RELU = enum.auto()
|
34
|
+
SILU_GLU = enum.auto()
|
35
|
+
|
36
|
+
|
37
|
+
@enum.unique
|
38
|
+
class NormalizationType(enum.Enum):
|
39
|
+
"""Different normalization functions."""
|
40
|
+
|
41
|
+
# No normalization is applied.
|
42
|
+
NONE = enum.auto()
|
43
|
+
RMS_NORM = enum.auto()
|
44
|
+
LAYER_NORM = enum.auto()
|
45
|
+
GROUP_NORM = enum.auto()
|
46
|
+
|
47
|
+
|
48
|
+
@enum.unique
|
49
|
+
class FeedForwardType(enum.Enum):
|
50
|
+
"""Different variations of the Feed Forward module."""
|
51
|
+
|
52
|
+
# `output = linear(act(linear(x)))`.
|
53
|
+
SEQUENTIAL = enum.auto()
|
54
|
+
# `output = linear_2(act(linear_1(x)) * lienar_3(x))`.
|
55
|
+
GATED = enum.auto()
|
56
|
+
|
57
|
+
|
58
|
+
class AttentionType(enum.Enum):
|
59
|
+
GLOBAL = enum.auto()
|
60
|
+
LOCAL_SLIDING = enum.auto()
|
61
|
+
|
62
|
+
|
63
|
+
@dataclasses.dataclass
|
64
|
+
class NormalizationConfig:
|
65
|
+
"""Normalizater parameters."""
|
66
|
+
|
67
|
+
type: NormalizationType = NormalizationType.NONE
|
68
|
+
enable_hlfb: bool = False
|
69
|
+
epsilon: float = 1e-5
|
70
|
+
zero_centered: bool = False
|
71
|
+
# Number of groups used in group normalization.
|
72
|
+
group_num: Optional[float] = None
|
73
|
+
|
74
|
+
|
75
|
+
@dataclasses.dataclass
|
76
|
+
class AttentionConfig:
|
77
|
+
"""Attention model's parameters."""
|
78
|
+
|
79
|
+
num_heads: int
|
80
|
+
head_dim: int
|
81
|
+
# Used to determine number of groups in grouped query attention (GQA)
|
82
|
+
# https://arxiv.org/pdf/2305.13245.pdf
|
83
|
+
num_query_groups: Optional[int]
|
84
|
+
# Base of rotary positional embedding.
|
85
|
+
rotary_base: int = 10_000
|
86
|
+
# Percentage of Rotary Positional Embedding added Q and K projections.
|
87
|
+
rotary_percentage: Optional[float] = None
|
88
|
+
# Whether to transpose the query groups of qkv bundled tensor before
|
89
|
+
# splitting into separated tensors.
|
90
|
+
qkv_transpose_before_split: bool = False
|
91
|
+
# Whether to use bias with Query, Key, and Value projection.
|
92
|
+
qkv_use_bias: bool = False
|
93
|
+
# Whether the fused q, k, v projection weights interleaves q, k, v heads.
|
94
|
+
# If True, the projection weights are in format:
|
95
|
+
# `[q_head_0, k_head_0, v_head_0, q_head_1, k_head_1, v_head_1, ...]`
|
96
|
+
# If False, the projection weights are in format:
|
97
|
+
# `[q_head_0, q_head_1, ..., k_head_0, k_head_1, ... v_head_0, v_head_1, ...]`
|
98
|
+
qkv_fused_interleaved: bool = True
|
99
|
+
# Whether to use bias with attention output projection.
|
100
|
+
output_proj_use_bias: bool = False
|
101
|
+
enable_kv_cache: bool = True
|
102
|
+
# The normalization applied to query projection's output.
|
103
|
+
query_norm_config: NormalizationConfig = dataclasses.field(
|
104
|
+
default_factory=NormalizationConfig
|
105
|
+
)
|
106
|
+
# The normalization applied to key projection's output.
|
107
|
+
key_norm_config: NormalizationConfig = dataclasses.field(
|
108
|
+
default_factory=NormalizationConfig
|
109
|
+
)
|
110
|
+
relative_attention_num_buckets: int = 0
|
111
|
+
relative_attention_max_distance: int = 0
|
112
|
+
# Softcap on the output logits.
|
113
|
+
logit_softcap: Optional[float] = None
|
114
|
+
# The type of attention.
|
115
|
+
attn_type: Optional[AttentionType] = None
|
116
|
+
# The size of the sliding window used for local attention.
|
117
|
+
sliding_window_size: Optional[int] = None
|
118
|
+
|
119
|
+
|
120
|
+
@dataclasses.dataclass
|
121
|
+
class ActivationConfig:
|
122
|
+
type: ActivationType = ActivationType.LINEAR
|
123
|
+
# Dimension of input and output, used in GeGLU.
|
124
|
+
dim_in: Optional[int] = None
|
125
|
+
dim_out: Optional[int] = None
|
126
|
+
|
127
|
+
|
128
|
+
@dataclasses.dataclass
|
129
|
+
class FeedForwardConfig:
|
130
|
+
"""FeedForward module's parameters."""
|
131
|
+
|
132
|
+
type: FeedForwardType
|
133
|
+
activation: ActivationConfig
|
134
|
+
intermediate_size: int
|
135
|
+
use_bias: bool = False
|
136
|
+
# The normalization applied to feed forward's input.
|
137
|
+
pre_ff_norm_config: NormalizationConfig = dataclasses.field(
|
138
|
+
default_factory=NormalizationConfig
|
139
|
+
)
|
140
|
+
# The normalization applied to feed forward's output.
|
141
|
+
post_ff_norm_config: NormalizationConfig = dataclasses.field(
|
142
|
+
default_factory=NormalizationConfig
|
143
|
+
)
|
144
|
+
|
145
|
+
|
146
|
+
@dataclasses.dataclass
|
147
|
+
class TransformerBlockConfig:
|
148
|
+
"""TransformerBlock module's parameters."""
|
149
|
+
|
150
|
+
attn_config: AttentionConfig
|
151
|
+
ff_config: FeedForwardConfig
|
152
|
+
# The normalization applied to attention's input.
|
153
|
+
pre_attention_norm_config: NormalizationConfig = dataclasses.field(
|
154
|
+
default_factory=NormalizationConfig
|
155
|
+
)
|
156
|
+
# The normalization applied to attentions's output.
|
157
|
+
post_attention_norm_config: NormalizationConfig = dataclasses.field(
|
158
|
+
default_factory=NormalizationConfig
|
159
|
+
)
|
160
|
+
# If set to True, only attn_config.pre_attention_norm is applied to the input
|
161
|
+
# and the decode's output is computed as `output = input + attn_out + ff_out`
|
162
|
+
# where attention and feed forward are called with pre_attention_norm's
|
163
|
+
# output.
|
164
|
+
parallel_residual: bool = False
|
165
|
+
# The Attention computation will include relative positional bias.
|
166
|
+
relative_attention: bool = False
|
167
|
+
|
168
|
+
|
169
|
+
@dataclasses.dataclass
|
170
|
+
class ImageEmbeddingConfig:
|
171
|
+
"""Image embedding parameters."""
|
172
|
+
|
173
|
+
channels: int
|
174
|
+
# All images should be normalized to the size of [image_size * image_size].
|
175
|
+
image_size: int
|
176
|
+
patch_size: int
|
177
|
+
|
178
|
+
|
179
|
+
@dataclasses.dataclass
|
180
|
+
class ModelConfig:
|
181
|
+
"""Base configurations for building a transformer architecture."""
|
182
|
+
|
183
|
+
vocab_size: int
|
184
|
+
num_layers: int
|
185
|
+
max_seq_len: int
|
186
|
+
embedding_dim: int
|
187
|
+
|
188
|
+
# TransformerBlockConfig for each layer block. If a single
|
189
|
+
# TransformerBlockConfig is provided, it will be used for all layers.
|
190
|
+
block_configs: Union[TransformerBlockConfig, Sequence[TransformerBlockConfig]]
|
191
|
+
|
192
|
+
# The normalization applied before LM head.
|
193
|
+
final_norm_config: NormalizationConfig = dataclasses.field(
|
194
|
+
default_factory=NormalizationConfig
|
195
|
+
)
|
196
|
+
|
197
|
+
# Scale factor of the embedding.
|
198
|
+
embedding_scale: Optional[float] = None
|
199
|
+
# Use bias term within embedding.
|
200
|
+
embedding_use_bias: bool = False
|
201
|
+
# Image embedding parameters.
|
202
|
+
image_embedding: Optional[ImageEmbeddingConfig] = None
|
203
|
+
|
204
|
+
# Use bias term within LLM's HEAD.
|
205
|
+
lm_head_use_bias: bool = False
|
206
|
+
# Whether LLM's HEAD shares the weight of the embedding.
|
207
|
+
lm_head_share_weight_with_embedding: bool = True
|
208
|
+
|
209
|
+
# Whether to turn on high-level function boundary.
|
210
|
+
enable_hlfb: bool = False
|
211
|
+
|
212
|
+
# The maximum sequence length of the KV cache. Should not exceed max_seq_len.
|
213
|
+
kv_cache_max_len: int = 0
|
214
|
+
|
215
|
+
# Default batch size of the exported model. Default value is 1.
|
216
|
+
batch_size: int = 1
|
217
|
+
|
218
|
+
# Softcap on the model output logits.
|
219
|
+
final_logit_softcap: Optional[float] = None
|
220
|
+
|
221
|
+
# The function to call to create the RoPE sin and cos vectors during the
|
222
|
+
# forward pass. Defaults to a standard implementation.
|
223
|
+
build_rope: Callable = rotary_position_embedding.build_rope
|
224
|
+
|
225
|
+
@property
|
226
|
+
def kv_cache_max(self) -> int:
|
227
|
+
if self.kv_cache_max_len > 0:
|
228
|
+
return self.kv_cache_max_len
|
229
|
+
return self.max_seq_len
|
230
|
+
|
231
|
+
def block_config(self, idx: int) -> TransformerBlockConfig:
|
232
|
+
if isinstance(self.block_configs, TransformerBlockConfig):
|
233
|
+
return self.block_configs
|
234
|
+
if idx < 0 or idx >= len(self.block_configs):
|
235
|
+
raise ValueError(
|
236
|
+
f"Index {idx} is out of range for layer configs: {self.block_configs}"
|
237
|
+
)
|
238
|
+
return self.block_configs[idx]
|
@@ -0,0 +1,222 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
# Common normalization layers.
|
16
|
+
|
17
|
+
from ai_edge_torch.hlfb import StableHLOCompositeBuilder
|
18
|
+
import torch
|
19
|
+
from torch import nn
|
20
|
+
import torch.nn.functional as F
|
21
|
+
|
22
|
+
|
23
|
+
# Implementation for RMSNorm from: https://arxiv.org/abs/1910.07467
|
24
|
+
class RMSNorm(torch.nn.Module):
|
25
|
+
|
26
|
+
def __init__(
|
27
|
+
self,
|
28
|
+
dim: int,
|
29
|
+
eps: float = 1e-6,
|
30
|
+
zero_centered_gamma=False,
|
31
|
+
enable_hlfb: bool = False,
|
32
|
+
):
|
33
|
+
"""Initialize the RMSNorm layer.
|
34
|
+
|
35
|
+
Args:
|
36
|
+
dim (int): dimension of the input tensor.
|
37
|
+
eps (float): A small float value to ensure numerical stability (default:
|
38
|
+
1e-6).
|
39
|
+
zero_centered_gamma (bool): Whether or not gamma has an offset.
|
40
|
+
enable_hlfb (bool): use HLFB in the op.
|
41
|
+
"""
|
42
|
+
super().__init__()
|
43
|
+
self.enable_hlfb = enable_hlfb
|
44
|
+
self.eps = eps
|
45
|
+
self.weight = torch.nn.Parameter(torch.ones(dim))
|
46
|
+
self.zero_centered_gamma = zero_centered_gamma
|
47
|
+
|
48
|
+
def _norm(self, x):
|
49
|
+
"""Apply RMSNorm normalization.
|
50
|
+
|
51
|
+
Args:
|
52
|
+
x (torch.Tensor): input tensor.
|
53
|
+
|
54
|
+
Returns:
|
55
|
+
torch.Tensor: The normalized output tensor.
|
56
|
+
"""
|
57
|
+
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
58
|
+
|
59
|
+
def forward(self, x):
|
60
|
+
"""Running the forward pass of RMSNorm layer.
|
61
|
+
|
62
|
+
Args:
|
63
|
+
x (torch.Tensor): input tensor.
|
64
|
+
|
65
|
+
Returns:
|
66
|
+
torch.Tensor: output tensor after applying RMSNorm.
|
67
|
+
"""
|
68
|
+
if self.zero_centered_gamma:
|
69
|
+
w = 1 + self.weight
|
70
|
+
else:
|
71
|
+
w = self.weight
|
72
|
+
|
73
|
+
if self.enable_hlfb:
|
74
|
+
return rms_norm_with_hlfb(
|
75
|
+
x,
|
76
|
+
w,
|
77
|
+
self.eps,
|
78
|
+
)
|
79
|
+
else:
|
80
|
+
output = self._norm(x.float()).type_as(x)
|
81
|
+
return output * w
|
82
|
+
|
83
|
+
|
84
|
+
class GroupNorm(torch.nn.Module):
|
85
|
+
|
86
|
+
def __init__(
|
87
|
+
self,
|
88
|
+
group_num: int,
|
89
|
+
dim: int,
|
90
|
+
eps: float = 1e-5,
|
91
|
+
enable_hlfb: bool = False,
|
92
|
+
):
|
93
|
+
"""Initialize the GroupNorm layer.
|
94
|
+
|
95
|
+
Args:
|
96
|
+
group_num (int): Number of groups to separate the channels into.
|
97
|
+
dim (int): Dimension of the input tensor.
|
98
|
+
eps (float): A small float value to ensure numerical stability (default:
|
99
|
+
1e-5).
|
100
|
+
enable_hlfb (bool): Whether to convert this normalization into a single
|
101
|
+
op.
|
102
|
+
"""
|
103
|
+
super().__init__()
|
104
|
+
self.enable_hlfb = enable_hlfb
|
105
|
+
self.group_num = group_num
|
106
|
+
self.eps = eps
|
107
|
+
self.weight = torch.nn.Parameter(torch.empty(dim))
|
108
|
+
self.bias = torch.nn.Parameter(torch.empty(dim))
|
109
|
+
|
110
|
+
def forward(self, x):
|
111
|
+
"""Running the forward pass of GroupNorm layer.
|
112
|
+
|
113
|
+
Args:
|
114
|
+
x (torch.Tensor): input tensor.
|
115
|
+
|
116
|
+
Returns:
|
117
|
+
torch.Tensor: output tensor after applying GroupNorm.
|
118
|
+
"""
|
119
|
+
return F.group_norm(x, self.group_num, self.weight, self.bias, self.eps)
|
120
|
+
|
121
|
+
|
122
|
+
class LayerNorm(torch.nn.Module):
|
123
|
+
|
124
|
+
def __init__(
|
125
|
+
self,
|
126
|
+
dim: int,
|
127
|
+
eps: float = 1e-5,
|
128
|
+
enable_hlfb: bool = False,
|
129
|
+
):
|
130
|
+
"""Initialize the LayerNorm layer.
|
131
|
+
|
132
|
+
Args:
|
133
|
+
dim (int): dimension of the input tensor.
|
134
|
+
eps (float): A small float value to ensure numerical stability (default:
|
135
|
+
1e-5).
|
136
|
+
enable_hlfb (bool): Whether to convert this normalization into a single
|
137
|
+
op.
|
138
|
+
"""
|
139
|
+
super().__init__()
|
140
|
+
self.enable_hlfb = enable_hlfb
|
141
|
+
self.normalized_shape = (dim,)
|
142
|
+
self.eps = eps
|
143
|
+
self.weight = torch.nn.Parameter(torch.empty(dim))
|
144
|
+
self.bias = torch.nn.Parameter(torch.empty(dim))
|
145
|
+
|
146
|
+
def forward(self, x):
|
147
|
+
"""Running the forward pass of LayerNorm layer.
|
148
|
+
|
149
|
+
Args:
|
150
|
+
x (torch.Tensor): input tensor.
|
151
|
+
|
152
|
+
Returns:
|
153
|
+
torch.Tensor: output tensor after applying LayerNorm.
|
154
|
+
"""
|
155
|
+
if self.enable_hlfb:
|
156
|
+
return layer_norm_with_hlfb(
|
157
|
+
x, self.normalized_shape, self.weight, self.bias, self.eps
|
158
|
+
)
|
159
|
+
return F.layer_norm(
|
160
|
+
x, self.normalized_shape, self.weight, self.bias, self.eps
|
161
|
+
)
|
162
|
+
|
163
|
+
|
164
|
+
def rms_norm_with_hlfb(
|
165
|
+
x: torch.Tensor,
|
166
|
+
w: torch.Tensor,
|
167
|
+
eps: float,
|
168
|
+
):
|
169
|
+
"""RMS Normalization with high-level function boundary enabled.
|
170
|
+
|
171
|
+
Args:
|
172
|
+
x (torch.Tensor): Input tensor for RMS Normalization, with BCHW shape.
|
173
|
+
w (torch.Tensor): The learned parameter tensor for normalization.
|
174
|
+
eps (float): A small float value to ensure numerical stability.
|
175
|
+
|
176
|
+
Returns:
|
177
|
+
The output tensor of RMS Normalization.
|
178
|
+
"""
|
179
|
+
builder = StableHLOCompositeBuilder(
|
180
|
+
name="odml.rms_norm", attr={"epsilon": eps}
|
181
|
+
)
|
182
|
+
|
183
|
+
x, w = builder.mark_inputs(x, w)
|
184
|
+
|
185
|
+
def _norm(x):
|
186
|
+
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + eps)
|
187
|
+
|
188
|
+
output = _norm(x.float()).type_as(x)
|
189
|
+
out = output * w
|
190
|
+
|
191
|
+
out = builder.mark_outputs(out)
|
192
|
+
return out
|
193
|
+
|
194
|
+
|
195
|
+
def layer_norm_with_hlfb(
|
196
|
+
x: torch.Tensor,
|
197
|
+
normalized_shape: list[int],
|
198
|
+
w: torch.Tensor,
|
199
|
+
b: torch.Tensor,
|
200
|
+
eps: float,
|
201
|
+
):
|
202
|
+
"""Layer Normalization with high-level function boundary enabled.
|
203
|
+
|
204
|
+
Args:
|
205
|
+
x (torch.Tensor): Input tensor for Layer Normalization, with BCHW shape.
|
206
|
+
normalized_shape (list[int]): Input shape from an expected input of size,
|
207
|
+
same as https://pytorch.org/docs/stable/generated/torch.nn.LayerNorm.html.
|
208
|
+
w (torch.Tensor): The weight tensor for the normalization.
|
209
|
+
b (torch.Tensor): The bias tensor for the normalization.
|
210
|
+
eps (float): A small float value to ensure numerical stability.
|
211
|
+
|
212
|
+
Returns:
|
213
|
+
The output tensor of Layer Normalization.
|
214
|
+
"""
|
215
|
+
builder = StableHLOCompositeBuilder(
|
216
|
+
name="odml.group_norm",
|
217
|
+
attr={"num_groups": 1, "epsilon": eps, "channel_axis": 1},
|
218
|
+
)
|
219
|
+
x, w, b = builder.mark_inputs(x, w, b)
|
220
|
+
y = F.layer_norm(x, normalized_shape, w, b, eps=eps)
|
221
|
+
y = builder.mark_outputs(y)
|
222
|
+
return y
|
@@ -0,0 +1,94 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
# Implementation for Rotary Position embedding. https://arxiv.org/pdf/2104.09864.pdf
|
16
|
+
|
17
|
+
from typing import Tuple
|
18
|
+
import torch
|
19
|
+
|
20
|
+
|
21
|
+
def apply_rope(
|
22
|
+
x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor
|
23
|
+
) -> torch.Tensor:
|
24
|
+
"""Computes rotary positional embedding.
|
25
|
+
|
26
|
+
Args:
|
27
|
+
x: the input tensor.
|
28
|
+
cos: cosine value for the rope.
|
29
|
+
sin: sin value for the rope.
|
30
|
+
|
31
|
+
Returns:
|
32
|
+
output tensor of RoPE.
|
33
|
+
"""
|
34
|
+
x = x.transpose(1, 2)
|
35
|
+
rope_size = cos.size(-1)
|
36
|
+
x_splited = torch.split(x, rope_size, dim=-1)
|
37
|
+
left = x_splited[0] * cos - x_splited[1] * sin
|
38
|
+
right = x_splited[1] * cos + x_splited[0] * sin
|
39
|
+
roped = torch.cat((left, right) + x_splited[2:], dim=-1)
|
40
|
+
return roped.transpose(1, 2).type_as(x)
|
41
|
+
|
42
|
+
|
43
|
+
def build_rope(
|
44
|
+
input_pos: torch.Tensor,
|
45
|
+
n_elem: int,
|
46
|
+
base: int = 10_000,
|
47
|
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
48
|
+
"""Computes rotary positional embedding cosine and sine tensors.
|
49
|
+
|
50
|
+
Args:
|
51
|
+
input_pos: the sequence indices for the query and key
|
52
|
+
n_elem: number of elements of the head dimension for RoPE computation
|
53
|
+
base: the base of the exponentiated value for RoPE.
|
54
|
+
|
55
|
+
Returns:
|
56
|
+
cos, sin tensors
|
57
|
+
"""
|
58
|
+
|
59
|
+
if n_elem <= 0:
|
60
|
+
return None, None
|
61
|
+
|
62
|
+
freq_exponents = (2.0 / n_elem) * torch.arange(
|
63
|
+
n_elem // 2, dtype=torch.float32
|
64
|
+
)
|
65
|
+
timescale = float(base) ** freq_exponents
|
66
|
+
radians = input_pos.clone().unsqueeze(0).unsqueeze(-1) / timescale.unsqueeze(
|
67
|
+
0
|
68
|
+
).unsqueeze(0)
|
69
|
+
cos = torch.cos(radians)
|
70
|
+
sin = torch.sin(radians)
|
71
|
+
return cos, sin
|
72
|
+
|
73
|
+
|
74
|
+
def apply_rope_inline(
|
75
|
+
q: torch.Tensor,
|
76
|
+
k: torch.Tensor,
|
77
|
+
cos: torch.Tensor,
|
78
|
+
sin: torch.Tensor,
|
79
|
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
80
|
+
"""Computes rotary positional embedding inline for a query and key.
|
81
|
+
|
82
|
+
Args:
|
83
|
+
q: the query tensor.
|
84
|
+
k: the key tensor.
|
85
|
+
cos: the cosine tensor.
|
86
|
+
sin: the sine tensor.
|
87
|
+
|
88
|
+
Returns:
|
89
|
+
output the RoPE'd query and key.
|
90
|
+
"""
|
91
|
+
|
92
|
+
q_roped = apply_rope(q, cos, sin)
|
93
|
+
k_roped = apply_rope(k, cos, sin)
|
94
|
+
return q_roped, k_roped
|
@@ -0,0 +1,144 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
# Implements scaled dot product attention.
|
16
|
+
|
17
|
+
import math
|
18
|
+
from typing import Optional
|
19
|
+
|
20
|
+
from ai_edge_torch.hlfb import StableHLOCompositeBuilder
|
21
|
+
import torch
|
22
|
+
import torch.nn.functional as F
|
23
|
+
|
24
|
+
|
25
|
+
def scaled_dot_product_attention(
|
26
|
+
q: torch.Tensor,
|
27
|
+
k: torch.Tensor,
|
28
|
+
v: torch.Tensor,
|
29
|
+
head_size: int,
|
30
|
+
mask: Optional[torch.Tensor] = None,
|
31
|
+
scale: Optional[float] = None,
|
32
|
+
softcap: Optional[float] = None,
|
33
|
+
):
|
34
|
+
"""Scaled dot product attention.
|
35
|
+
|
36
|
+
Args:
|
37
|
+
q (torch.Tensor): Query tensor, with shape [B, T, N, H].
|
38
|
+
k (torch.Tensor): Key tensor, with shape [B, T, KV_LEN, H].
|
39
|
+
v (torch.Tensor): Value tensor, with shape [B, T, KV_LEN, H].
|
40
|
+
head_size (int): head dimension.
|
41
|
+
mask (torch.Tensor): the optional mask tensor.
|
42
|
+
|
43
|
+
Returns:
|
44
|
+
The output tensor of scaled_dot_product_attention.
|
45
|
+
"""
|
46
|
+
|
47
|
+
if scale is None:
|
48
|
+
scale = 1.0 / math.sqrt(head_size)
|
49
|
+
|
50
|
+
q = q.transpose(1, 2)
|
51
|
+
k = k.transpose(1, 2)
|
52
|
+
v = v.transpose(1, 2)
|
53
|
+
if q.size() != k.size():
|
54
|
+
# Handle the GQA case, where q.shape[1] % k.shape[1] == 0.
|
55
|
+
k = k.repeat_interleave(q.shape[1] // k.shape[1], dim=1)
|
56
|
+
v = v.repeat_interleave(q.shape[1] // v.shape[1], dim=1)
|
57
|
+
if softcap is None:
|
58
|
+
y = F.scaled_dot_product_attention(
|
59
|
+
q,
|
60
|
+
k,
|
61
|
+
v,
|
62
|
+
attn_mask=mask,
|
63
|
+
dropout_p=0.0,
|
64
|
+
is_causal=mask is None,
|
65
|
+
scale=scale,
|
66
|
+
)
|
67
|
+
else:
|
68
|
+
q.mul_(scale)
|
69
|
+
scores = q @ k.transpose(-1, -2)
|
70
|
+
scores = scores / softcap
|
71
|
+
scores = torch.tanh(scores)
|
72
|
+
scores = scores * softcap
|
73
|
+
scores = scores + mask
|
74
|
+
out = F.softmax(scores.float(), dim=-1).type_as(q)
|
75
|
+
y = torch.matmul(out, v)
|
76
|
+
|
77
|
+
return y.transpose(1, 2)
|
78
|
+
|
79
|
+
|
80
|
+
def scaled_dot_product_attention_with_hlfb(
|
81
|
+
q: torch.Tensor,
|
82
|
+
k: torch.Tensor,
|
83
|
+
v: torch.Tensor,
|
84
|
+
head_size: int,
|
85
|
+
mask: Optional[torch.Tensor] = None,
|
86
|
+
scale: Optional[float] = None,
|
87
|
+
softcap: Optional[float] = None,
|
88
|
+
):
|
89
|
+
"""Scaled dot product attention with high-level function boundary enabled.
|
90
|
+
|
91
|
+
Args:
|
92
|
+
q (torch.Tensor): Query tensor, with shape [B, T, N, H].
|
93
|
+
k (torch.Tensor): Key tensor, with shape [B, T, KV_LEN, H].
|
94
|
+
v (torch.Tensor): Value tensor, with shape [B, T, KV_LEN, H].
|
95
|
+
head_size (int): head dimension.
|
96
|
+
mask (torch.Tensor): the optional mask tensor.
|
97
|
+
|
98
|
+
Returns:
|
99
|
+
The output tensor of scaled_dot_product_attention.
|
100
|
+
"""
|
101
|
+
|
102
|
+
if scale is None:
|
103
|
+
scale = 1.0 / math.sqrt(head_size)
|
104
|
+
|
105
|
+
attrs = {"scale": scale}
|
106
|
+
|
107
|
+
if softcap is not None:
|
108
|
+
attrs["logit_cap"] = softcap
|
109
|
+
|
110
|
+
builder = StableHLOCompositeBuilder(
|
111
|
+
name="odml.scaled_dot_product_attention", attr=attrs
|
112
|
+
)
|
113
|
+
q, k, v, mask = builder.mark_inputs(q, k, v, mask)
|
114
|
+
|
115
|
+
q = q.transpose(1, 2)
|
116
|
+
k = k.transpose(1, 2)
|
117
|
+
v = v.transpose(1, 2)
|
118
|
+
if q.size() != k.size():
|
119
|
+
# Handle the GQA case, where q.shape[1] % k.shape[1] == 0.
|
120
|
+
k = k.repeat_interleave(q.shape[1] // k.shape[1], dim=1)
|
121
|
+
v = v.repeat_interleave(q.shape[1] // v.shape[1], dim=1)
|
122
|
+
if softcap is None:
|
123
|
+
y = F.scaled_dot_product_attention(
|
124
|
+
q,
|
125
|
+
k,
|
126
|
+
v,
|
127
|
+
attn_mask=mask,
|
128
|
+
dropout_p=0.0,
|
129
|
+
is_causal=mask is None,
|
130
|
+
scale=scale,
|
131
|
+
)
|
132
|
+
else:
|
133
|
+
q.mul_(scale)
|
134
|
+
scores = q @ k.transpose(-1, -2)
|
135
|
+
scores = scores / softcap
|
136
|
+
scores = torch.tanh(scores)
|
137
|
+
scores = scores * softcap
|
138
|
+
scores = scores + mask
|
139
|
+
out = F.softmax(scores.float(), dim=-1).type_as(q)
|
140
|
+
y = torch.matmul(out, v)
|
141
|
+
|
142
|
+
result = y.transpose(1, 2)
|
143
|
+
result = builder.mark_outputs(result)
|
144
|
+
return result
|
@@ -0,0 +1,14 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|