ai-edge-torch-nightly 0.3.0.dev20250114__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (213) hide show
  1. ai_edge_torch/__init__.py +32 -0
  2. ai_edge_torch/_config.py +69 -0
  3. ai_edge_torch/_convert/__init__.py +14 -0
  4. ai_edge_torch/_convert/conversion.py +153 -0
  5. ai_edge_torch/_convert/conversion_utils.py +64 -0
  6. ai_edge_torch/_convert/converter.py +270 -0
  7. ai_edge_torch/_convert/fx_passes/__init__.py +23 -0
  8. ai_edge_torch/_convert/fx_passes/build_aten_composite_pass.py +288 -0
  9. ai_edge_torch/_convert/fx_passes/build_interpolate_composite_pass.py +131 -0
  10. ai_edge_torch/_convert/fx_passes/inject_mlir_debuginfo_pass.py +73 -0
  11. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/__init__.py +16 -0
  12. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_check.py +258 -0
  13. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_mark.py +50 -0
  14. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +18 -0
  15. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +68 -0
  16. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +216 -0
  17. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +449 -0
  18. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +30 -0
  19. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/pass_body.py +303 -0
  20. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/utils.py +64 -0
  21. ai_edge_torch/_convert/fx_passes/remove_non_user_outputs_pass.py +52 -0
  22. ai_edge_torch/_convert/signature.py +66 -0
  23. ai_edge_torch/_convert/test/__init__.py +14 -0
  24. ai_edge_torch/_convert/test/test_convert.py +558 -0
  25. ai_edge_torch/_convert/test/test_convert_composites.py +234 -0
  26. ai_edge_torch/_convert/test/test_convert_multisig.py +189 -0
  27. ai_edge_torch/_convert/test/test_to_channel_last_io.py +96 -0
  28. ai_edge_torch/_convert/to_channel_last_io.py +92 -0
  29. ai_edge_torch/conftest.py +20 -0
  30. ai_edge_torch/debug/__init__.py +17 -0
  31. ai_edge_torch/debug/culprit.py +496 -0
  32. ai_edge_torch/debug/test/__init__.py +14 -0
  33. ai_edge_torch/debug/test/test_culprit.py +140 -0
  34. ai_edge_torch/debug/test/test_search_model.py +51 -0
  35. ai_edge_torch/debug/utils.py +59 -0
  36. ai_edge_torch/experimental/__init__.py +14 -0
  37. ai_edge_torch/fx_pass_base.py +110 -0
  38. ai_edge_torch/generative/__init__.py +14 -0
  39. ai_edge_torch/generative/examples/__init__.py +14 -0
  40. ai_edge_torch/generative/examples/amd_llama_135m/__init__.py +14 -0
  41. ai_edge_torch/generative/examples/amd_llama_135m/amd_llama_135m.py +87 -0
  42. ai_edge_torch/generative/examples/amd_llama_135m/convert_to_tflite.py +70 -0
  43. ai_edge_torch/generative/examples/amd_llama_135m/verify.py +72 -0
  44. ai_edge_torch/generative/examples/gemma/__init__.py +14 -0
  45. ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +80 -0
  46. ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +80 -0
  47. ai_edge_torch/generative/examples/gemma/gemma1.py +107 -0
  48. ai_edge_torch/generative/examples/gemma/gemma2.py +295 -0
  49. ai_edge_torch/generative/examples/gemma/verify_gemma1.py +56 -0
  50. ai_edge_torch/generative/examples/gemma/verify_gemma2.py +43 -0
  51. ai_edge_torch/generative/examples/gemma/verify_util.py +157 -0
  52. ai_edge_torch/generative/examples/llama/__init__.py +14 -0
  53. ai_edge_torch/generative/examples/llama/convert_to_tflite.py +91 -0
  54. ai_edge_torch/generative/examples/llama/llama.py +196 -0
  55. ai_edge_torch/generative/examples/llama/verify.py +88 -0
  56. ai_edge_torch/generative/examples/moonshine/__init__.py +14 -0
  57. ai_edge_torch/generative/examples/moonshine/convert_moonshine_to_tflite.py +50 -0
  58. ai_edge_torch/generative/examples/moonshine/moonshine.py +103 -0
  59. ai_edge_torch/generative/examples/openelm/__init__.py +14 -0
  60. ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +80 -0
  61. ai_edge_torch/generative/examples/openelm/openelm.py +127 -0
  62. ai_edge_torch/generative/examples/openelm/verify.py +71 -0
  63. ai_edge_torch/generative/examples/paligemma/__init__.py +14 -0
  64. ai_edge_torch/generative/examples/paligemma/convert_to_tflite.py +95 -0
  65. ai_edge_torch/generative/examples/paligemma/decoder.py +151 -0
  66. ai_edge_torch/generative/examples/paligemma/decoder2.py +177 -0
  67. ai_edge_torch/generative/examples/paligemma/image_encoder.py +160 -0
  68. ai_edge_torch/generative/examples/paligemma/paligemma.py +179 -0
  69. ai_edge_torch/generative/examples/paligemma/verify.py +161 -0
  70. ai_edge_torch/generative/examples/paligemma/verify_decoder.py +75 -0
  71. ai_edge_torch/generative/examples/paligemma/verify_decoder2.py +72 -0
  72. ai_edge_torch/generative/examples/paligemma/verify_image_encoder.py +99 -0
  73. ai_edge_torch/generative/examples/phi/__init__.py +14 -0
  74. ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +80 -0
  75. ai_edge_torch/generative/examples/phi/convert_to_tflite.py +80 -0
  76. ai_edge_torch/generative/examples/phi/phi2.py +107 -0
  77. ai_edge_torch/generative/examples/phi/phi3.py +219 -0
  78. ai_edge_torch/generative/examples/phi/verify.py +64 -0
  79. ai_edge_torch/generative/examples/phi/verify_phi3.py +69 -0
  80. ai_edge_torch/generative/examples/qwen/__init__.py +14 -0
  81. ai_edge_torch/generative/examples/qwen/convert_to_tflite.py +93 -0
  82. ai_edge_torch/generative/examples/qwen/qwen.py +134 -0
  83. ai_edge_torch/generative/examples/qwen/verify.py +88 -0
  84. ai_edge_torch/generative/examples/smollm/__init__.py +14 -0
  85. ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +80 -0
  86. ai_edge_torch/generative/examples/smollm/convert_v2_to_tflite.py +71 -0
  87. ai_edge_torch/generative/examples/smollm/smollm.py +125 -0
  88. ai_edge_torch/generative/examples/smollm/verify.py +86 -0
  89. ai_edge_torch/generative/examples/stable_diffusion/__init__.py +14 -0
  90. ai_edge_torch/generative/examples/stable_diffusion/attention.py +108 -0
  91. ai_edge_torch/generative/examples/stable_diffusion/clip.py +185 -0
  92. ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +173 -0
  93. ai_edge_torch/generative/examples/stable_diffusion/decoder.py +398 -0
  94. ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +749 -0
  95. ai_edge_torch/generative/examples/stable_diffusion/encoder.py +119 -0
  96. ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +254 -0
  97. ai_edge_torch/generative/examples/stable_diffusion/samplers/__init__.py +19 -0
  98. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +62 -0
  99. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +66 -0
  100. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +74 -0
  101. ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +39 -0
  102. ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +111 -0
  103. ai_edge_torch/generative/examples/stable_diffusion/util.py +77 -0
  104. ai_edge_torch/generative/examples/t5/__init__.py +14 -0
  105. ai_edge_torch/generative/examples/t5/convert_to_tflite.py +138 -0
  106. ai_edge_torch/generative/examples/t5/t5.py +655 -0
  107. ai_edge_torch/generative/examples/t5/t5_attention.py +246 -0
  108. ai_edge_torch/generative/examples/test_models/__init__.py +14 -0
  109. ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
  110. ai_edge_torch/generative/examples/test_models/toy_model.py +156 -0
  111. ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +138 -0
  112. ai_edge_torch/generative/examples/tiny_llama/__init__.py +14 -0
  113. ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +80 -0
  114. ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +88 -0
  115. ai_edge_torch/generative/examples/tiny_llama/verify.py +72 -0
  116. ai_edge_torch/generative/fx_passes/__init__.py +30 -0
  117. ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +50 -0
  118. ai_edge_torch/generative/layers/__init__.py +14 -0
  119. ai_edge_torch/generative/layers/attention.py +399 -0
  120. ai_edge_torch/generative/layers/attention_utils.py +210 -0
  121. ai_edge_torch/generative/layers/builder.py +160 -0
  122. ai_edge_torch/generative/layers/feed_forward.py +120 -0
  123. ai_edge_torch/generative/layers/kv_cache.py +204 -0
  124. ai_edge_torch/generative/layers/lora.py +557 -0
  125. ai_edge_torch/generative/layers/model_config.py +238 -0
  126. ai_edge_torch/generative/layers/normalization.py +222 -0
  127. ai_edge_torch/generative/layers/rotary_position_embedding.py +94 -0
  128. ai_edge_torch/generative/layers/scaled_dot_product_attention.py +144 -0
  129. ai_edge_torch/generative/layers/unet/__init__.py +14 -0
  130. ai_edge_torch/generative/layers/unet/blocks_2d.py +806 -0
  131. ai_edge_torch/generative/layers/unet/builder.py +50 -0
  132. ai_edge_torch/generative/layers/unet/model_config.py +282 -0
  133. ai_edge_torch/generative/quantize/__init__.py +14 -0
  134. ai_edge_torch/generative/quantize/example.py +47 -0
  135. ai_edge_torch/generative/quantize/quant_attrs.py +68 -0
  136. ai_edge_torch/generative/quantize/quant_recipe.py +154 -0
  137. ai_edge_torch/generative/quantize/quant_recipe_utils.py +62 -0
  138. ai_edge_torch/generative/quantize/quant_recipes.py +56 -0
  139. ai_edge_torch/generative/quantize/supported_schemes.py +32 -0
  140. ai_edge_torch/generative/test/__init__.py +14 -0
  141. ai_edge_torch/generative/test/test_custom_dus.py +107 -0
  142. ai_edge_torch/generative/test/test_kv_cache.py +120 -0
  143. ai_edge_torch/generative/test/test_loader.py +83 -0
  144. ai_edge_torch/generative/test/test_lora.py +147 -0
  145. ai_edge_torch/generative/test/test_model_conversion.py +191 -0
  146. ai_edge_torch/generative/test/test_model_conversion_large.py +362 -0
  147. ai_edge_torch/generative/test/test_quantize.py +183 -0
  148. ai_edge_torch/generative/test/utils.py +82 -0
  149. ai_edge_torch/generative/utilities/__init__.py +15 -0
  150. ai_edge_torch/generative/utilities/converter.py +215 -0
  151. ai_edge_torch/generative/utilities/dynamic_update_slice.py +56 -0
  152. ai_edge_torch/generative/utilities/loader.py +398 -0
  153. ai_edge_torch/generative/utilities/model_builder.py +180 -0
  154. ai_edge_torch/generative/utilities/moonshine_loader.py +154 -0
  155. ai_edge_torch/generative/utilities/stable_diffusion_loader.py +1032 -0
  156. ai_edge_torch/generative/utilities/t5_loader.py +512 -0
  157. ai_edge_torch/generative/utilities/transformers_verifier.py +42 -0
  158. ai_edge_torch/generative/utilities/verifier.py +335 -0
  159. ai_edge_torch/hlfb/__init__.py +16 -0
  160. ai_edge_torch/hlfb/mark_pattern/__init__.py +153 -0
  161. ai_edge_torch/hlfb/mark_pattern/fx_utils.py +69 -0
  162. ai_edge_torch/hlfb/mark_pattern/pattern.py +288 -0
  163. ai_edge_torch/hlfb/test/__init__.py +14 -0
  164. ai_edge_torch/hlfb/test/test_mark_pattern.py +185 -0
  165. ai_edge_torch/lowertools/__init__.py +18 -0
  166. ai_edge_torch/lowertools/_shim.py +86 -0
  167. ai_edge_torch/lowertools/common_utils.py +142 -0
  168. ai_edge_torch/lowertools/odml_torch_utils.py +260 -0
  169. ai_edge_torch/lowertools/test_utils.py +62 -0
  170. ai_edge_torch/lowertools/torch_xla_utils.py +301 -0
  171. ai_edge_torch/lowertools/translate_recipe.py +163 -0
  172. ai_edge_torch/model.py +177 -0
  173. ai_edge_torch/odml_torch/__init__.py +20 -0
  174. ai_edge_torch/odml_torch/_torch_future.py +88 -0
  175. ai_edge_torch/odml_torch/_torch_library.py +19 -0
  176. ai_edge_torch/odml_torch/composite/__init__.py +16 -0
  177. ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
  178. ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
  179. ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
  180. ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
  181. ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
  182. ai_edge_torch/odml_torch/export.py +403 -0
  183. ai_edge_torch/odml_torch/export_utils.py +157 -0
  184. ai_edge_torch/odml_torch/jax_bridge/__init__.py +18 -0
  185. ai_edge_torch/odml_torch/jax_bridge/_wrap.py +180 -0
  186. ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
  187. ai_edge_torch/odml_torch/lowerings/__init__.py +27 -0
  188. ai_edge_torch/odml_torch/lowerings/_basic.py +294 -0
  189. ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
  190. ai_edge_torch/odml_torch/lowerings/_convolution.py +243 -0
  191. ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +285 -0
  192. ai_edge_torch/odml_torch/lowerings/_layer_norm.py +87 -0
  193. ai_edge_torch/odml_torch/lowerings/_quantized_decomposed.py +177 -0
  194. ai_edge_torch/odml_torch/lowerings/_rand.py +142 -0
  195. ai_edge_torch/odml_torch/lowerings/context.py +42 -0
  196. ai_edge_torch/odml_torch/lowerings/decomp.py +69 -0
  197. ai_edge_torch/odml_torch/lowerings/registry.py +65 -0
  198. ai_edge_torch/odml_torch/lowerings/utils.py +201 -0
  199. ai_edge_torch/odml_torch/passes/__init__.py +38 -0
  200. ai_edge_torch/odml_torch/tf_integration.py +156 -0
  201. ai_edge_torch/quantize/__init__.py +16 -0
  202. ai_edge_torch/quantize/pt2e_quantizer.py +466 -0
  203. ai_edge_torch/quantize/pt2e_quantizer_utils.py +1061 -0
  204. ai_edge_torch/quantize/quant_config.py +85 -0
  205. ai_edge_torch/testing/__init__.py +14 -0
  206. ai_edge_torch/testing/model_coverage/__init__.py +16 -0
  207. ai_edge_torch/testing/model_coverage/model_coverage.py +145 -0
  208. ai_edge_torch/version.py +16 -0
  209. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/LICENSE +202 -0
  210. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/METADATA +44 -0
  211. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/RECORD +213 -0
  212. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/WHEEL +5 -0
  213. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/top_level.txt +1 -0
@@ -0,0 +1,288 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ """Mark pattern."""
16
+
17
+ import dataclasses
18
+ from typing import Any, Callable, Optional, Union
19
+
20
+ from ai_edge_torch import fx_pass_base
21
+ from ai_edge_torch.hlfb.mark_pattern import fx_utils
22
+ import torch
23
+
24
+ Graph = torch.fx.Graph
25
+ GraphModule = torch.fx.GraphModule
26
+ TensorArgument = torch.export.graph_signature.TensorArgument
27
+ InternalMatch = torch.fx.passes.utils.matcher_utils.InternalMatch
28
+ SubgraphMatcher = torch.fx.passes.utils.matcher_utils.SubgraphMatcher
29
+
30
+
31
+ def _are_equal(x: Any, y: Any) -> bool:
32
+ if type(x) != type(y):
33
+ return False
34
+ if type(x) in [int, str]:
35
+ return x == y
36
+ if isinstance(x, float):
37
+ rel_tol = 1e-07
38
+ abs_tol = 0.0
39
+ return abs(x - y) <= max(rel_tol * max(abs(x), abs(y)), abs_tol)
40
+ if isinstance(x, list):
41
+ if len(x) != len(y):
42
+ return False
43
+ return all([_are_equal(a, b) for a, b in zip(x, y)])
44
+
45
+ raise Exception(f"Cannot compare type: {type(x)}")
46
+
47
+
48
+ @dataclasses.dataclass
49
+ class ScalarAttrTracker:
50
+ """ScalarAttrTracker is used to track the occurrence of a pattern's
51
+
52
+ scalar arg/attr in the pattern decomposed graph. Since a scalar attr
53
+ to the pattern can be transformed and turned into a/some ops' scalar
54
+ arg in the decomposed graph, it would be hard to programmatically get
55
+ the attr value from the pattern match. With the tracker and tracking info,
56
+ we could target the position of the decomposed op's scalar arg derived
57
+ from the pattern arg/attr and retrieve the value from the InternalMatch.
58
+
59
+ Args:
60
+ name (str): name of the attr to track.
61
+ pattern_arg_pos (int): the index of the attr to track in the pattern's
62
+ export_args.
63
+ transform (Callable): the transform function used when targeting the
64
+ occurrence of the attr value in the decomposed graph. An attr value may be
65
+ transformed during the decomposition and appear as a derived value.
66
+ inverse_transform (Callable): the inverse transform function that maps the
67
+ transformed value back to the original attr value.
68
+ """
69
+
70
+ attr_name: str
71
+ pattern_arg_pos: int
72
+ transform: Callable = lambda x: x
73
+ inverse_transform: Callable = lambda x: x
74
+ _source_targets: list[tuple[Any, Any]] = dataclasses.field(
75
+ default_factory=list
76
+ )
77
+
78
+ def track(self, *sources):
79
+ """Register magic values to track the (transformed) attr values in
80
+
81
+ the pattern decomposed graph.
82
+ """
83
+ for source in sources:
84
+ target = self.transform(source)
85
+ if not _are_equal(self.inverse_transform(target), source):
86
+ raise Exception(
87
+ f"Invalid transform/inverse_transform for {self.attr_name}"
88
+ )
89
+ self._source_targets.append([source, target])
90
+ return self
91
+
92
+
93
+ @dataclasses.dataclass
94
+ class ScalarAttrLocation:
95
+ attr_name: str
96
+ node_name: str
97
+ pos: Union[int, str]
98
+ _tracker: ScalarAttrTracker
99
+
100
+ @property
101
+ def index(self):
102
+ return self.pos if isinstance(self.pos, int) else None
103
+
104
+ @property
105
+ def key(self):
106
+ return self.pos if isinstance(self.pos, str) else None
107
+
108
+
109
+ def _find_scalar_attr(
110
+ pattern_module: torch.nn.Module,
111
+ export_args: tuple[Any],
112
+ tracker: ScalarAttrTracker,
113
+ decomp_table=None,
114
+ ) -> ScalarAttrLocation:
115
+ scalar_loc_intersections = None
116
+ for source, target in tracker._source_targets:
117
+ track_args = list(export_args)
118
+ track_args[tracker.pattern_arg_pos] = source
119
+ ep = torch.export.export(pattern_module, tuple(track_args))
120
+ if decomp_table is not None:
121
+ ep = fx_pass_base.run_passes(ep, [fx_pass_base.CanonicalizePass()])
122
+ ep = ep.run_decompositions(decomp_table)
123
+
124
+ scalar_locs = set()
125
+ nodes = ep.graph_module.graph.nodes
126
+ for n in nodes:
127
+ for arg_pos, arg in enumerate(n.args):
128
+ if type(arg) == type(target) and arg == target:
129
+ scalar_locs.add((n.name, arg_pos))
130
+ for attr, val in n.kwargs.items():
131
+ if type(val) == type(target) and val == target:
132
+ scalar_locs.add((n.name, attr))
133
+
134
+ if scalar_loc_intersections is None:
135
+ scalar_loc_intersections = scalar_locs
136
+ else:
137
+ scalar_loc_intersections = scalar_loc_intersections & scalar_locs
138
+
139
+ if not scalar_loc_intersections:
140
+ break
141
+
142
+ if not scalar_loc_intersections:
143
+ return None
144
+ # Choose any occurrence as the attr provider
145
+ node_name, pos = scalar_loc_intersections.pop()
146
+ return ScalarAttrLocation(tracker.attr_name, node_name, pos, _tracker=tracker)
147
+
148
+
149
+ class Pattern:
150
+
151
+ def __init__(
152
+ self,
153
+ name: str,
154
+ module: Union[Callable, torch.nn.Module],
155
+ export_args: tuple[Any],
156
+ *,
157
+ attr_builder: Callable[
158
+ ["Pattern", GraphModule, InternalMatch], Optional[dict[str, Any]]
159
+ ] = None,
160
+ scalar_attr_trackers: list[ScalarAttrTracker] = None,
161
+ decomp_table: Optional[dict[torch._ops.OperatorBase, Callable]] = None,
162
+ ):
163
+ """The PyTorch computation pattern to match against a model.
164
+
165
+ Args:
166
+ name (str): the name of the pattern. It would be propagated to the `name`
167
+ attr in StableHLO composite ops for the matched model subgraphs in the
168
+ lowering.
169
+ module (torch.nn.Module or Callable): the PyTorch computation.
170
+ export_args (tuple[Any]): the args used to export the pattern module with
171
+ torch.export.export. If export_args contains non-tensor Python scalars,
172
+ there must be a corresponding attr tracker in `scalar_attr_trackers` for
173
+ each scalar arg. attr_builder (Callable[[Pattern, GraphModule,
174
+ InternalMatch], Optional[dict[str, Any]]]): the callable that produces
175
+ the a scalar attrs dict, which would be propagated to `attr` in
176
+ StableHLO composite ops for the matched model subgraphs in the lowering.
177
+ scalar_attr_trackers (list[ScalarAttrTracker]): the trackers for scalar
178
+ args in `export_args`, which are used to track the attr occurrence(s)
179
+ and retrieve their values from the matched subgraph.
180
+ decomp_table (Optional[dict[torch._ops.OperatorBase, Callable]]): The
181
+ decomposition table to be run on the pattern's exported program.
182
+ """
183
+ if not isinstance(module, torch.nn.Module):
184
+
185
+ class PatternModule(torch.nn.Module):
186
+
187
+ def __init__(self, func):
188
+ super().__init__()
189
+ self.func = func
190
+
191
+ def forward(self, *args, **kwargs):
192
+ return self.func(*args, **kwargs)
193
+
194
+ module = PatternModule(module).eval()
195
+
196
+ self.name = name
197
+ self.attr_builder = attr_builder
198
+ self._scalar_attr_trackers = (
199
+ scalar_attr_trackers if scalar_attr_trackers else []
200
+ )
201
+
202
+ exported_program = torch.export.export(module, export_args)
203
+ if decomp_table is not None:
204
+ exported_program = fx_pass_base.run_passes(
205
+ exported_program, [fx_pass_base.CanonicalizePass()]
206
+ )
207
+ exported_program = exported_program.run_decompositions(decomp_table)
208
+
209
+ self.exported_program = exported_program
210
+ self.graph_module = self.exported_program.graph_module
211
+
212
+ self._scalar_attr_locations = []
213
+ for tracker in self._scalar_attr_trackers:
214
+ self._scalar_attr_locations.append(
215
+ _find_scalar_attr(
216
+ module, export_args, tracker, decomp_table=decomp_table
217
+ )
218
+ )
219
+
220
+ # Sanitize graph_module for more precise pattern matching.
221
+ # The graph_module to match against this pattern should apply equivalent
222
+ # sanitization.
223
+ self.graph_module = fx_utils.remove_clone_ops(self.graph_module)
224
+ self.graph_module = fx_utils.remove_dangling_args(self.graph_module)
225
+
226
+ # Builds list of ordered input and output nodes.
227
+ self.graph_nodes_map = {}
228
+ for node in self.graph_module.graph.nodes:
229
+ self.graph_nodes_map[node.name] = node
230
+
231
+ self.input_nodes = tuple(
232
+ self.graph_nodes_map[spec.arg.name]
233
+ for spec in self.exported_program.graph_signature.input_specs
234
+ if isinstance(spec.arg, TensorArgument)
235
+ )
236
+ self.output_nodes = tuple(
237
+ self.graph_nodes_map[spec.arg.name]
238
+ for spec in self.exported_program.graph_signature.output_specs
239
+ )
240
+
241
+ def register_attr_builder(self, attr_builder):
242
+ self.attr_builder = attr_builder
243
+ return attr_builder
244
+
245
+ def match(
246
+ self,
247
+ graph_module: GraphModule,
248
+ ) -> list[tuple[InternalMatch, dict[str, Any]]]:
249
+ matcher = SubgraphMatcher(
250
+ self.graph_module.graph,
251
+ match_output=False,
252
+ match_placeholder=False,
253
+ remove_overlapping_matches=True,
254
+ ignore_literals=True,
255
+ )
256
+ matches = matcher.match(graph_module.graph)
257
+
258
+ match_with_attrs = []
259
+ # Graph traversal must be done in the reverser order (from SubgraphMatcher).
260
+ for match in matches[::-1]:
261
+ if self.attr_builder is not None:
262
+ attrs = self.attr_builder(self, graph_module, match)
263
+ else:
264
+ attrs = {}
265
+
266
+ for loc in self._scalar_attr_locations:
267
+ attrs[loc.attr_name] = self._get_attr_value_from_pattern_match(
268
+ match, loc
269
+ )
270
+
271
+ attrs = attrs if attrs else None
272
+ match_with_attrs.append((match, attrs))
273
+ return match_with_attrs
274
+
275
+ def _get_attr_value_from_pattern_match(
276
+ self,
277
+ match: InternalMatch,
278
+ loc: ScalarAttrLocation,
279
+ ):
280
+ matched_val = None
281
+ for k, v in match.nodes_map.items():
282
+ if k.name == loc.node_name:
283
+ if loc.index:
284
+ matched_val = v.args[loc.index]
285
+ elif loc.key in v.kwargs.keys():
286
+ matched_val = v.kwargs[loc.key]
287
+ attr_val = loc._tracker.inverse_transform(matched_val)
288
+ return attr_val
@@ -0,0 +1,14 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
@@ -0,0 +1,185 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ """Tests for mark_pattern."""
16
+
17
+ from ai_edge_torch import lowertools
18
+ from ai_edge_torch.hlfb import mark_pattern
19
+ from ai_edge_torch.hlfb.mark_pattern import pattern as pattern_module
20
+ import torch
21
+
22
+ from absl.testing import absltest as googletest
23
+
24
+
25
+ def _export_stablehlo_mlir(model, args=None):
26
+ if not isinstance(model, torch.export.ExportedProgram):
27
+ ep = torch.export.export(model, args)
28
+ else:
29
+ ep = model
30
+ return lowertools.exported_program_to_mlir_text(ep)
31
+
32
+
33
+ class TestMarkPattern(googletest.TestCase):
34
+
35
+ def test_mark_pattern(self):
36
+
37
+ class TestModel(torch.nn.Module):
38
+
39
+ def forward(self, x):
40
+ return x * x + x + x
41
+
42
+ pattern = pattern_module.Pattern(
43
+ "test.add",
44
+ lambda a, b: a + b,
45
+ export_args=(torch.rand(2, 2), torch.rand(2, 2)),
46
+ )
47
+
48
+ model = TestModel().eval()
49
+ args = (torch.rand(20, 20),)
50
+ exported_program = torch.export.export(model, args)
51
+ mark_pattern.mark_pattern(exported_program.graph_module, pattern)
52
+ mlir = _export_stablehlo_mlir(exported_program)
53
+
54
+ lowertools.assert_string_count(
55
+ self,
56
+ mlir,
57
+ {'stablehlo.composite "test.add"': 2},
58
+ {"stablehlo.custom_call @mark_tensor": 6},
59
+ )
60
+
61
+ def test_mark_pattern_with_clone_inputs(self):
62
+
63
+ class TestModel(torch.nn.Module):
64
+
65
+ def forward(self, x):
66
+ return torch.ops.aten.clone.default(x * x) + x
67
+
68
+ pattern = pattern_module.Pattern(
69
+ "test.add",
70
+ lambda a, b: a + b,
71
+ export_args=(torch.rand(2, 2), torch.rand(2, 2)),
72
+ )
73
+
74
+ model = TestModel().eval()
75
+ args = (torch.rand(20, 20),)
76
+ exported_program = torch.export.export(model, args)
77
+ mark_pattern.mark_pattern(exported_program.graph_module, pattern)
78
+ mlir = _export_stablehlo_mlir(exported_program)
79
+
80
+ lowertools.assert_string_count(
81
+ self,
82
+ mlir,
83
+ {'stablehlo.composite "test.add"': 1},
84
+ {"stablehlo.custom_call @mark_tensor": 3},
85
+ )
86
+
87
+ def test_mark_pattern_with_attr_builder(self):
88
+ class TestModel(torch.nn.Module):
89
+
90
+ def forward(self, x):
91
+ return x * x * x + x - x * x + x
92
+
93
+ pattern = pattern_module.Pattern(
94
+ "test.add",
95
+ lambda a, b: a + b,
96
+ export_args=(torch.rand(2, 2), torch.rand(2, 2)),
97
+ attr_builder=lambda *args: {"alias": "test.test_add"},
98
+ )
99
+
100
+ model = TestModel().eval()
101
+ args = (torch.rand(20, 20),)
102
+ exported_program = torch.export.export(model, args)
103
+ mark_pattern.mark_pattern(exported_program.graph_module, pattern)
104
+ mlir = _export_stablehlo_mlir(exported_program)
105
+
106
+ lowertools.assert_string_count(
107
+ self,
108
+ mlir,
109
+ {
110
+ 'stablehlo.composite "test.add"': 2,
111
+ 'composite_attributes = {alias = "test.test_add"}': 2,
112
+ },
113
+ {"stablehlo.custom_call @mark_tensor": 6},
114
+ {'{"alias": "test.test_add"}': 2},
115
+ )
116
+
117
+ def test_mark_pattern_with_scalar_attr_tracker(self):
118
+ class TestModel(torch.nn.Module):
119
+
120
+ def forward(self, x):
121
+ r = x
122
+ for idx in range(5):
123
+ r = torch.nn.LogSoftmax(dim=idx % 2)(r) * x
124
+ return r
125
+
126
+ pattern = pattern_module.Pattern(
127
+ "test.log_softmax",
128
+ lambda x, dim: torch.nn.functional.log_softmax(x, dim=dim),
129
+ export_args=(torch.rand(10, 10, 10), 1),
130
+ scalar_attr_trackers=[
131
+ pattern_module.ScalarAttrTracker("dim", pattern_arg_pos=1)
132
+ .track(0)
133
+ .track(1)
134
+ .track(2),
135
+ ],
136
+ )
137
+
138
+ model = TestModel().eval()
139
+ args = (torch.rand(10, 10),)
140
+ exported_program = torch.export.export(model, args)
141
+ mark_pattern.mark_pattern(exported_program.graph_module, pattern)
142
+ mlir = _export_stablehlo_mlir(exported_program)
143
+
144
+ lowertools.assert_string_count(
145
+ self,
146
+ mlir,
147
+ {
148
+ 'stablehlo.composite "test.log_softmax"': 5,
149
+ "composite_attributes = {dim = 0 : i64}": 3,
150
+ "composite_attributes = {dim = 1 : i64}": 2,
151
+ },
152
+ {"stablehlo.custom_call @mark_tensor": 10},
153
+ {'{"dim": 0}': 3, '{"dim": 1}': 2},
154
+ )
155
+
156
+ def test_mark_tangent_model_and_pattern_input(self):
157
+ class TestModel(torch.nn.Module):
158
+
159
+ def forward(self, x, y):
160
+ z = torch.ops.aten.relu(x)
161
+ z = z + y
162
+ return z
163
+
164
+ pattern = pattern_module.Pattern(
165
+ "test.relu",
166
+ lambda x: torch.ops.aten.relu(x),
167
+ export_args=(torch.rand(2, 2),),
168
+ )
169
+
170
+ model = TestModel().eval()
171
+ args = (torch.rand(20, 20), torch.rand(20, 20))
172
+ exported_program = torch.export.export(model, args)
173
+ mark_pattern.mark_pattern(exported_program.graph_module, pattern)
174
+ mlir = _export_stablehlo_mlir(exported_program)
175
+
176
+ lowertools.assert_string_count(
177
+ self,
178
+ mlir,
179
+ {'stablehlo.composite "test.relu"': 1},
180
+ {"stablehlo.custom_call @mark_tensor": 2},
181
+ )
182
+
183
+
184
+ if __name__ == "__main__":
185
+ googletest.main()
@@ -0,0 +1,18 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ from ._shim import *
17
+ from .common_utils import flat_dict_names
18
+ from .test_utils import *
@@ -0,0 +1,86 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ from typing import Any, Optional
17
+
18
+ from ai_edge_torch import _config
19
+ from ai_edge_torch._convert import signature
20
+ from ai_edge_torch.quantize import quant_config as qcfg
21
+ import torch
22
+
23
+ config = _config.config
24
+
25
+ # isort: off
26
+ if config.use_torch_xla:
27
+ from ai_edge_torch.lowertools import torch_xla_utils as utils
28
+ from ai_edge_torch.lowertools.torch_xla_utils import exported_program_to_mlir_text
29
+ from torch_xla.experimental.mark_pattern_utils import StableHLOCompositeBuilder
30
+ from torch_xla.experimental.xla_marker import serialize_composite_attr
31
+ # The following imports are needed to register the needed torch_xla ops.
32
+ import torch_xla.experimental.xla_marker
33
+ import torch_xla.experimental.xla_mlir_debuginfo
34
+
35
+ mark_tensor_op = torch.ops.xla.mark_tensor.default
36
+ write_mlir_debuginfo_op = torch.ops.xla.write_mlir_debuginfo.default
37
+ else:
38
+ from ai_edge_torch.lowertools import odml_torch_utils as utils
39
+ from ai_edge_torch.lowertools.odml_torch_utils import exported_program_to_mlir_text
40
+ from ai_edge_torch.odml_torch.composite import StableHLOCompositeBuilder
41
+ from ai_edge_torch.odml_torch.composite.mark_tensor import serialize_composite_attr
42
+ from ai_edge_torch.odml_torch.composite.mark_tensor import mark_tensor_op
43
+ from ai_edge_torch.odml_torch.debuginfo import write_mlir_debuginfo_op
44
+ # isort: on
45
+
46
+
47
+ def exported_programs_to_tflite(
48
+ exported_programs: list[torch.export.ExportedProgram],
49
+ signatures: list[signature.Signature],
50
+ *,
51
+ quant_config: Optional[qcfg.QuantConfig] = None,
52
+ _tfl_converter_flags: Optional[dict[str, Any]] = None,
53
+ _saved_model_dir: Optional[str] = None
54
+ ):
55
+ """Converts a list of ExportedProgram to a TFLite model.
56
+
57
+ Args:
58
+ exported_programs: A list of ExportedProgram.
59
+ signatures: A list of Signature.
60
+ quant_config: A QuantConfig.
61
+ _saved_model_dir: Directory for the intermediate saved model. If not
62
+ specified, a random temporary directory would be used.
63
+ _tfl_converter_flags: A dict of flags for TFLiteConverter.
64
+
65
+ Returns:
66
+ A TFLite model.
67
+ """
68
+ if _tfl_converter_flags is None:
69
+ _tfl_converter_flags = {}
70
+
71
+ bundles: list[utils.MlirBundle] = [
72
+ utils.exported_program_to_mlir(exported, sig.flat_args)
73
+ for exported, sig in zip(exported_programs, signatures)
74
+ ]
75
+
76
+ merged_bundle: utils.MergedBundle = utils.merge_mlir_bundles(
77
+ bundles, signatures, exported_programs
78
+ )
79
+
80
+ return utils.merged_bundle_to_tfl_model(
81
+ merged_bundle,
82
+ signatures,
83
+ quant_config=quant_config,
84
+ _tfl_converter_flags=_tfl_converter_flags,
85
+ _saved_model_dir=_saved_model_dir,
86
+ )