ai-edge-torch-nightly 0.3.0.dev20250114__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- ai_edge_torch/__init__.py +32 -0
- ai_edge_torch/_config.py +69 -0
- ai_edge_torch/_convert/__init__.py +14 -0
- ai_edge_torch/_convert/conversion.py +153 -0
- ai_edge_torch/_convert/conversion_utils.py +64 -0
- ai_edge_torch/_convert/converter.py +270 -0
- ai_edge_torch/_convert/fx_passes/__init__.py +23 -0
- ai_edge_torch/_convert/fx_passes/build_aten_composite_pass.py +288 -0
- ai_edge_torch/_convert/fx_passes/build_interpolate_composite_pass.py +131 -0
- ai_edge_torch/_convert/fx_passes/inject_mlir_debuginfo_pass.py +73 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/__init__.py +16 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_check.py +258 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_mark.py +50 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +18 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +68 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +216 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +449 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +30 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/pass_body.py +303 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/utils.py +64 -0
- ai_edge_torch/_convert/fx_passes/remove_non_user_outputs_pass.py +52 -0
- ai_edge_torch/_convert/signature.py +66 -0
- ai_edge_torch/_convert/test/__init__.py +14 -0
- ai_edge_torch/_convert/test/test_convert.py +558 -0
- ai_edge_torch/_convert/test/test_convert_composites.py +234 -0
- ai_edge_torch/_convert/test/test_convert_multisig.py +189 -0
- ai_edge_torch/_convert/test/test_to_channel_last_io.py +96 -0
- ai_edge_torch/_convert/to_channel_last_io.py +92 -0
- ai_edge_torch/conftest.py +20 -0
- ai_edge_torch/debug/__init__.py +17 -0
- ai_edge_torch/debug/culprit.py +496 -0
- ai_edge_torch/debug/test/__init__.py +14 -0
- ai_edge_torch/debug/test/test_culprit.py +140 -0
- ai_edge_torch/debug/test/test_search_model.py +51 -0
- ai_edge_torch/debug/utils.py +59 -0
- ai_edge_torch/experimental/__init__.py +14 -0
- ai_edge_torch/fx_pass_base.py +110 -0
- ai_edge_torch/generative/__init__.py +14 -0
- ai_edge_torch/generative/examples/__init__.py +14 -0
- ai_edge_torch/generative/examples/amd_llama_135m/__init__.py +14 -0
- ai_edge_torch/generative/examples/amd_llama_135m/amd_llama_135m.py +87 -0
- ai_edge_torch/generative/examples/amd_llama_135m/convert_to_tflite.py +70 -0
- ai_edge_torch/generative/examples/amd_llama_135m/verify.py +72 -0
- ai_edge_torch/generative/examples/gemma/__init__.py +14 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/gemma/gemma1.py +107 -0
- ai_edge_torch/generative/examples/gemma/gemma2.py +295 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma1.py +56 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma2.py +43 -0
- ai_edge_torch/generative/examples/gemma/verify_util.py +157 -0
- ai_edge_torch/generative/examples/llama/__init__.py +14 -0
- ai_edge_torch/generative/examples/llama/convert_to_tflite.py +91 -0
- ai_edge_torch/generative/examples/llama/llama.py +196 -0
- ai_edge_torch/generative/examples/llama/verify.py +88 -0
- ai_edge_torch/generative/examples/moonshine/__init__.py +14 -0
- ai_edge_torch/generative/examples/moonshine/convert_moonshine_to_tflite.py +50 -0
- ai_edge_torch/generative/examples/moonshine/moonshine.py +103 -0
- ai_edge_torch/generative/examples/openelm/__init__.py +14 -0
- ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/openelm/openelm.py +127 -0
- ai_edge_torch/generative/examples/openelm/verify.py +71 -0
- ai_edge_torch/generative/examples/paligemma/__init__.py +14 -0
- ai_edge_torch/generative/examples/paligemma/convert_to_tflite.py +95 -0
- ai_edge_torch/generative/examples/paligemma/decoder.py +151 -0
- ai_edge_torch/generative/examples/paligemma/decoder2.py +177 -0
- ai_edge_torch/generative/examples/paligemma/image_encoder.py +160 -0
- ai_edge_torch/generative/examples/paligemma/paligemma.py +179 -0
- ai_edge_torch/generative/examples/paligemma/verify.py +161 -0
- ai_edge_torch/generative/examples/paligemma/verify_decoder.py +75 -0
- ai_edge_torch/generative/examples/paligemma/verify_decoder2.py +72 -0
- ai_edge_torch/generative/examples/paligemma/verify_image_encoder.py +99 -0
- ai_edge_torch/generative/examples/phi/__init__.py +14 -0
- ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/phi/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/phi/phi2.py +107 -0
- ai_edge_torch/generative/examples/phi/phi3.py +219 -0
- ai_edge_torch/generative/examples/phi/verify.py +64 -0
- ai_edge_torch/generative/examples/phi/verify_phi3.py +69 -0
- ai_edge_torch/generative/examples/qwen/__init__.py +14 -0
- ai_edge_torch/generative/examples/qwen/convert_to_tflite.py +93 -0
- ai_edge_torch/generative/examples/qwen/qwen.py +134 -0
- ai_edge_torch/generative/examples/qwen/verify.py +88 -0
- ai_edge_torch/generative/examples/smollm/__init__.py +14 -0
- ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/smollm/convert_v2_to_tflite.py +71 -0
- ai_edge_torch/generative/examples/smollm/smollm.py +125 -0
- ai_edge_torch/generative/examples/smollm/verify.py +86 -0
- ai_edge_torch/generative/examples/stable_diffusion/__init__.py +14 -0
- ai_edge_torch/generative/examples/stable_diffusion/attention.py +108 -0
- ai_edge_torch/generative/examples/stable_diffusion/clip.py +185 -0
- ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +173 -0
- ai_edge_torch/generative/examples/stable_diffusion/decoder.py +398 -0
- ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +749 -0
- ai_edge_torch/generative/examples/stable_diffusion/encoder.py +119 -0
- ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +254 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/__init__.py +19 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +62 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +66 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +74 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +39 -0
- ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +111 -0
- ai_edge_torch/generative/examples/stable_diffusion/util.py +77 -0
- ai_edge_torch/generative/examples/t5/__init__.py +14 -0
- ai_edge_torch/generative/examples/t5/convert_to_tflite.py +138 -0
- ai_edge_torch/generative/examples/t5/t5.py +655 -0
- ai_edge_torch/generative/examples/t5/t5_attention.py +246 -0
- ai_edge_torch/generative/examples/test_models/__init__.py +14 -0
- ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
- ai_edge_torch/generative/examples/test_models/toy_model.py +156 -0
- ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +138 -0
- ai_edge_torch/generative/examples/tiny_llama/__init__.py +14 -0
- ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +88 -0
- ai_edge_torch/generative/examples/tiny_llama/verify.py +72 -0
- ai_edge_torch/generative/fx_passes/__init__.py +30 -0
- ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +50 -0
- ai_edge_torch/generative/layers/__init__.py +14 -0
- ai_edge_torch/generative/layers/attention.py +399 -0
- ai_edge_torch/generative/layers/attention_utils.py +210 -0
- ai_edge_torch/generative/layers/builder.py +160 -0
- ai_edge_torch/generative/layers/feed_forward.py +120 -0
- ai_edge_torch/generative/layers/kv_cache.py +204 -0
- ai_edge_torch/generative/layers/lora.py +557 -0
- ai_edge_torch/generative/layers/model_config.py +238 -0
- ai_edge_torch/generative/layers/normalization.py +222 -0
- ai_edge_torch/generative/layers/rotary_position_embedding.py +94 -0
- ai_edge_torch/generative/layers/scaled_dot_product_attention.py +144 -0
- ai_edge_torch/generative/layers/unet/__init__.py +14 -0
- ai_edge_torch/generative/layers/unet/blocks_2d.py +806 -0
- ai_edge_torch/generative/layers/unet/builder.py +50 -0
- ai_edge_torch/generative/layers/unet/model_config.py +282 -0
- ai_edge_torch/generative/quantize/__init__.py +14 -0
- ai_edge_torch/generative/quantize/example.py +47 -0
- ai_edge_torch/generative/quantize/quant_attrs.py +68 -0
- ai_edge_torch/generative/quantize/quant_recipe.py +154 -0
- ai_edge_torch/generative/quantize/quant_recipe_utils.py +62 -0
- ai_edge_torch/generative/quantize/quant_recipes.py +56 -0
- ai_edge_torch/generative/quantize/supported_schemes.py +32 -0
- ai_edge_torch/generative/test/__init__.py +14 -0
- ai_edge_torch/generative/test/test_custom_dus.py +107 -0
- ai_edge_torch/generative/test/test_kv_cache.py +120 -0
- ai_edge_torch/generative/test/test_loader.py +83 -0
- ai_edge_torch/generative/test/test_lora.py +147 -0
- ai_edge_torch/generative/test/test_model_conversion.py +191 -0
- ai_edge_torch/generative/test/test_model_conversion_large.py +362 -0
- ai_edge_torch/generative/test/test_quantize.py +183 -0
- ai_edge_torch/generative/test/utils.py +82 -0
- ai_edge_torch/generative/utilities/__init__.py +15 -0
- ai_edge_torch/generative/utilities/converter.py +215 -0
- ai_edge_torch/generative/utilities/dynamic_update_slice.py +56 -0
- ai_edge_torch/generative/utilities/loader.py +398 -0
- ai_edge_torch/generative/utilities/model_builder.py +180 -0
- ai_edge_torch/generative/utilities/moonshine_loader.py +154 -0
- ai_edge_torch/generative/utilities/stable_diffusion_loader.py +1032 -0
- ai_edge_torch/generative/utilities/t5_loader.py +512 -0
- ai_edge_torch/generative/utilities/transformers_verifier.py +42 -0
- ai_edge_torch/generative/utilities/verifier.py +335 -0
- ai_edge_torch/hlfb/__init__.py +16 -0
- ai_edge_torch/hlfb/mark_pattern/__init__.py +153 -0
- ai_edge_torch/hlfb/mark_pattern/fx_utils.py +69 -0
- ai_edge_torch/hlfb/mark_pattern/pattern.py +288 -0
- ai_edge_torch/hlfb/test/__init__.py +14 -0
- ai_edge_torch/hlfb/test/test_mark_pattern.py +185 -0
- ai_edge_torch/lowertools/__init__.py +18 -0
- ai_edge_torch/lowertools/_shim.py +86 -0
- ai_edge_torch/lowertools/common_utils.py +142 -0
- ai_edge_torch/lowertools/odml_torch_utils.py +260 -0
- ai_edge_torch/lowertools/test_utils.py +62 -0
- ai_edge_torch/lowertools/torch_xla_utils.py +301 -0
- ai_edge_torch/lowertools/translate_recipe.py +163 -0
- ai_edge_torch/model.py +177 -0
- ai_edge_torch/odml_torch/__init__.py +20 -0
- ai_edge_torch/odml_torch/_torch_future.py +88 -0
- ai_edge_torch/odml_torch/_torch_library.py +19 -0
- ai_edge_torch/odml_torch/composite/__init__.py +16 -0
- ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
- ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
- ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
- ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
- ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
- ai_edge_torch/odml_torch/export.py +403 -0
- ai_edge_torch/odml_torch/export_utils.py +157 -0
- ai_edge_torch/odml_torch/jax_bridge/__init__.py +18 -0
- ai_edge_torch/odml_torch/jax_bridge/_wrap.py +180 -0
- ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
- ai_edge_torch/odml_torch/lowerings/__init__.py +27 -0
- ai_edge_torch/odml_torch/lowerings/_basic.py +294 -0
- ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
- ai_edge_torch/odml_torch/lowerings/_convolution.py +243 -0
- ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +285 -0
- ai_edge_torch/odml_torch/lowerings/_layer_norm.py +87 -0
- ai_edge_torch/odml_torch/lowerings/_quantized_decomposed.py +177 -0
- ai_edge_torch/odml_torch/lowerings/_rand.py +142 -0
- ai_edge_torch/odml_torch/lowerings/context.py +42 -0
- ai_edge_torch/odml_torch/lowerings/decomp.py +69 -0
- ai_edge_torch/odml_torch/lowerings/registry.py +65 -0
- ai_edge_torch/odml_torch/lowerings/utils.py +201 -0
- ai_edge_torch/odml_torch/passes/__init__.py +38 -0
- ai_edge_torch/odml_torch/tf_integration.py +156 -0
- ai_edge_torch/quantize/__init__.py +16 -0
- ai_edge_torch/quantize/pt2e_quantizer.py +466 -0
- ai_edge_torch/quantize/pt2e_quantizer_utils.py +1061 -0
- ai_edge_torch/quantize/quant_config.py +85 -0
- ai_edge_torch/testing/__init__.py +14 -0
- ai_edge_torch/testing/model_coverage/__init__.py +16 -0
- ai_edge_torch/testing/model_coverage/model_coverage.py +145 -0
- ai_edge_torch/version.py +16 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/LICENSE +202 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/METADATA +44 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/RECORD +213 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/WHEEL +5 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/top_level.txt +1 -0
@@ -0,0 +1,177 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
"""Lowerings for PT2E torch.ops.quantized_decomposed ops."""
|
16
|
+
from typing import Optional, Union, cast
|
17
|
+
|
18
|
+
from ai_edge_torch.odml_torch.lowerings import context
|
19
|
+
from ai_edge_torch.odml_torch.lowerings import utils
|
20
|
+
from jax._src.lib.mlir import ir
|
21
|
+
from jax._src.lib.mlir.dialects import hlo as stablehlo
|
22
|
+
import torch
|
23
|
+
import torch.ao.quantization.fx._decomposed
|
24
|
+
import torch.utils._pytree as pytree
|
25
|
+
|
26
|
+
from . import registry
|
27
|
+
|
28
|
+
lower = registry.lower
|
29
|
+
LoweringContext = context.LoweringContext
|
30
|
+
|
31
|
+
|
32
|
+
def _uniform_quantized_type(
|
33
|
+
stored_type: Union[str, ir.Type],
|
34
|
+
expressed_type: Union[str, ir.Type],
|
35
|
+
*,
|
36
|
+
scale=Union[float, list[float], tuple[float]],
|
37
|
+
zero_point=Union[float, list[float], tuple[float]],
|
38
|
+
storage_type_min: Optional[int] = None,
|
39
|
+
storage_type_max: Optional[int] = None,
|
40
|
+
channel_axis: Optional[int] = None,
|
41
|
+
channel_axis_size: Optional[int] = None,
|
42
|
+
):
|
43
|
+
"""Polyfill for quant.UniformQuantizedType."""
|
44
|
+
if storage_type_min and storage_type_max:
|
45
|
+
storage_min_max = f"<{storage_type_min}:{storage_type_max}>"
|
46
|
+
else:
|
47
|
+
storage_min_max = ""
|
48
|
+
|
49
|
+
if channel_axis is not None:
|
50
|
+
# Per-channel quantization
|
51
|
+
# https://mlir.llvm.org/docs/Dialects/QuantDialect/#per-channel-quantization
|
52
|
+
assert isinstance(scale, (list, tuple))
|
53
|
+
assert isinstance(zero_point, (list, tuple))
|
54
|
+
|
55
|
+
scale = list(scale)
|
56
|
+
zero_point = list(zero_point)
|
57
|
+
|
58
|
+
if len(scale) == 1:
|
59
|
+
scale = scale * channel_axis_size
|
60
|
+
if len(zero_point) == 1:
|
61
|
+
zero_point = zero_point * channel_axis_size
|
62
|
+
|
63
|
+
assert len(scale) == len(zero_point) == channel_axis_size
|
64
|
+
scale_zp_strs = []
|
65
|
+
for s, zp in zip(scale, zero_point):
|
66
|
+
scale_zp_strs.append(f"{s}:{zp}")
|
67
|
+
scale_zp = "{" + ",".join(scale_zp_strs) + "}"
|
68
|
+
return ir.Type.parse(
|
69
|
+
f"!quant.uniform<{stored_type}{storage_min_max}:{expressed_type}:{channel_axis},{scale_zp}>"
|
70
|
+
)
|
71
|
+
else:
|
72
|
+
# Per-layer quantization
|
73
|
+
# https://mlir.llvm.org/docs/Dialects/QuantDialect/#per-layer-quantization
|
74
|
+
scale = pytree.tree_flatten([scale])[0][-1]
|
75
|
+
zero_point = pytree.tree_flatten([zero_point])[0][-1]
|
76
|
+
scale_zp = f"{scale}:{zero_point}"
|
77
|
+
return ir.Type.parse(
|
78
|
+
f"!quant.uniform<{stored_type}{storage_min_max}:{expressed_type},{scale_zp}>"
|
79
|
+
)
|
80
|
+
|
81
|
+
|
82
|
+
# Quant dialect is not registered in the Python MLIR pybinding used by
|
83
|
+
# odml-torch. Therefore, stablehlo.uniform_quantize/uniform_dequantize ops and
|
84
|
+
# quant types are represented in stablehlo.custom_call to pass MLIR verification
|
85
|
+
# and VHLO serialization before converter.
|
86
|
+
# TODO(b/362798610) Build MLIR pybinding in ai-edge-torch release.
|
87
|
+
|
88
|
+
|
89
|
+
# Schema:
|
90
|
+
# - quantized_decomposed::quantize_per_tensor(Tensor input, float scale,
|
91
|
+
# int zero_point, int quant_min, int quant_max,
|
92
|
+
# ScalarType dtype) -> Tensor
|
93
|
+
# - quantized_decomposed::quantize_per_tensor.tensor(Tensor input,
|
94
|
+
# Tensor scale, Tensor zero_point, int quant_min, int quant_max,
|
95
|
+
# ScalarType dtype) -> Tensor
|
96
|
+
#
|
97
|
+
# Scale and zero_point in tensors are automatically converted to list before
|
98
|
+
# lowering.
|
99
|
+
@lower(torch.ops.quantized_decomposed.quantize_per_tensor)
|
100
|
+
def _quantize_per_tensor(
|
101
|
+
lctx: LoweringContext,
|
102
|
+
input: ir.Value,
|
103
|
+
scale: Union[float, list[float]],
|
104
|
+
zero_point: Union[float, list[float]],
|
105
|
+
quant_min: int,
|
106
|
+
quant_max: int,
|
107
|
+
dtype: torch.dtype,
|
108
|
+
):
|
109
|
+
input_ty = cast(ir.RankedTensorType, input.type)
|
110
|
+
qty = _uniform_quantized_type(
|
111
|
+
utils.torch_dtype_to_ir_element_type(dtype),
|
112
|
+
input_ty.element_type,
|
113
|
+
scale=scale,
|
114
|
+
zero_point=zero_point,
|
115
|
+
storage_type_min=quant_min,
|
116
|
+
storage_type_max=quant_max,
|
117
|
+
)
|
118
|
+
return stablehlo.custom_call(
|
119
|
+
call_target_name="odml_torch.uniform_quantize",
|
120
|
+
inputs=[input],
|
121
|
+
result=[input_ty],
|
122
|
+
backend_config=ir.StringAttr.get(
|
123
|
+
str(ir.RankedTensorType.get(input_ty.shape, qty))
|
124
|
+
),
|
125
|
+
)
|
126
|
+
|
127
|
+
|
128
|
+
# Schema:
|
129
|
+
# - quantized_decomposed::quantize_per_channel(Tensor input, Tensor scales,
|
130
|
+
# Tensor zero_points, int axis, int quant_min, int quant_max,
|
131
|
+
# ScalarType dtype) -> Tensor
|
132
|
+
#
|
133
|
+
# Scale and zero_point in tensors are automatically converted to list before
|
134
|
+
# lowering.
|
135
|
+
@lower(torch.ops.quantized_decomposed.quantize_per_channel)
|
136
|
+
def _quantize_per_channel(
|
137
|
+
lctx: LoweringContext,
|
138
|
+
input: ir.Value,
|
139
|
+
scale: list[float],
|
140
|
+
zero_point: list[float],
|
141
|
+
axis: int,
|
142
|
+
quant_min: int,
|
143
|
+
quant_max: int,
|
144
|
+
dtype: torch.dtype,
|
145
|
+
):
|
146
|
+
input_ty = cast(ir.RankedTensorType, input.type)
|
147
|
+
qty = _uniform_quantized_type(
|
148
|
+
utils.torch_dtype_to_ir_element_type(dtype),
|
149
|
+
input_ty.element_type,
|
150
|
+
scale=scale,
|
151
|
+
zero_point=zero_point,
|
152
|
+
channel_axis=axis,
|
153
|
+
channel_axis_size=input_ty.shape[axis],
|
154
|
+
storage_type_min=quant_min,
|
155
|
+
storage_type_max=quant_max,
|
156
|
+
)
|
157
|
+
return stablehlo.custom_call(
|
158
|
+
call_target_name="odml_torch.uniform_quantize",
|
159
|
+
inputs=[input],
|
160
|
+
result=[input_ty],
|
161
|
+
backend_config=ir.StringAttr.get(
|
162
|
+
str(ir.RankedTensorType.get(input_ty.shape, qty))
|
163
|
+
),
|
164
|
+
)
|
165
|
+
|
166
|
+
|
167
|
+
@lower(torch.ops.quantized_decomposed.dequantize_per_tensor)
|
168
|
+
@lower(torch.ops.quantized_decomposed.dequantize_per_channel)
|
169
|
+
def _dequantize(lctx: LoweringContext, input: ir.Value, *args, **kwargs):
|
170
|
+
result_meta = lctx.node.meta.get("tensor_meta")
|
171
|
+
result_elty = utils.torch_dtype_to_ir_element_type(result_meta.dtype)
|
172
|
+
|
173
|
+
return stablehlo.custom_call(
|
174
|
+
call_target_name="odml_torch.uniform_dequantize",
|
175
|
+
inputs=[input],
|
176
|
+
result=[ir.RankedTensorType.get(result_meta.shape, result_elty)],
|
177
|
+
)
|
@@ -0,0 +1,142 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
import uuid
|
16
|
+
|
17
|
+
from ai_edge_torch.odml_torch import export_utils
|
18
|
+
from ai_edge_torch.odml_torch.lowerings import context
|
19
|
+
from ai_edge_torch.odml_torch.lowerings import registry
|
20
|
+
from jax._src.lib.mlir import ir
|
21
|
+
from jax._src.lib.mlir.dialects import func
|
22
|
+
from jax._src.lib.mlir.dialects import hlo as stablehlo
|
23
|
+
import numpy as np
|
24
|
+
import torch
|
25
|
+
import torch.utils._pytree as pytree
|
26
|
+
|
27
|
+
LoweringContext = context.LoweringContext
|
28
|
+
lower = registry.lower
|
29
|
+
|
30
|
+
|
31
|
+
def _random_lowering(
|
32
|
+
lctx: LoweringContext,
|
33
|
+
size: list[int],
|
34
|
+
generator,
|
35
|
+
dtype: torch.dtype,
|
36
|
+
rand_tensor,
|
37
|
+
composite_name: str,
|
38
|
+
):
|
39
|
+
if dtype is None:
|
40
|
+
dtype = torch.float32
|
41
|
+
|
42
|
+
rand_tensor = rand_tensor.type(dtype)
|
43
|
+
data = rand_tensor.detach().numpy()
|
44
|
+
|
45
|
+
shape, _ = pytree.tree_flatten(size)
|
46
|
+
elty = export_utils.torch_dtype_to_ir_element_type(dtype)
|
47
|
+
|
48
|
+
decomp_name = f"{composite_name}.impl_{uuid.uuid4().hex[:8]}"
|
49
|
+
|
50
|
+
with ir.InsertionPoint(lctx.ir_module.body):
|
51
|
+
|
52
|
+
@func.FuncOp.from_py_func(
|
53
|
+
ir.RankedTensorType.get(
|
54
|
+
[len(shape)],
|
55
|
+
ir.IntegerType.get_signless(32),
|
56
|
+
),
|
57
|
+
name=decomp_name,
|
58
|
+
)
|
59
|
+
def _rand_impl(_):
|
60
|
+
return [stablehlo.constant(ir.DenseElementsAttr.get(data))]
|
61
|
+
|
62
|
+
seed, seed2 = (
|
63
|
+
torch.randint(
|
64
|
+
torch.iinfo(torch.int64).min,
|
65
|
+
torch.iinfo(torch.int64).max,
|
66
|
+
(2,),
|
67
|
+
dtype=torch.int64,
|
68
|
+
generator=generator,
|
69
|
+
)
|
70
|
+
.detach()
|
71
|
+
.numpy()
|
72
|
+
)
|
73
|
+
|
74
|
+
shape_ = stablehlo.constant(
|
75
|
+
ir.DenseElementsAttr.get(np.array(shape, dtype=np.int32))
|
76
|
+
)
|
77
|
+
return stablehlo.CompositeOp(
|
78
|
+
result=[ir.RankedTensorType.get(shape, elty)],
|
79
|
+
inputs=[shape_],
|
80
|
+
name=composite_name,
|
81
|
+
composite_attributes=ir.DictAttr.get({
|
82
|
+
"seed": ir.IntegerAttr.get(ir.IntegerType.get_signless(64), seed),
|
83
|
+
"seed2": ir.IntegerAttr.get(ir.IntegerType.get_signless(64), seed2),
|
84
|
+
}),
|
85
|
+
decomposition=decomp_name,
|
86
|
+
).results[0]
|
87
|
+
|
88
|
+
|
89
|
+
# Schema:
|
90
|
+
# - aten::rand(SymInt[] size, *, ScalarType? dtype=None, Layout? layout=None,
|
91
|
+
# Device? device=None, bool? pin_memory=None) -> Tensor
|
92
|
+
# - aten::rand.generator(SymInt[] size, *, Generator? generator,
|
93
|
+
# ScalarType? dtype=None, Layout? layout=None, Device? device=None,
|
94
|
+
# bool? pin_memory=None) -> Tensor
|
95
|
+
@registry.lower(torch.ops.aten.rand)
|
96
|
+
def _aten_rand(
|
97
|
+
lctx: LoweringContext,
|
98
|
+
size,
|
99
|
+
generator=None,
|
100
|
+
dtype=None,
|
101
|
+
layout=torch.strided,
|
102
|
+
device=None,
|
103
|
+
pin_memory=False,
|
104
|
+
):
|
105
|
+
return _random_lowering(
|
106
|
+
lctx,
|
107
|
+
size,
|
108
|
+
generator,
|
109
|
+
dtype,
|
110
|
+
rand_tensor=torch.ops.aten.rand.generator(
|
111
|
+
size, generator=generator, dtype=dtype
|
112
|
+
),
|
113
|
+
composite_name="odml.random_uniform",
|
114
|
+
)
|
115
|
+
|
116
|
+
|
117
|
+
# Schema:
|
118
|
+
# - aten::randn(SymInt[] size, *, ScalarType? dtype=None, Layout? layout=None,
|
119
|
+
# Device? device=None, bool? pin_memory=None) -> Tensor
|
120
|
+
# - aten::randn.generator(SymInt[] size, *, Generator? generator,
|
121
|
+
# ScalarType? dtype=None, Layout? layout=None, Device? device=None,
|
122
|
+
# bool? pin_memory=None) -> Tensor
|
123
|
+
@registry.lower(torch.ops.aten.randn)
|
124
|
+
def _aten_randn(
|
125
|
+
lctx: LoweringContext,
|
126
|
+
size,
|
127
|
+
generator=None,
|
128
|
+
dtype=None,
|
129
|
+
layout=torch.strided,
|
130
|
+
device=None,
|
131
|
+
pin_memory=False,
|
132
|
+
):
|
133
|
+
return _random_lowering(
|
134
|
+
lctx,
|
135
|
+
size,
|
136
|
+
generator,
|
137
|
+
dtype,
|
138
|
+
rand_tensor=torch.ops.aten.randn.generator(
|
139
|
+
size, generator=generator, dtype=dtype
|
140
|
+
),
|
141
|
+
composite_name="odml.random_standard_normal",
|
142
|
+
)
|
@@ -0,0 +1,42 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
"""Define context object for export and MLIR lowerings."""
|
16
|
+
|
17
|
+
import dataclasses
|
18
|
+
from jax._src.lib.mlir import ir
|
19
|
+
import torch
|
20
|
+
|
21
|
+
|
22
|
+
@dataclasses.dataclass
|
23
|
+
class LoweringContext:
|
24
|
+
"""The context object used in export interpreter and MLIR lowerings."""
|
25
|
+
|
26
|
+
ir_context: ir.Context
|
27
|
+
ir_module: ir.Module
|
28
|
+
ir_location: ir.Location = None
|
29
|
+
node: torch.fx.Node = None
|
30
|
+
|
31
|
+
@property
|
32
|
+
def ctx(self):
|
33
|
+
"""Shortcut for ir_context."""
|
34
|
+
return self.ir_context
|
35
|
+
|
36
|
+
@property
|
37
|
+
def loc(self):
|
38
|
+
"""Shortcut for ir_location."""
|
39
|
+
return self.ir_location
|
40
|
+
|
41
|
+
def replace(self, **kwargs):
|
42
|
+
return dataclasses.replace(self, **kwargs)
|
@@ -0,0 +1,69 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
"""Torch export decompositions to run before lowering."""
|
16
|
+
|
17
|
+
import functools
|
18
|
+
|
19
|
+
import torch
|
20
|
+
|
21
|
+
|
22
|
+
@functools.cache
|
23
|
+
def decompositions():
|
24
|
+
# Base: Core ATen decompositions
|
25
|
+
decompositions = torch._decomp.core_aten_decompositions()
|
26
|
+
|
27
|
+
decompositions.update(
|
28
|
+
torch._decomp.get_decompositions([
|
29
|
+
torch.ops.aten.upsample_nearest2d,
|
30
|
+
torch.ops.aten._native_batch_norm_legit.no_stats,
|
31
|
+
torch.ops.aten._native_batch_norm_legit_functional,
|
32
|
+
torch.ops.aten._adaptive_avg_pool2d,
|
33
|
+
torch.ops.aten._adaptive_avg_pool3d,
|
34
|
+
torch.ops.aten.grid_sampler_2d,
|
35
|
+
torch.ops.aten.native_group_norm,
|
36
|
+
torch.ops.aten.native_dropout,
|
37
|
+
torch.ops.aten.reflection_pad1d,
|
38
|
+
torch.ops.aten.reflection_pad2d,
|
39
|
+
torch.ops.aten.reflection_pad3d,
|
40
|
+
torch.ops.aten.replication_pad1d,
|
41
|
+
torch.ops.aten.replication_pad2d,
|
42
|
+
torch.ops.aten.replication_pad3d,
|
43
|
+
torch.ops.aten.addmm,
|
44
|
+
])
|
45
|
+
)
|
46
|
+
|
47
|
+
torch._decomp.remove_decompositions(
|
48
|
+
decompositions,
|
49
|
+
[
|
50
|
+
torch.ops.aten.roll,
|
51
|
+
# Torch's default einsum impl/decompositions is less efficient and
|
52
|
+
# optimized through converter than JAX's impl. Disable einsum
|
53
|
+
# decomposition to use JAX bridge for a more efficient lowering.
|
54
|
+
torch.ops.aten.einsum.default,
|
55
|
+
],
|
56
|
+
)
|
57
|
+
|
58
|
+
# Override noop aten op decompositions for faster run_decompositions.
|
59
|
+
decompositions[torch.ops.aten.alias.default] = lambda x: x
|
60
|
+
decompositions[torch.ops.aten.detach.default] = lambda x: x
|
61
|
+
|
62
|
+
# Override _safe_softmax decompositions with regular softmax.
|
63
|
+
# _safe_softmax introduces additional check-select ops to guard extreme
|
64
|
+
# input values to softmax, which could make the converted model inefficient
|
65
|
+
# on-device.
|
66
|
+
if hasattr(torch.ops.aten, "_safe_softmax"):
|
67
|
+
decompositions[torch.ops.aten._safe_softmax.default] = torch.softmax
|
68
|
+
|
69
|
+
return decompositions
|
@@ -0,0 +1,65 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
"""Torch op decompositions and MLIR lowerings registry."""
|
16
|
+
|
17
|
+
from typing import Any, Callable
|
18
|
+
|
19
|
+
import torch
|
20
|
+
|
21
|
+
from . import context
|
22
|
+
|
23
|
+
|
24
|
+
class LoweringRegistry:
|
25
|
+
"""Registry object for torch op decompositions and to-MLIR lowerings."""
|
26
|
+
|
27
|
+
def __init__(self):
|
28
|
+
self.registered_ops = {}
|
29
|
+
|
30
|
+
def lookup(self, op_or_name):
|
31
|
+
candidate = self._get_lowering(op_or_name)
|
32
|
+
if candidate is None:
|
33
|
+
if isinstance(op_or_name, torch._ops.OpOverloadPacket):
|
34
|
+
candidate = self._get_lowering(op_or_name.default)
|
35
|
+
if isinstance(op_or_name, torch._ops.OpOverload):
|
36
|
+
candidate = self._get_lowering(op_or_name.overloadpacket)
|
37
|
+
return candidate
|
38
|
+
|
39
|
+
def _get_lowering(self, op):
|
40
|
+
candidate = self.registered_ops.get(op)
|
41
|
+
return candidate
|
42
|
+
|
43
|
+
def register(self, op, lowering):
|
44
|
+
if isinstance(op, torch._ops.OpOverloadPacket):
|
45
|
+
ops = [getattr(op, overload) for overload in op.overloads()]
|
46
|
+
else:
|
47
|
+
ops = [op]
|
48
|
+
|
49
|
+
for op in ops:
|
50
|
+
self.registered_ops[op] = lowering
|
51
|
+
|
52
|
+
|
53
|
+
global_registry = LoweringRegistry()
|
54
|
+
|
55
|
+
|
56
|
+
def lookup(op):
|
57
|
+
return global_registry.lookup(op)
|
58
|
+
|
59
|
+
|
60
|
+
def lower(op):
|
61
|
+
def inner(lowering: Callable[[context.LoweringContext, ...], Any]):
|
62
|
+
global_registry.register(op, lowering)
|
63
|
+
return lowering
|
64
|
+
|
65
|
+
return inner
|
@@ -0,0 +1,201 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
"""Utilities for building MLIR lowerings."""
|
16
|
+
|
17
|
+
import functools
|
18
|
+
import numbers
|
19
|
+
from typing import Any
|
20
|
+
from typing import Optional
|
21
|
+
|
22
|
+
from jax._src.lib.mlir import ir
|
23
|
+
from jax._src.lib.mlir.dialects import hlo as stablehlo
|
24
|
+
import numpy as np
|
25
|
+
import torch
|
26
|
+
|
27
|
+
|
28
|
+
def torch_dtype_to_ir_element_type(dtype):
|
29
|
+
ty_get = {
|
30
|
+
torch.double: ir.F64Type.get,
|
31
|
+
torch.float32: ir.F32Type.get,
|
32
|
+
torch.half: ir.F16Type.get,
|
33
|
+
torch.long: functools.partial(ir.IntegerType.get_signless, 64),
|
34
|
+
torch.int32: functools.partial(ir.IntegerType.get_signless, 32),
|
35
|
+
torch.int16: functools.partial(ir.IntegerType.get_signless, 16),
|
36
|
+
torch.int8: functools.partial(ir.IntegerType.get_signless, 8),
|
37
|
+
torch.bool: functools.partial(ir.IntegerType.get_signless, 1),
|
38
|
+
}[dtype]
|
39
|
+
return ty_get()
|
40
|
+
|
41
|
+
|
42
|
+
def splat(val, ty, shape=tuple(), *, loc: Optional[Any] = None):
|
43
|
+
if isinstance(ty, ir.IntegerType):
|
44
|
+
if ty.width == 1:
|
45
|
+
attr = ir.BoolAttr.get(bool(val))
|
46
|
+
else:
|
47
|
+
attr = ir.IntegerAttr.get(ty, int(val))
|
48
|
+
elif isinstance(ty, ir.FloatType):
|
49
|
+
attr = ir.FloatAttr.get(ty, val)
|
50
|
+
else:
|
51
|
+
raise ValueError("Unsupported type: %s" % str(ty))
|
52
|
+
|
53
|
+
return stablehlo.constant(
|
54
|
+
ir.DenseElementsAttr.get_splat(
|
55
|
+
ir.RankedTensorType.get(shape, ty),
|
56
|
+
attr,
|
57
|
+
),
|
58
|
+
loc=loc,
|
59
|
+
)
|
60
|
+
|
61
|
+
|
62
|
+
def get_common_broadcast_shape(
|
63
|
+
shape_1: list[int], shape_2: list[int]
|
64
|
+
) -> Optional[list[int]]:
|
65
|
+
if not shape_1 and not shape_2:
|
66
|
+
return None
|
67
|
+
|
68
|
+
shape_1 = shape_1 if shape_1 else [1]
|
69
|
+
shape_2 = shape_2 if shape_2 else [1]
|
70
|
+
|
71
|
+
length_diff = abs(len(shape_1) - len(shape_2))
|
72
|
+
if len(shape_1) < len(shape_2):
|
73
|
+
shape_1 = [1] * length_diff + shape_1
|
74
|
+
elif len(shape_1) > len(shape_2):
|
75
|
+
shape_2 = [1] * length_diff + shape_2
|
76
|
+
|
77
|
+
common_broadcast_shape = []
|
78
|
+
for idx in reversed(range(len(shape_1))):
|
79
|
+
dim_size1 = shape_1[idx]
|
80
|
+
dim_size2 = shape_2[idx]
|
81
|
+
|
82
|
+
if dim_size1 == dim_size2:
|
83
|
+
common_broadcast_shape.insert(0, dim_size1)
|
84
|
+
elif dim_size1 == 1 or dim_size2 == 1:
|
85
|
+
common_broadcast_shape.insert(0, max(dim_size1, dim_size2))
|
86
|
+
else:
|
87
|
+
return None
|
88
|
+
|
89
|
+
return common_broadcast_shape
|
90
|
+
|
91
|
+
|
92
|
+
def get_broadcast_dimensions(
|
93
|
+
shape_from: list[int], shape_to: list[int]
|
94
|
+
) -> list[int]:
|
95
|
+
assert get_common_broadcast_shape(shape_from, shape_to) == shape_to
|
96
|
+
|
97
|
+
ret = []
|
98
|
+
for val in range(len(shape_to) - len(shape_from), len(shape_to)):
|
99
|
+
ret.append(val)
|
100
|
+
|
101
|
+
return ir.DenseI64ArrayAttr.get(np.asarray(ret, np.int64))
|
102
|
+
|
103
|
+
|
104
|
+
def broadcast_args_if_needed(
|
105
|
+
val_1: ir.Value, val_2: ir.Value
|
106
|
+
) -> tuple[Optional[ir.Value], Optional[ir.Value]]:
|
107
|
+
broadcast_shape = get_common_broadcast_shape(
|
108
|
+
val_1.type.shape, val_2.type.shape
|
109
|
+
)
|
110
|
+
if broadcast_shape is None:
|
111
|
+
return None, None
|
112
|
+
|
113
|
+
new_val_1, new_val_2 = val_1, val_2
|
114
|
+
|
115
|
+
if val_1.type.shape != broadcast_shape:
|
116
|
+
new_val_1 = stablehlo.broadcast_in_dim(
|
117
|
+
result=ir.RankedTensorType.get(
|
118
|
+
broadcast_shape, val_1.type.element_type
|
119
|
+
),
|
120
|
+
operand=val_1,
|
121
|
+
broadcast_dimensions=get_broadcast_dimensions(
|
122
|
+
val_1.type.shape, broadcast_shape
|
123
|
+
),
|
124
|
+
)
|
125
|
+
if val_2.type.shape != broadcast_shape:
|
126
|
+
new_val_2 = stablehlo.broadcast_in_dim(
|
127
|
+
result=ir.RankedTensorType.get(
|
128
|
+
broadcast_shape, val_2.type.element_type
|
129
|
+
),
|
130
|
+
operand=val_2,
|
131
|
+
broadcast_dimensions=get_broadcast_dimensions(
|
132
|
+
val_2.type.shape, broadcast_shape
|
133
|
+
),
|
134
|
+
)
|
135
|
+
return new_val_1, new_val_2
|
136
|
+
|
137
|
+
|
138
|
+
def upcast_to_same_type(*vals: ir.Value):
|
139
|
+
if not vals:
|
140
|
+
return None
|
141
|
+
if len(vals) == 1:
|
142
|
+
return vals[0]
|
143
|
+
|
144
|
+
def get_priority(ty: ir.Type):
|
145
|
+
priorities = [
|
146
|
+
ir.IntegerType.get_signless(1),
|
147
|
+
ir.IntegerType.get_signless(16),
|
148
|
+
ir.IntegerType.get_signless(32),
|
149
|
+
ir.IntegerType.get_signless(64),
|
150
|
+
ir.F16Type,
|
151
|
+
ir.F32Type,
|
152
|
+
ir.F64Type,
|
153
|
+
]
|
154
|
+
for i, tycls in enumerate(priorities):
|
155
|
+
if tycls.isinstance(ty):
|
156
|
+
return i
|
157
|
+
raise ValueError("Unsupported type: %s" % str(ty))
|
158
|
+
|
159
|
+
cast_tycls = type(max([v.type.element_type for v in vals], key=get_priority))
|
160
|
+
new_vals = []
|
161
|
+
for val in vals:
|
162
|
+
if not cast_tycls.isinstance(val.type.element_type):
|
163
|
+
val = stablehlo.convert(
|
164
|
+
ir.RankedTensorType.get(val.type.shape, cast_tycls.get()), val
|
165
|
+
)
|
166
|
+
new_vals.append(val)
|
167
|
+
return tuple(new_vals)
|
168
|
+
|
169
|
+
|
170
|
+
def minmax(ty: ir.Type) -> tuple[numbers.Number, numbers.Number]:
|
171
|
+
if isinstance(ty, ir.IntegerType):
|
172
|
+
if ty.is_unsigned:
|
173
|
+
return (0, 1 << ty.width)
|
174
|
+
else:
|
175
|
+
return (-(1 << (ty.width - 1)), (1 << (ty.width - 1)) - 1)
|
176
|
+
elif isinstance(ty, ir.F16Type):
|
177
|
+
return (np.finfo(np.float16).min, np.finfo(np.float16).max)
|
178
|
+
elif isinstance(ty, ir.F32Type):
|
179
|
+
return (np.finfo(np.float32).min, np.finfo(np.float32).max)
|
180
|
+
elif isinstance(ty, ir.F64Type):
|
181
|
+
return (np.finfo(np.float64).min, np.finfo(np.float64).max)
|
182
|
+
else:
|
183
|
+
raise ValueError("Unsupported type: %s" % ty)
|
184
|
+
|
185
|
+
|
186
|
+
def convert_int_to_float(t: ir.Value) -> ir.Value:
|
187
|
+
"""Converts an input with type ir.IntegerType to an ir.FloatType of equivalent width."""
|
188
|
+
elty = t.type.element_type
|
189
|
+
if not isinstance(elty, ir.IntegerType):
|
190
|
+
raise ValueError(
|
191
|
+
"Expected input with integer type, received %s" % type(elty)
|
192
|
+
)
|
193
|
+
|
194
|
+
if elty.width == 32:
|
195
|
+
return stablehlo.convert(
|
196
|
+
ir.RankedTensorType.get(t.type.shape, ir.F32Type.get()), t
|
197
|
+
)
|
198
|
+
elif elty.width == 64:
|
199
|
+
return stablehlo.convert(
|
200
|
+
ir.RankedTensorType.get(t.type.shape, ir.F64Type.get()), t
|
201
|
+
)
|