ai-edge-torch-nightly 0.3.0.dev20250114__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- ai_edge_torch/__init__.py +32 -0
- ai_edge_torch/_config.py +69 -0
- ai_edge_torch/_convert/__init__.py +14 -0
- ai_edge_torch/_convert/conversion.py +153 -0
- ai_edge_torch/_convert/conversion_utils.py +64 -0
- ai_edge_torch/_convert/converter.py +270 -0
- ai_edge_torch/_convert/fx_passes/__init__.py +23 -0
- ai_edge_torch/_convert/fx_passes/build_aten_composite_pass.py +288 -0
- ai_edge_torch/_convert/fx_passes/build_interpolate_composite_pass.py +131 -0
- ai_edge_torch/_convert/fx_passes/inject_mlir_debuginfo_pass.py +73 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/__init__.py +16 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_check.py +258 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_mark.py +50 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +18 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +68 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +216 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +449 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +30 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/pass_body.py +303 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/utils.py +64 -0
- ai_edge_torch/_convert/fx_passes/remove_non_user_outputs_pass.py +52 -0
- ai_edge_torch/_convert/signature.py +66 -0
- ai_edge_torch/_convert/test/__init__.py +14 -0
- ai_edge_torch/_convert/test/test_convert.py +558 -0
- ai_edge_torch/_convert/test/test_convert_composites.py +234 -0
- ai_edge_torch/_convert/test/test_convert_multisig.py +189 -0
- ai_edge_torch/_convert/test/test_to_channel_last_io.py +96 -0
- ai_edge_torch/_convert/to_channel_last_io.py +92 -0
- ai_edge_torch/conftest.py +20 -0
- ai_edge_torch/debug/__init__.py +17 -0
- ai_edge_torch/debug/culprit.py +496 -0
- ai_edge_torch/debug/test/__init__.py +14 -0
- ai_edge_torch/debug/test/test_culprit.py +140 -0
- ai_edge_torch/debug/test/test_search_model.py +51 -0
- ai_edge_torch/debug/utils.py +59 -0
- ai_edge_torch/experimental/__init__.py +14 -0
- ai_edge_torch/fx_pass_base.py +110 -0
- ai_edge_torch/generative/__init__.py +14 -0
- ai_edge_torch/generative/examples/__init__.py +14 -0
- ai_edge_torch/generative/examples/amd_llama_135m/__init__.py +14 -0
- ai_edge_torch/generative/examples/amd_llama_135m/amd_llama_135m.py +87 -0
- ai_edge_torch/generative/examples/amd_llama_135m/convert_to_tflite.py +70 -0
- ai_edge_torch/generative/examples/amd_llama_135m/verify.py +72 -0
- ai_edge_torch/generative/examples/gemma/__init__.py +14 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/gemma/gemma1.py +107 -0
- ai_edge_torch/generative/examples/gemma/gemma2.py +295 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma1.py +56 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma2.py +43 -0
- ai_edge_torch/generative/examples/gemma/verify_util.py +157 -0
- ai_edge_torch/generative/examples/llama/__init__.py +14 -0
- ai_edge_torch/generative/examples/llama/convert_to_tflite.py +91 -0
- ai_edge_torch/generative/examples/llama/llama.py +196 -0
- ai_edge_torch/generative/examples/llama/verify.py +88 -0
- ai_edge_torch/generative/examples/moonshine/__init__.py +14 -0
- ai_edge_torch/generative/examples/moonshine/convert_moonshine_to_tflite.py +50 -0
- ai_edge_torch/generative/examples/moonshine/moonshine.py +103 -0
- ai_edge_torch/generative/examples/openelm/__init__.py +14 -0
- ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/openelm/openelm.py +127 -0
- ai_edge_torch/generative/examples/openelm/verify.py +71 -0
- ai_edge_torch/generative/examples/paligemma/__init__.py +14 -0
- ai_edge_torch/generative/examples/paligemma/convert_to_tflite.py +95 -0
- ai_edge_torch/generative/examples/paligemma/decoder.py +151 -0
- ai_edge_torch/generative/examples/paligemma/decoder2.py +177 -0
- ai_edge_torch/generative/examples/paligemma/image_encoder.py +160 -0
- ai_edge_torch/generative/examples/paligemma/paligemma.py +179 -0
- ai_edge_torch/generative/examples/paligemma/verify.py +161 -0
- ai_edge_torch/generative/examples/paligemma/verify_decoder.py +75 -0
- ai_edge_torch/generative/examples/paligemma/verify_decoder2.py +72 -0
- ai_edge_torch/generative/examples/paligemma/verify_image_encoder.py +99 -0
- ai_edge_torch/generative/examples/phi/__init__.py +14 -0
- ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/phi/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/phi/phi2.py +107 -0
- ai_edge_torch/generative/examples/phi/phi3.py +219 -0
- ai_edge_torch/generative/examples/phi/verify.py +64 -0
- ai_edge_torch/generative/examples/phi/verify_phi3.py +69 -0
- ai_edge_torch/generative/examples/qwen/__init__.py +14 -0
- ai_edge_torch/generative/examples/qwen/convert_to_tflite.py +93 -0
- ai_edge_torch/generative/examples/qwen/qwen.py +134 -0
- ai_edge_torch/generative/examples/qwen/verify.py +88 -0
- ai_edge_torch/generative/examples/smollm/__init__.py +14 -0
- ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/smollm/convert_v2_to_tflite.py +71 -0
- ai_edge_torch/generative/examples/smollm/smollm.py +125 -0
- ai_edge_torch/generative/examples/smollm/verify.py +86 -0
- ai_edge_torch/generative/examples/stable_diffusion/__init__.py +14 -0
- ai_edge_torch/generative/examples/stable_diffusion/attention.py +108 -0
- ai_edge_torch/generative/examples/stable_diffusion/clip.py +185 -0
- ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +173 -0
- ai_edge_torch/generative/examples/stable_diffusion/decoder.py +398 -0
- ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +749 -0
- ai_edge_torch/generative/examples/stable_diffusion/encoder.py +119 -0
- ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +254 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/__init__.py +19 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +62 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +66 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +74 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +39 -0
- ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +111 -0
- ai_edge_torch/generative/examples/stable_diffusion/util.py +77 -0
- ai_edge_torch/generative/examples/t5/__init__.py +14 -0
- ai_edge_torch/generative/examples/t5/convert_to_tflite.py +138 -0
- ai_edge_torch/generative/examples/t5/t5.py +655 -0
- ai_edge_torch/generative/examples/t5/t5_attention.py +246 -0
- ai_edge_torch/generative/examples/test_models/__init__.py +14 -0
- ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
- ai_edge_torch/generative/examples/test_models/toy_model.py +156 -0
- ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +138 -0
- ai_edge_torch/generative/examples/tiny_llama/__init__.py +14 -0
- ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +88 -0
- ai_edge_torch/generative/examples/tiny_llama/verify.py +72 -0
- ai_edge_torch/generative/fx_passes/__init__.py +30 -0
- ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +50 -0
- ai_edge_torch/generative/layers/__init__.py +14 -0
- ai_edge_torch/generative/layers/attention.py +399 -0
- ai_edge_torch/generative/layers/attention_utils.py +210 -0
- ai_edge_torch/generative/layers/builder.py +160 -0
- ai_edge_torch/generative/layers/feed_forward.py +120 -0
- ai_edge_torch/generative/layers/kv_cache.py +204 -0
- ai_edge_torch/generative/layers/lora.py +557 -0
- ai_edge_torch/generative/layers/model_config.py +238 -0
- ai_edge_torch/generative/layers/normalization.py +222 -0
- ai_edge_torch/generative/layers/rotary_position_embedding.py +94 -0
- ai_edge_torch/generative/layers/scaled_dot_product_attention.py +144 -0
- ai_edge_torch/generative/layers/unet/__init__.py +14 -0
- ai_edge_torch/generative/layers/unet/blocks_2d.py +806 -0
- ai_edge_torch/generative/layers/unet/builder.py +50 -0
- ai_edge_torch/generative/layers/unet/model_config.py +282 -0
- ai_edge_torch/generative/quantize/__init__.py +14 -0
- ai_edge_torch/generative/quantize/example.py +47 -0
- ai_edge_torch/generative/quantize/quant_attrs.py +68 -0
- ai_edge_torch/generative/quantize/quant_recipe.py +154 -0
- ai_edge_torch/generative/quantize/quant_recipe_utils.py +62 -0
- ai_edge_torch/generative/quantize/quant_recipes.py +56 -0
- ai_edge_torch/generative/quantize/supported_schemes.py +32 -0
- ai_edge_torch/generative/test/__init__.py +14 -0
- ai_edge_torch/generative/test/test_custom_dus.py +107 -0
- ai_edge_torch/generative/test/test_kv_cache.py +120 -0
- ai_edge_torch/generative/test/test_loader.py +83 -0
- ai_edge_torch/generative/test/test_lora.py +147 -0
- ai_edge_torch/generative/test/test_model_conversion.py +191 -0
- ai_edge_torch/generative/test/test_model_conversion_large.py +362 -0
- ai_edge_torch/generative/test/test_quantize.py +183 -0
- ai_edge_torch/generative/test/utils.py +82 -0
- ai_edge_torch/generative/utilities/__init__.py +15 -0
- ai_edge_torch/generative/utilities/converter.py +215 -0
- ai_edge_torch/generative/utilities/dynamic_update_slice.py +56 -0
- ai_edge_torch/generative/utilities/loader.py +398 -0
- ai_edge_torch/generative/utilities/model_builder.py +180 -0
- ai_edge_torch/generative/utilities/moonshine_loader.py +154 -0
- ai_edge_torch/generative/utilities/stable_diffusion_loader.py +1032 -0
- ai_edge_torch/generative/utilities/t5_loader.py +512 -0
- ai_edge_torch/generative/utilities/transformers_verifier.py +42 -0
- ai_edge_torch/generative/utilities/verifier.py +335 -0
- ai_edge_torch/hlfb/__init__.py +16 -0
- ai_edge_torch/hlfb/mark_pattern/__init__.py +153 -0
- ai_edge_torch/hlfb/mark_pattern/fx_utils.py +69 -0
- ai_edge_torch/hlfb/mark_pattern/pattern.py +288 -0
- ai_edge_torch/hlfb/test/__init__.py +14 -0
- ai_edge_torch/hlfb/test/test_mark_pattern.py +185 -0
- ai_edge_torch/lowertools/__init__.py +18 -0
- ai_edge_torch/lowertools/_shim.py +86 -0
- ai_edge_torch/lowertools/common_utils.py +142 -0
- ai_edge_torch/lowertools/odml_torch_utils.py +260 -0
- ai_edge_torch/lowertools/test_utils.py +62 -0
- ai_edge_torch/lowertools/torch_xla_utils.py +301 -0
- ai_edge_torch/lowertools/translate_recipe.py +163 -0
- ai_edge_torch/model.py +177 -0
- ai_edge_torch/odml_torch/__init__.py +20 -0
- ai_edge_torch/odml_torch/_torch_future.py +88 -0
- ai_edge_torch/odml_torch/_torch_library.py +19 -0
- ai_edge_torch/odml_torch/composite/__init__.py +16 -0
- ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
- ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
- ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
- ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
- ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
- ai_edge_torch/odml_torch/export.py +403 -0
- ai_edge_torch/odml_torch/export_utils.py +157 -0
- ai_edge_torch/odml_torch/jax_bridge/__init__.py +18 -0
- ai_edge_torch/odml_torch/jax_bridge/_wrap.py +180 -0
- ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
- ai_edge_torch/odml_torch/lowerings/__init__.py +27 -0
- ai_edge_torch/odml_torch/lowerings/_basic.py +294 -0
- ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
- ai_edge_torch/odml_torch/lowerings/_convolution.py +243 -0
- ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +285 -0
- ai_edge_torch/odml_torch/lowerings/_layer_norm.py +87 -0
- ai_edge_torch/odml_torch/lowerings/_quantized_decomposed.py +177 -0
- ai_edge_torch/odml_torch/lowerings/_rand.py +142 -0
- ai_edge_torch/odml_torch/lowerings/context.py +42 -0
- ai_edge_torch/odml_torch/lowerings/decomp.py +69 -0
- ai_edge_torch/odml_torch/lowerings/registry.py +65 -0
- ai_edge_torch/odml_torch/lowerings/utils.py +201 -0
- ai_edge_torch/odml_torch/passes/__init__.py +38 -0
- ai_edge_torch/odml_torch/tf_integration.py +156 -0
- ai_edge_torch/quantize/__init__.py +16 -0
- ai_edge_torch/quantize/pt2e_quantizer.py +466 -0
- ai_edge_torch/quantize/pt2e_quantizer_utils.py +1061 -0
- ai_edge_torch/quantize/quant_config.py +85 -0
- ai_edge_torch/testing/__init__.py +14 -0
- ai_edge_torch/testing/model_coverage/__init__.py +16 -0
- ai_edge_torch/testing/model_coverage/model_coverage.py +145 -0
- ai_edge_torch/version.py +16 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/LICENSE +202 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/METADATA +44 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/RECORD +213 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/WHEEL +5 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/top_level.txt +1 -0
@@ -0,0 +1,301 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
import copy
|
17
|
+
import dataclasses
|
18
|
+
from dataclasses import dataclass
|
19
|
+
import gc
|
20
|
+
import itertools
|
21
|
+
import logging
|
22
|
+
import os
|
23
|
+
import tempfile
|
24
|
+
from typing import Any, Dict, Optional, Tuple, Union
|
25
|
+
|
26
|
+
if "PJRT_DEVICE" not in os.environ:
|
27
|
+
# https://github.com/google-ai-edge/ai-edge-torch/issues/326
|
28
|
+
os.environ["PJRT_DEVICE"] = "CPU"
|
29
|
+
|
30
|
+
os.environ["EXPERIMENTAL_XLA_UNBOUNDED_DYNAMISM"] = "1"
|
31
|
+
|
32
|
+
|
33
|
+
from ai_edge_torch import model
|
34
|
+
from ai_edge_torch._convert import conversion_utils
|
35
|
+
from ai_edge_torch._convert import signature as signature_module
|
36
|
+
from ai_edge_torch.lowertools import common_utils
|
37
|
+
from ai_edge_torch.lowertools import translate_recipe
|
38
|
+
from ai_edge_torch.quantize import quant_config as qcfg
|
39
|
+
import torch
|
40
|
+
from torch_xla import stablehlo
|
41
|
+
|
42
|
+
try:
|
43
|
+
import tensorflow as tf
|
44
|
+
|
45
|
+
from tensorflow.compiler.tf2xla.python import xla as tfxla
|
46
|
+
|
47
|
+
from tensorflow.lite.python import conversion_metadata_schema_py_generated as conversion_metadata_fb # isort:skip
|
48
|
+
except ImportError:
|
49
|
+
logging.error(
|
50
|
+
"This module needs tensorflow with xla support.\n"
|
51
|
+
"Please install tensorflow with `pip install tf-nightly`.\n"
|
52
|
+
)
|
53
|
+
raise
|
54
|
+
|
55
|
+
MlirBundle = stablehlo.StableHLOModelBundle
|
56
|
+
|
57
|
+
|
58
|
+
@dataclasses.dataclass
|
59
|
+
class MergedBundle:
|
60
|
+
|
61
|
+
bundle: stablehlo.StableHLOModelBundle
|
62
|
+
exported_programs: list[torch.export.ExportedProgram]
|
63
|
+
deduped_tf_vars: list[tf.Variable]
|
64
|
+
|
65
|
+
|
66
|
+
def exported_program_to_mlir(
|
67
|
+
exported_program: torch.export.ExportedProgram,
|
68
|
+
sample_args: tuple[torch.Tensor],
|
69
|
+
) -> stablehlo.StableHLOModelBundle:
|
70
|
+
# Setting export_weights to False here so that pytorch/xla avoids copying the
|
71
|
+
# weights to a numpy array which would lead to memory bloat. This means that
|
72
|
+
# the state_dict in the returned bundle is going to be empty.
|
73
|
+
return stablehlo.exported_program_to_stablehlo(
|
74
|
+
exported_program,
|
75
|
+
stablehlo.StableHLOExportOptions(
|
76
|
+
override_tracing_arguments=sample_args, export_weights=False
|
77
|
+
),
|
78
|
+
)._bundle
|
79
|
+
|
80
|
+
|
81
|
+
def merge_mlir_bundles(
|
82
|
+
bundles: list[stablehlo.StableHLOModelBundle],
|
83
|
+
signatures: list[signature_module.Signature],
|
84
|
+
exported_programs: list[torch.export.ExportedProgram],
|
85
|
+
) -> stablehlo.StableHLOGraphModule:
|
86
|
+
state_dict, deduped_tf_vars = common_utils.gather_state_dict(
|
87
|
+
exported_programs, signatures
|
88
|
+
)
|
89
|
+
|
90
|
+
new_shlo_model_bundle = stablehlo.StableHLOModelBundle(
|
91
|
+
state_dict=state_dict, additional_constants=[], stablehlo_funcs=[]
|
92
|
+
)
|
93
|
+
|
94
|
+
for bundle, signature in zip(bundles, signatures):
|
95
|
+
const_offset = len(new_shlo_model_bundle.additional_constants)
|
96
|
+
for func in bundle.stablehlo_funcs:
|
97
|
+
func.meta.name = signature.name + "_" + func.meta.name
|
98
|
+
for loc in func.meta.input_locations:
|
99
|
+
if loc.type_ == stablehlo.VariableType.CONSTANT:
|
100
|
+
loc.position += const_offset
|
101
|
+
elif loc.type_ == stablehlo.VariableType.PARAMETER:
|
102
|
+
loc.name = signature.name + "_" + loc.name
|
103
|
+
new_shlo_model_bundle.stablehlo_funcs.append(func)
|
104
|
+
new_shlo_model_bundle.additional_constants.extend(
|
105
|
+
bundle.additional_constants
|
106
|
+
)
|
107
|
+
return MergedBundle(
|
108
|
+
bundle=new_shlo_model_bundle,
|
109
|
+
exported_programs=exported_programs,
|
110
|
+
deduped_tf_vars=deduped_tf_vars,
|
111
|
+
)
|
112
|
+
|
113
|
+
|
114
|
+
def _get_shape_with_dynamic(signature: stablehlo.VariableSignature):
|
115
|
+
shape = copy.copy(signature.shape)
|
116
|
+
for i in signature.dynamic_dims:
|
117
|
+
shape[i] = None
|
118
|
+
return shape
|
119
|
+
|
120
|
+
|
121
|
+
def _wrap_as_tf_func(
|
122
|
+
func: stablehlo.StableHLOFunc,
|
123
|
+
bundle: stablehlo.StableHLOModelBundle,
|
124
|
+
exported_program: torch.export.ExportedProgram,
|
125
|
+
):
|
126
|
+
def inner(*args):
|
127
|
+
type_info = [sig.dtype for sig in func.meta.output_signature]
|
128
|
+
shape_info = [
|
129
|
+
_get_shape_with_dynamic(sig) for sig in func.meta.output_signature
|
130
|
+
]
|
131
|
+
call_args = stablehlo._extract_call_parameters(args, func.meta, bundle)
|
132
|
+
call_module_return = tfxla.call_module(
|
133
|
+
tuple(call_args),
|
134
|
+
version=5,
|
135
|
+
Tout=type_info,
|
136
|
+
Sout=shape_info,
|
137
|
+
function_list=[],
|
138
|
+
module=func.bytecode,
|
139
|
+
)
|
140
|
+
spec = exported_program.call_spec.out_spec
|
141
|
+
|
142
|
+
# The module returning a flat array.
|
143
|
+
if not spec.context:
|
144
|
+
return call_module_return
|
145
|
+
|
146
|
+
flat_names = common_utils.flat_dict_names(spec.children_specs, spec.context)
|
147
|
+
return {name: value for name, value in zip(flat_names, call_module_return)}
|
148
|
+
|
149
|
+
return inner
|
150
|
+
|
151
|
+
|
152
|
+
def _make_tf_signature(
|
153
|
+
meta: stablehlo.StableHLOFunctionMeta,
|
154
|
+
signature: signature_module.Signature,
|
155
|
+
) -> list[tf.TensorSpec]:
|
156
|
+
input_names = signature.flat_arg_names
|
157
|
+
input_pos_to_spec = {
|
158
|
+
loc.position: spec
|
159
|
+
for loc, spec in itertools.chain(
|
160
|
+
zip(meta.input_locations, meta.input_signature), meta.unused_inputs
|
161
|
+
)
|
162
|
+
if loc.type_ == stablehlo.VariableType.INPUT_ARG
|
163
|
+
}
|
164
|
+
assert len(input_pos_to_spec) == len(input_names)
|
165
|
+
|
166
|
+
primitive_type_to_tf_type = {"int": "int32", "float": "float32"}
|
167
|
+
ret: list[tf.TensorSpec] = []
|
168
|
+
for i, name in enumerate(input_names):
|
169
|
+
spec = input_pos_to_spec[i]
|
170
|
+
shape = _get_shape_with_dynamic(spec)
|
171
|
+
ret.append(
|
172
|
+
tf.TensorSpec(
|
173
|
+
shape=shape,
|
174
|
+
dtype=primitive_type_to_tf_type[spec.dtype]
|
175
|
+
if spec.dtype in primitive_type_to_tf_type
|
176
|
+
else spec.dtype,
|
177
|
+
name=name,
|
178
|
+
)
|
179
|
+
)
|
180
|
+
return ret
|
181
|
+
|
182
|
+
|
183
|
+
def exported_program_to_mlir_text(
|
184
|
+
exported_program: torch.export.ExportedProgram,
|
185
|
+
) -> str:
|
186
|
+
"""Converts a ExportedProgram to a MLIR text."""
|
187
|
+
return stablehlo.exported_program_to_stablehlo(
|
188
|
+
exported_program
|
189
|
+
).get_stablehlo_text()
|
190
|
+
|
191
|
+
|
192
|
+
def merged_bundle_to_tfl_model(
|
193
|
+
merged_bundle: MergedBundle,
|
194
|
+
signatures: list[signature_module.Signature],
|
195
|
+
*,
|
196
|
+
quant_config: Optional[qcfg.QuantConfig] = None,
|
197
|
+
_tfl_converter_flags: dict = {},
|
198
|
+
_saved_model_dir: Optional[str] = None,
|
199
|
+
) -> None:
|
200
|
+
"""Converts a StableHLOGraphModule to a tflite model.
|
201
|
+
|
202
|
+
Args: shlo_bundle - model to export and save
|
203
|
+
|
204
|
+
signatures: List of signatures from which names of the signatures is
|
205
|
+
extracted.
|
206
|
+
quant_config: User-defined quantization method and scheme of the model.
|
207
|
+
_saved_model_dir: Directory for the intermediate saved model. If not
|
208
|
+
specified, a random temporary directory would be used.
|
209
|
+
_tfl_converter_flags: A nested dictionary allowing setting flags for the
|
210
|
+
underlying tflite converter.
|
211
|
+
"""
|
212
|
+
|
213
|
+
tf_module = tf.Module()
|
214
|
+
|
215
|
+
shlo_bundle = merged_bundle.bundle
|
216
|
+
|
217
|
+
shlo_bundle.additional_constants = [
|
218
|
+
tf.Variable(v, trainable=False) for v in shlo_bundle.additional_constants
|
219
|
+
]
|
220
|
+
tf_signatures: list[list[tf.TensorSpec]] = list(
|
221
|
+
_make_tf_signature(func.meta, sig)
|
222
|
+
for func, sig in zip(shlo_bundle.stablehlo_funcs, signatures)
|
223
|
+
)
|
224
|
+
|
225
|
+
tf_functions = [
|
226
|
+
_wrap_as_tf_func(func, shlo_bundle, ep)
|
227
|
+
for func, ep in zip(
|
228
|
+
shlo_bundle.stablehlo_funcs, merged_bundle.exported_programs
|
229
|
+
)
|
230
|
+
]
|
231
|
+
|
232
|
+
tf_module.f = []
|
233
|
+
for tf_sig, func in zip(tf_signatures, tf_functions):
|
234
|
+
tf_module.f.append(
|
235
|
+
tf.function(
|
236
|
+
func,
|
237
|
+
input_signature=tf_sig,
|
238
|
+
)
|
239
|
+
)
|
240
|
+
|
241
|
+
tf_module._variables = (
|
242
|
+
merged_bundle.deduped_tf_vars + shlo_bundle.additional_constants
|
243
|
+
)
|
244
|
+
del shlo_bundle
|
245
|
+
gc.collect()
|
246
|
+
|
247
|
+
tf_concrete_funcs = [
|
248
|
+
func.get_concrete_function(*tf_sig)
|
249
|
+
for func, tf_sig in zip(tf_module.f, tf_signatures)
|
250
|
+
]
|
251
|
+
|
252
|
+
# We need to temporarily save since TFLite's from_concrete_functions does not
|
253
|
+
# allow providing names for each of the concrete functions.
|
254
|
+
with tempfile.TemporaryDirectory() as temp_dir_path:
|
255
|
+
if _saved_model_dir is not None:
|
256
|
+
temp_dir_path = _saved_model_dir
|
257
|
+
|
258
|
+
tf.saved_model.save(
|
259
|
+
tf_module,
|
260
|
+
temp_dir_path,
|
261
|
+
signatures={
|
262
|
+
sig.name: tf_concrete_funcs[idx]
|
263
|
+
for idx, sig in enumerate(signatures)
|
264
|
+
},
|
265
|
+
)
|
266
|
+
# Clean up intermediate memory early.
|
267
|
+
del tf_functions
|
268
|
+
del tf_module
|
269
|
+
del tf_concrete_funcs
|
270
|
+
gc.collect()
|
271
|
+
|
272
|
+
converter = tf.lite.TFLiteConverter.from_saved_model(temp_dir_path)
|
273
|
+
converter._set_original_model_type(conversion_metadata_fb.ModelType.PYTORCH)
|
274
|
+
converter._experimental_enable_composite_direct_lowering = True
|
275
|
+
|
276
|
+
conversion_utils.set_tfl_converter_quant_flags(converter, quant_config)
|
277
|
+
if (
|
278
|
+
quant_config is not None
|
279
|
+
and quant_config._quantizer_mode
|
280
|
+
== quant_config._QuantizerMode.AI_EDGE_QUANTIZER
|
281
|
+
):
|
282
|
+
translated_recipe = translate_recipe.translate_to_ai_edge_recipe(
|
283
|
+
quant_config.generative_recipe
|
284
|
+
)
|
285
|
+
|
286
|
+
conversion_utils.apply_tfl_converter_flags(converter, _tfl_converter_flags)
|
287
|
+
|
288
|
+
tflite_model = converter.convert()
|
289
|
+
del converter
|
290
|
+
gc.collect()
|
291
|
+
|
292
|
+
if (
|
293
|
+
quant_config is not None
|
294
|
+
and quant_config._quantizer_mode
|
295
|
+
== quant_config._QuantizerMode.AI_EDGE_QUANTIZER
|
296
|
+
):
|
297
|
+
tflite_model = translate_recipe.quantize_model(
|
298
|
+
tflite_model, translated_recipe
|
299
|
+
)
|
300
|
+
|
301
|
+
return tflite_model
|
@@ -0,0 +1,163 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
from ai_edge_quantizer import quantizer
|
17
|
+
from ai_edge_torch.generative.quantize import quant_attrs
|
18
|
+
from ai_edge_torch.generative.quantize import quant_recipe
|
19
|
+
|
20
|
+
_ComputePrecision = quantizer.qtyping.ComputePrecision
|
21
|
+
_QuantGranularity = quantizer.qtyping.QuantGranularity
|
22
|
+
_OpName = quantizer.qtyping.TFLOperationName
|
23
|
+
_TensorQuantConfig = quantizer.qtyping.TensorQuantizationConfig
|
24
|
+
_OpQuantConfig = quantizer.qtyping.OpQuantizationConfig
|
25
|
+
|
26
|
+
_DEFAULT_REGEX_STR = '.*'
|
27
|
+
_SINGULAR_TRANSFORMER_BLOCK_REGEX_STR = 'transformer_block'
|
28
|
+
_IDX_TRANSFORMER_BLOCKS_REGEX_STR = 'transformer_blocks\[{}\]'
|
29
|
+
_ATTENTION_REGEX_STR = 'ai_edge_torch.generative.layers.attention'
|
30
|
+
_FEEDFORWARD_REGEX_STR = 'ai_edge_torch.generative.layers.feed_forward'
|
31
|
+
_EMBEDDING_REGEX_STR = 'Embedding_tok_embedding'
|
32
|
+
_ANY_TWO_DIGITS_REGEX_STR = '\d{1,2}'
|
33
|
+
|
34
|
+
|
35
|
+
def _get_nbits_from_dtype(dtype: quant_attrs.Dtype) -> int:
|
36
|
+
if dtype == quant_attrs.Dtype.FP32:
|
37
|
+
return 32
|
38
|
+
elif dtype == quant_attrs.Dtype.FP16:
|
39
|
+
return 16
|
40
|
+
elif dtype == quant_attrs.Dtype.INT8:
|
41
|
+
return 8
|
42
|
+
raise ValueError('Unimplemented number of bits')
|
43
|
+
|
44
|
+
|
45
|
+
def _get_dtype_from_dtype(
|
46
|
+
dtype: quant_attrs.Dtype,
|
47
|
+
) -> quantizer.qtyping.TensorDataType:
|
48
|
+
if dtype == quant_attrs.Dtype.FP32 or dtype == quant_attrs.Dtype.FP16:
|
49
|
+
return quantizer.qtyping.TensorDataType.FLOAT
|
50
|
+
else:
|
51
|
+
return quantizer.qtyping.TensorDataType.INT
|
52
|
+
|
53
|
+
|
54
|
+
def _get_compute_precision_from_mode(
|
55
|
+
mode: quant_attrs.Mode,
|
56
|
+
) -> _ComputePrecision:
|
57
|
+
if mode == quant_attrs.Mode.DYNAMIC_RANGE:
|
58
|
+
return _ComputePrecision.INTEGER
|
59
|
+
elif mode == quant_attrs.Mode.WEIGHT_ONLY:
|
60
|
+
return _ComputePrecision.FLOAT
|
61
|
+
raise ValueError('Unimplemented execution mode')
|
62
|
+
|
63
|
+
|
64
|
+
def _get_explicit_dequant_from_mode(mode: quant_attrs.Mode) -> bool:
|
65
|
+
if mode == quant_attrs.Mode.DYNAMIC_RANGE:
|
66
|
+
return False
|
67
|
+
elif mode == quant_attrs.Mode.WEIGHT_ONLY:
|
68
|
+
return True
|
69
|
+
raise ValueError('Unimplemented execution mode')
|
70
|
+
|
71
|
+
|
72
|
+
def _get_granularity(
|
73
|
+
granularity: quant_attrs.Granularity,
|
74
|
+
) -> bool:
|
75
|
+
if granularity == quant_attrs.Granularity.CHANNELWISE:
|
76
|
+
return _QuantGranularity.CHANNELWISE
|
77
|
+
if granularity == quant_attrs.Granularity.NONE:
|
78
|
+
return _QuantGranularity.TENSORWISE
|
79
|
+
raise ValueError('Unimplemented granularity')
|
80
|
+
|
81
|
+
|
82
|
+
def _get_algorithm_key_from_algorithm(algo: quant_attrs.Algorithm) -> str:
|
83
|
+
if algo == quant_attrs.Algorithm.MIN_MAX:
|
84
|
+
return quantizer.algorithm_manager.AlgorithmName.MIN_MAX_UNIFORM_QUANT
|
85
|
+
elif algo == quant_attrs.Algorithm.FLOAT_CAST:
|
86
|
+
return quantizer.algorithm_manager.AlgorithmName.FLOAT_CASTING
|
87
|
+
raise ValueError('Unimplemented algorithm')
|
88
|
+
|
89
|
+
|
90
|
+
def _set_quant_config(
|
91
|
+
rm: quantizer.recipe_manager.RecipeManager,
|
92
|
+
layer_recipe: quant_recipe.LayerQuantRecipe,
|
93
|
+
regex: str,
|
94
|
+
):
|
95
|
+
rm.add_quantization_config(
|
96
|
+
regex=regex,
|
97
|
+
operation_name=_OpName.ALL_SUPPORTED,
|
98
|
+
op_config=_OpQuantConfig(
|
99
|
+
weight_tensor_config=_TensorQuantConfig(
|
100
|
+
num_bits=_get_nbits_from_dtype(layer_recipe.weight_dtype),
|
101
|
+
symmetric=True,
|
102
|
+
granularity=_get_granularity(layer_recipe.granularity),
|
103
|
+
dtype=_get_dtype_from_dtype(layer_recipe.weight_dtype),
|
104
|
+
),
|
105
|
+
compute_precision=_get_compute_precision_from_mode(layer_recipe.mode),
|
106
|
+
explicit_dequantize=_get_explicit_dequant_from_mode(
|
107
|
+
layer_recipe.mode
|
108
|
+
),
|
109
|
+
),
|
110
|
+
algorithm_key=_get_algorithm_key_from_algorithm(layer_recipe.algorithm),
|
111
|
+
)
|
112
|
+
|
113
|
+
|
114
|
+
def translate_to_ai_edge_recipe(
|
115
|
+
recipe: quant_recipe.GenerativeQuantRecipe,
|
116
|
+
) -> quantizer.recipe_manager.ModelQuantizationRecipe:
|
117
|
+
rm = quantizer.recipe_manager.RecipeManager()
|
118
|
+
|
119
|
+
if recipe.default is not None:
|
120
|
+
_set_quant_config(rm, recipe.default, _DEFAULT_REGEX_STR)
|
121
|
+
|
122
|
+
if recipe.embedding is not None:
|
123
|
+
_set_quant_config(rm, recipe.embedding, _EMBEDDING_REGEX_STR)
|
124
|
+
|
125
|
+
if recipe.attention is not None:
|
126
|
+
if isinstance(recipe.attention, dict):
|
127
|
+
for idx, layer in recipe.attention.items():
|
128
|
+
_set_quant_config(
|
129
|
+
rm,
|
130
|
+
layer,
|
131
|
+
f'{_IDX_TRANSFORMER_BLOCKS_REGEX_STR.format(idx)}/{_ATTENTION_REGEX_STR}',
|
132
|
+
)
|
133
|
+
else:
|
134
|
+
_set_quant_config(
|
135
|
+
rm,
|
136
|
+
recipe.attention,
|
137
|
+
f'{_SINGULAR_TRANSFORMER_BLOCK_REGEX_STR}/{_ATTENTION_REGEX_STR}',
|
138
|
+
)
|
139
|
+
|
140
|
+
if recipe.feedforward is not None:
|
141
|
+
if isinstance(recipe.feedforward, dict):
|
142
|
+
for idx, layer in recipe.feedforward.items():
|
143
|
+
_set_quant_config(
|
144
|
+
rm,
|
145
|
+
layer,
|
146
|
+
f'{_IDX_TRANSFORMER_BLOCKS_REGEX_STR.format(idx)}/{_FEEDFORWARD_REGEX_STR}',
|
147
|
+
)
|
148
|
+
else:
|
149
|
+
_set_quant_config(
|
150
|
+
rm,
|
151
|
+
recipe.feedforward,
|
152
|
+
f'{_SINGULAR_TRANSFORMER_BLOCK_REGEX_STR}/{_FEEDFORWARD_REGEX_STR}',
|
153
|
+
)
|
154
|
+
|
155
|
+
return rm.get_quantization_recipe()
|
156
|
+
|
157
|
+
|
158
|
+
def quantize_model(
|
159
|
+
model: bytes, recipe: quantizer.recipe_manager.ModelQuantizationRecipe
|
160
|
+
) -> bytearray:
|
161
|
+
qt = quantizer.Quantizer(model, recipe)
|
162
|
+
result = qt.quantize()
|
163
|
+
return result.quantized_model
|
ai_edge_torch/model.py
ADDED
@@ -0,0 +1,177 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Represents an ai_edge_torch model.
|
17
|
+
|
18
|
+
PyTorch models can be converted to this representation through
|
19
|
+
`ai_edge_torch.convert`.
|
20
|
+
"""
|
21
|
+
from __future__ import annotations
|
22
|
+
|
23
|
+
import abc
|
24
|
+
import re
|
25
|
+
from typing import Callable
|
26
|
+
|
27
|
+
import numpy.typing as npt
|
28
|
+
import tensorflow as tf
|
29
|
+
|
30
|
+
from ai_edge_litert import interpreter as tfl_interpreter # pylint: disable=g-direct-tensorflow-import
|
31
|
+
|
32
|
+
DEFAULT_SIGNATURE_NAME = tf.saved_model.DEFAULT_SERVING_SIGNATURE_DEF_KEY
|
33
|
+
|
34
|
+
|
35
|
+
class Model(abc.ABC):
|
36
|
+
"""Represents and edge model."""
|
37
|
+
|
38
|
+
@abc.abstractmethod
|
39
|
+
def __call__(
|
40
|
+
self,
|
41
|
+
*args: npt.ArrayLike,
|
42
|
+
signature_name: str = DEFAULT_SIGNATURE_NAME,
|
43
|
+
**kwargs,
|
44
|
+
) -> npt.ArrayLike | tuple[npt.ArrayLike]:
|
45
|
+
raise NotImplementedError()
|
46
|
+
|
47
|
+
@abc.abstractmethod
|
48
|
+
def export(self, path: str):
|
49
|
+
raise NotImplementedError()
|
50
|
+
|
51
|
+
@staticmethod
|
52
|
+
def load(path: str) -> TfLiteModel:
|
53
|
+
tflite_model = TfLiteModel.load(path)
|
54
|
+
if tflite_model:
|
55
|
+
return tflite_model
|
56
|
+
|
57
|
+
raise ValueError(f'File format in {path} cannot be deserialized.')
|
58
|
+
|
59
|
+
|
60
|
+
class TfLiteModel(Model):
|
61
|
+
"""An edge model which uses tflite under-the-hood."""
|
62
|
+
|
63
|
+
def __init__(self, tflite_model):
|
64
|
+
"""Initializes the TfLiteModel instance using a TFLite serialized object.
|
65
|
+
|
66
|
+
Args:
|
67
|
+
tflite_model: A TFlite serialized object.
|
68
|
+
"""
|
69
|
+
self._tflite_model = tflite_model
|
70
|
+
self._interpreter_builder = lambda: tfl_interpreter.Interpreter(
|
71
|
+
model_content=self._tflite_model,
|
72
|
+
experimental_default_delegate_latest_features=True,
|
73
|
+
)
|
74
|
+
|
75
|
+
def tflite_model(self) -> bytes:
|
76
|
+
"""Returns the wrapped tflite model."""
|
77
|
+
return self._tflite_model
|
78
|
+
|
79
|
+
def set_interpreter_builder(
|
80
|
+
self, builder: Callable[[], tfl_interpreter.Interpreter]
|
81
|
+
) -> None:
|
82
|
+
"""Sets a custom interpreter builder.
|
83
|
+
|
84
|
+
Args:
|
85
|
+
builder: A function that returns a `tfl_interpreter.Interpreter` or its
|
86
|
+
subclass.
|
87
|
+
"""
|
88
|
+
self._interpreter_builder = builder
|
89
|
+
|
90
|
+
def __call__(
|
91
|
+
self,
|
92
|
+
*args: npt.ArrayLike,
|
93
|
+
signature_name: str = DEFAULT_SIGNATURE_NAME,
|
94
|
+
**kwargs,
|
95
|
+
) -> npt.ArrayLike | tuple[npt.ArrayLike]:
|
96
|
+
"""Runs inference on the edge model using the provided arguments.
|
97
|
+
|
98
|
+
Args:
|
99
|
+
*args: The arguments to be passed to the model for inference.
|
100
|
+
**kwargs: The arguments with specific names to be passed to the model for
|
101
|
+
inference.
|
102
|
+
signature_name: The name of the signature to be used for inference. The
|
103
|
+
default signature is used if not provided.
|
104
|
+
"""
|
105
|
+
interpreter = self._interpreter_builder()
|
106
|
+
interpreter.allocate_tensors()
|
107
|
+
|
108
|
+
signature_list = interpreter.get_signature_list()
|
109
|
+
if signature_name not in signature_list:
|
110
|
+
raise ValueError(
|
111
|
+
'Invalid signature name provided. Available signatures:'
|
112
|
+
f' {", ".join(signature_list.keys())}'
|
113
|
+
)
|
114
|
+
|
115
|
+
try:
|
116
|
+
runner = interpreter.get_signature_runner(signature_name)
|
117
|
+
except ValueError as exception:
|
118
|
+
if 'Invalid signature_key provided.' in str(exception):
|
119
|
+
raise ValueError(
|
120
|
+
'Invalid signature key provided. Available signatures:'
|
121
|
+
f' {list(signature_list.keys())}'
|
122
|
+
)
|
123
|
+
else:
|
124
|
+
raise exception
|
125
|
+
|
126
|
+
if len(signature_list[signature_name]['inputs']) != len(args) + len(kwargs):
|
127
|
+
raise ValueError(
|
128
|
+
'The model requires'
|
129
|
+
f' {len(signature_list[signature_name]["inputs"])} arguments but'
|
130
|
+
f' {len(args)} was provided.'
|
131
|
+
)
|
132
|
+
|
133
|
+
# Gather the input dictionary based on the signature.
|
134
|
+
inputs = {f'args_{idx}': args[idx] for idx in range(len(args))}
|
135
|
+
inputs = {**inputs, **kwargs}
|
136
|
+
outputs = runner(**inputs)
|
137
|
+
|
138
|
+
# When attempting to run a model, check if all the output tensors are named
|
139
|
+
# output_<number>. If so, assume the pytorch model returned a tuple and not
|
140
|
+
# a dictionary.
|
141
|
+
output_heuristic = lambda key: bool(re.search(r'output_\d+', key))
|
142
|
+
if all(output_heuristic(key) for key in outputs.keys()):
|
143
|
+
return (
|
144
|
+
outputs['output_0']
|
145
|
+
if len(outputs) == 1
|
146
|
+
else [outputs[f'output_{idx}'] for idx in range(len(outputs))]
|
147
|
+
)
|
148
|
+
|
149
|
+
return outputs
|
150
|
+
|
151
|
+
def export(self, path: str) -> None:
|
152
|
+
"""Serializes the edge model to disk.
|
153
|
+
|
154
|
+
Args:
|
155
|
+
path: The path to file to which the model is serialized.
|
156
|
+
"""
|
157
|
+
with open(path, 'wb') as file_handle:
|
158
|
+
file_handle.write(self._tflite_model)
|
159
|
+
|
160
|
+
@staticmethod
|
161
|
+
def load(path: str) -> TfLiteModel | None:
|
162
|
+
"""Returns an edge (tflite) model by reading it from the disk.
|
163
|
+
|
164
|
+
Args:
|
165
|
+
str: The path to the model.
|
166
|
+
"""
|
167
|
+
with open(path, 'rb') as file_handle:
|
168
|
+
model_content = file_handle.read()
|
169
|
+
|
170
|
+
# Check if this is indeed a tflite model:
|
171
|
+
try:
|
172
|
+
interpreter = tfl_interpreter.Interpreter(model_content=model_content)
|
173
|
+
interpreter.get_signature_list()
|
174
|
+
except:
|
175
|
+
return None
|
176
|
+
|
177
|
+
return TfLiteModel(model_content)
|
@@ -0,0 +1,20 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
from . import composite
|
16
|
+
from . import debuginfo
|
17
|
+
from . import export
|
18
|
+
from . import export_utils
|
19
|
+
from . import lowerings
|
20
|
+
from . import passes
|