ai-edge-torch-nightly 0.3.0.dev20250114__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- ai_edge_torch/__init__.py +32 -0
- ai_edge_torch/_config.py +69 -0
- ai_edge_torch/_convert/__init__.py +14 -0
- ai_edge_torch/_convert/conversion.py +153 -0
- ai_edge_torch/_convert/conversion_utils.py +64 -0
- ai_edge_torch/_convert/converter.py +270 -0
- ai_edge_torch/_convert/fx_passes/__init__.py +23 -0
- ai_edge_torch/_convert/fx_passes/build_aten_composite_pass.py +288 -0
- ai_edge_torch/_convert/fx_passes/build_interpolate_composite_pass.py +131 -0
- ai_edge_torch/_convert/fx_passes/inject_mlir_debuginfo_pass.py +73 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/__init__.py +16 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_check.py +258 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_mark.py +50 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +18 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +68 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +216 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +449 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +30 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/pass_body.py +303 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/utils.py +64 -0
- ai_edge_torch/_convert/fx_passes/remove_non_user_outputs_pass.py +52 -0
- ai_edge_torch/_convert/signature.py +66 -0
- ai_edge_torch/_convert/test/__init__.py +14 -0
- ai_edge_torch/_convert/test/test_convert.py +558 -0
- ai_edge_torch/_convert/test/test_convert_composites.py +234 -0
- ai_edge_torch/_convert/test/test_convert_multisig.py +189 -0
- ai_edge_torch/_convert/test/test_to_channel_last_io.py +96 -0
- ai_edge_torch/_convert/to_channel_last_io.py +92 -0
- ai_edge_torch/conftest.py +20 -0
- ai_edge_torch/debug/__init__.py +17 -0
- ai_edge_torch/debug/culprit.py +496 -0
- ai_edge_torch/debug/test/__init__.py +14 -0
- ai_edge_torch/debug/test/test_culprit.py +140 -0
- ai_edge_torch/debug/test/test_search_model.py +51 -0
- ai_edge_torch/debug/utils.py +59 -0
- ai_edge_torch/experimental/__init__.py +14 -0
- ai_edge_torch/fx_pass_base.py +110 -0
- ai_edge_torch/generative/__init__.py +14 -0
- ai_edge_torch/generative/examples/__init__.py +14 -0
- ai_edge_torch/generative/examples/amd_llama_135m/__init__.py +14 -0
- ai_edge_torch/generative/examples/amd_llama_135m/amd_llama_135m.py +87 -0
- ai_edge_torch/generative/examples/amd_llama_135m/convert_to_tflite.py +70 -0
- ai_edge_torch/generative/examples/amd_llama_135m/verify.py +72 -0
- ai_edge_torch/generative/examples/gemma/__init__.py +14 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/gemma/gemma1.py +107 -0
- ai_edge_torch/generative/examples/gemma/gemma2.py +295 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma1.py +56 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma2.py +43 -0
- ai_edge_torch/generative/examples/gemma/verify_util.py +157 -0
- ai_edge_torch/generative/examples/llama/__init__.py +14 -0
- ai_edge_torch/generative/examples/llama/convert_to_tflite.py +91 -0
- ai_edge_torch/generative/examples/llama/llama.py +196 -0
- ai_edge_torch/generative/examples/llama/verify.py +88 -0
- ai_edge_torch/generative/examples/moonshine/__init__.py +14 -0
- ai_edge_torch/generative/examples/moonshine/convert_moonshine_to_tflite.py +50 -0
- ai_edge_torch/generative/examples/moonshine/moonshine.py +103 -0
- ai_edge_torch/generative/examples/openelm/__init__.py +14 -0
- ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/openelm/openelm.py +127 -0
- ai_edge_torch/generative/examples/openelm/verify.py +71 -0
- ai_edge_torch/generative/examples/paligemma/__init__.py +14 -0
- ai_edge_torch/generative/examples/paligemma/convert_to_tflite.py +95 -0
- ai_edge_torch/generative/examples/paligemma/decoder.py +151 -0
- ai_edge_torch/generative/examples/paligemma/decoder2.py +177 -0
- ai_edge_torch/generative/examples/paligemma/image_encoder.py +160 -0
- ai_edge_torch/generative/examples/paligemma/paligemma.py +179 -0
- ai_edge_torch/generative/examples/paligemma/verify.py +161 -0
- ai_edge_torch/generative/examples/paligemma/verify_decoder.py +75 -0
- ai_edge_torch/generative/examples/paligemma/verify_decoder2.py +72 -0
- ai_edge_torch/generative/examples/paligemma/verify_image_encoder.py +99 -0
- ai_edge_torch/generative/examples/phi/__init__.py +14 -0
- ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/phi/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/phi/phi2.py +107 -0
- ai_edge_torch/generative/examples/phi/phi3.py +219 -0
- ai_edge_torch/generative/examples/phi/verify.py +64 -0
- ai_edge_torch/generative/examples/phi/verify_phi3.py +69 -0
- ai_edge_torch/generative/examples/qwen/__init__.py +14 -0
- ai_edge_torch/generative/examples/qwen/convert_to_tflite.py +93 -0
- ai_edge_torch/generative/examples/qwen/qwen.py +134 -0
- ai_edge_torch/generative/examples/qwen/verify.py +88 -0
- ai_edge_torch/generative/examples/smollm/__init__.py +14 -0
- ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/smollm/convert_v2_to_tflite.py +71 -0
- ai_edge_torch/generative/examples/smollm/smollm.py +125 -0
- ai_edge_torch/generative/examples/smollm/verify.py +86 -0
- ai_edge_torch/generative/examples/stable_diffusion/__init__.py +14 -0
- ai_edge_torch/generative/examples/stable_diffusion/attention.py +108 -0
- ai_edge_torch/generative/examples/stable_diffusion/clip.py +185 -0
- ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +173 -0
- ai_edge_torch/generative/examples/stable_diffusion/decoder.py +398 -0
- ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +749 -0
- ai_edge_torch/generative/examples/stable_diffusion/encoder.py +119 -0
- ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +254 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/__init__.py +19 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +62 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +66 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +74 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +39 -0
- ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +111 -0
- ai_edge_torch/generative/examples/stable_diffusion/util.py +77 -0
- ai_edge_torch/generative/examples/t5/__init__.py +14 -0
- ai_edge_torch/generative/examples/t5/convert_to_tflite.py +138 -0
- ai_edge_torch/generative/examples/t5/t5.py +655 -0
- ai_edge_torch/generative/examples/t5/t5_attention.py +246 -0
- ai_edge_torch/generative/examples/test_models/__init__.py +14 -0
- ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
- ai_edge_torch/generative/examples/test_models/toy_model.py +156 -0
- ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +138 -0
- ai_edge_torch/generative/examples/tiny_llama/__init__.py +14 -0
- ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +88 -0
- ai_edge_torch/generative/examples/tiny_llama/verify.py +72 -0
- ai_edge_torch/generative/fx_passes/__init__.py +30 -0
- ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +50 -0
- ai_edge_torch/generative/layers/__init__.py +14 -0
- ai_edge_torch/generative/layers/attention.py +399 -0
- ai_edge_torch/generative/layers/attention_utils.py +210 -0
- ai_edge_torch/generative/layers/builder.py +160 -0
- ai_edge_torch/generative/layers/feed_forward.py +120 -0
- ai_edge_torch/generative/layers/kv_cache.py +204 -0
- ai_edge_torch/generative/layers/lora.py +557 -0
- ai_edge_torch/generative/layers/model_config.py +238 -0
- ai_edge_torch/generative/layers/normalization.py +222 -0
- ai_edge_torch/generative/layers/rotary_position_embedding.py +94 -0
- ai_edge_torch/generative/layers/scaled_dot_product_attention.py +144 -0
- ai_edge_torch/generative/layers/unet/__init__.py +14 -0
- ai_edge_torch/generative/layers/unet/blocks_2d.py +806 -0
- ai_edge_torch/generative/layers/unet/builder.py +50 -0
- ai_edge_torch/generative/layers/unet/model_config.py +282 -0
- ai_edge_torch/generative/quantize/__init__.py +14 -0
- ai_edge_torch/generative/quantize/example.py +47 -0
- ai_edge_torch/generative/quantize/quant_attrs.py +68 -0
- ai_edge_torch/generative/quantize/quant_recipe.py +154 -0
- ai_edge_torch/generative/quantize/quant_recipe_utils.py +62 -0
- ai_edge_torch/generative/quantize/quant_recipes.py +56 -0
- ai_edge_torch/generative/quantize/supported_schemes.py +32 -0
- ai_edge_torch/generative/test/__init__.py +14 -0
- ai_edge_torch/generative/test/test_custom_dus.py +107 -0
- ai_edge_torch/generative/test/test_kv_cache.py +120 -0
- ai_edge_torch/generative/test/test_loader.py +83 -0
- ai_edge_torch/generative/test/test_lora.py +147 -0
- ai_edge_torch/generative/test/test_model_conversion.py +191 -0
- ai_edge_torch/generative/test/test_model_conversion_large.py +362 -0
- ai_edge_torch/generative/test/test_quantize.py +183 -0
- ai_edge_torch/generative/test/utils.py +82 -0
- ai_edge_torch/generative/utilities/__init__.py +15 -0
- ai_edge_torch/generative/utilities/converter.py +215 -0
- ai_edge_torch/generative/utilities/dynamic_update_slice.py +56 -0
- ai_edge_torch/generative/utilities/loader.py +398 -0
- ai_edge_torch/generative/utilities/model_builder.py +180 -0
- ai_edge_torch/generative/utilities/moonshine_loader.py +154 -0
- ai_edge_torch/generative/utilities/stable_diffusion_loader.py +1032 -0
- ai_edge_torch/generative/utilities/t5_loader.py +512 -0
- ai_edge_torch/generative/utilities/transformers_verifier.py +42 -0
- ai_edge_torch/generative/utilities/verifier.py +335 -0
- ai_edge_torch/hlfb/__init__.py +16 -0
- ai_edge_torch/hlfb/mark_pattern/__init__.py +153 -0
- ai_edge_torch/hlfb/mark_pattern/fx_utils.py +69 -0
- ai_edge_torch/hlfb/mark_pattern/pattern.py +288 -0
- ai_edge_torch/hlfb/test/__init__.py +14 -0
- ai_edge_torch/hlfb/test/test_mark_pattern.py +185 -0
- ai_edge_torch/lowertools/__init__.py +18 -0
- ai_edge_torch/lowertools/_shim.py +86 -0
- ai_edge_torch/lowertools/common_utils.py +142 -0
- ai_edge_torch/lowertools/odml_torch_utils.py +260 -0
- ai_edge_torch/lowertools/test_utils.py +62 -0
- ai_edge_torch/lowertools/torch_xla_utils.py +301 -0
- ai_edge_torch/lowertools/translate_recipe.py +163 -0
- ai_edge_torch/model.py +177 -0
- ai_edge_torch/odml_torch/__init__.py +20 -0
- ai_edge_torch/odml_torch/_torch_future.py +88 -0
- ai_edge_torch/odml_torch/_torch_library.py +19 -0
- ai_edge_torch/odml_torch/composite/__init__.py +16 -0
- ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
- ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
- ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
- ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
- ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
- ai_edge_torch/odml_torch/export.py +403 -0
- ai_edge_torch/odml_torch/export_utils.py +157 -0
- ai_edge_torch/odml_torch/jax_bridge/__init__.py +18 -0
- ai_edge_torch/odml_torch/jax_bridge/_wrap.py +180 -0
- ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
- ai_edge_torch/odml_torch/lowerings/__init__.py +27 -0
- ai_edge_torch/odml_torch/lowerings/_basic.py +294 -0
- ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
- ai_edge_torch/odml_torch/lowerings/_convolution.py +243 -0
- ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +285 -0
- ai_edge_torch/odml_torch/lowerings/_layer_norm.py +87 -0
- ai_edge_torch/odml_torch/lowerings/_quantized_decomposed.py +177 -0
- ai_edge_torch/odml_torch/lowerings/_rand.py +142 -0
- ai_edge_torch/odml_torch/lowerings/context.py +42 -0
- ai_edge_torch/odml_torch/lowerings/decomp.py +69 -0
- ai_edge_torch/odml_torch/lowerings/registry.py +65 -0
- ai_edge_torch/odml_torch/lowerings/utils.py +201 -0
- ai_edge_torch/odml_torch/passes/__init__.py +38 -0
- ai_edge_torch/odml_torch/tf_integration.py +156 -0
- ai_edge_torch/quantize/__init__.py +16 -0
- ai_edge_torch/quantize/pt2e_quantizer.py +466 -0
- ai_edge_torch/quantize/pt2e_quantizer_utils.py +1061 -0
- ai_edge_torch/quantize/quant_config.py +85 -0
- ai_edge_torch/testing/__init__.py +14 -0
- ai_edge_torch/testing/model_coverage/__init__.py +16 -0
- ai_edge_torch/testing/model_coverage/model_coverage.py +145 -0
- ai_edge_torch/version.py +16 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/LICENSE +202 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/METADATA +44 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/RECORD +213 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/WHEEL +5 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/top_level.txt +1 -0
@@ -0,0 +1,398 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
import ai_edge_torch.generative.layers.builder as layers_builder
|
17
|
+
import ai_edge_torch.generative.layers.model_config as layers_cfg
|
18
|
+
from ai_edge_torch.generative.layers.unet import blocks_2d
|
19
|
+
import ai_edge_torch.generative.layers.unet.model_config as unet_cfg
|
20
|
+
from ai_edge_torch.generative.utilities import stable_diffusion_loader
|
21
|
+
import torch
|
22
|
+
from torch import nn
|
23
|
+
|
24
|
+
TENSOR_NAMES = stable_diffusion_loader.AutoEncoderModelLoader.TensorNames(
|
25
|
+
post_quant_conv="first_stage_model.post_quant_conv",
|
26
|
+
conv_in="first_stage_model.decoder.conv_in",
|
27
|
+
mid_block_tensor_names=stable_diffusion_loader.MidBlockTensorNames(
|
28
|
+
residual_block_tensor_names=[
|
29
|
+
stable_diffusion_loader.ResidualBlockTensorNames(
|
30
|
+
norm_1="first_stage_model.decoder.mid.block_1.norm1",
|
31
|
+
norm_2="first_stage_model.decoder.mid.block_1.norm2",
|
32
|
+
conv_1="first_stage_model.decoder.mid.block_1.conv1",
|
33
|
+
conv_2="first_stage_model.decoder.mid.block_1.conv2",
|
34
|
+
),
|
35
|
+
stable_diffusion_loader.ResidualBlockTensorNames(
|
36
|
+
norm_1="first_stage_model.decoder.mid.block_2.norm1",
|
37
|
+
norm_2="first_stage_model.decoder.mid.block_2.norm2",
|
38
|
+
conv_1="first_stage_model.decoder.mid.block_2.conv1",
|
39
|
+
conv_2="first_stage_model.decoder.mid.block_2.conv2",
|
40
|
+
),
|
41
|
+
],
|
42
|
+
attention_block_tensor_names=[
|
43
|
+
stable_diffusion_loader.AttentionBlockTensorNames(
|
44
|
+
norm="first_stage_model.decoder.mid.attn_1.norm",
|
45
|
+
q_proj="first_stage_model.decoder.mid.attn_1.q",
|
46
|
+
k_proj="first_stage_model.decoder.mid.attn_1.k",
|
47
|
+
v_proj="first_stage_model.decoder.mid.attn_1.v",
|
48
|
+
output_proj="first_stage_model.decoder.mid.attn_1.proj_out",
|
49
|
+
)
|
50
|
+
],
|
51
|
+
),
|
52
|
+
up_decoder_blocks_tensor_names=[
|
53
|
+
stable_diffusion_loader.UpDecoderBlockTensorNames(
|
54
|
+
residual_block_tensor_names=[
|
55
|
+
stable_diffusion_loader.ResidualBlockTensorNames(
|
56
|
+
norm_1="first_stage_model.decoder.up.3.block.0.norm1",
|
57
|
+
norm_2="first_stage_model.decoder.up.3.block.0.norm2",
|
58
|
+
conv_1="first_stage_model.decoder.up.3.block.0.conv1",
|
59
|
+
conv_2="first_stage_model.decoder.up.3.block.0.conv2",
|
60
|
+
),
|
61
|
+
stable_diffusion_loader.ResidualBlockTensorNames(
|
62
|
+
norm_1="first_stage_model.decoder.up.3.block.1.norm1",
|
63
|
+
norm_2="first_stage_model.decoder.up.3.block.1.norm2",
|
64
|
+
conv_1="first_stage_model.decoder.up.3.block.1.conv1",
|
65
|
+
conv_2="first_stage_model.decoder.up.3.block.1.conv2",
|
66
|
+
),
|
67
|
+
stable_diffusion_loader.ResidualBlockTensorNames(
|
68
|
+
norm_1="first_stage_model.decoder.up.3.block.2.norm1",
|
69
|
+
norm_2="first_stage_model.decoder.up.3.block.2.norm2",
|
70
|
+
conv_1="first_stage_model.decoder.up.3.block.2.conv1",
|
71
|
+
conv_2="first_stage_model.decoder.up.3.block.2.conv2",
|
72
|
+
),
|
73
|
+
],
|
74
|
+
upsample_conv="first_stage_model.decoder.up.3.upsample.conv",
|
75
|
+
),
|
76
|
+
stable_diffusion_loader.UpDecoderBlockTensorNames(
|
77
|
+
residual_block_tensor_names=[
|
78
|
+
stable_diffusion_loader.ResidualBlockTensorNames(
|
79
|
+
norm_1="first_stage_model.decoder.up.2.block.0.norm1",
|
80
|
+
norm_2="first_stage_model.decoder.up.2.block.0.norm2",
|
81
|
+
conv_1="first_stage_model.decoder.up.2.block.0.conv1",
|
82
|
+
conv_2="first_stage_model.decoder.up.2.block.0.conv2",
|
83
|
+
),
|
84
|
+
stable_diffusion_loader.ResidualBlockTensorNames(
|
85
|
+
norm_1="first_stage_model.decoder.up.2.block.1.norm1",
|
86
|
+
norm_2="first_stage_model.decoder.up.2.block.1.norm2",
|
87
|
+
conv_1="first_stage_model.decoder.up.2.block.1.conv1",
|
88
|
+
conv_2="first_stage_model.decoder.up.2.block.1.conv2",
|
89
|
+
),
|
90
|
+
stable_diffusion_loader.ResidualBlockTensorNames(
|
91
|
+
norm_1="first_stage_model.decoder.up.2.block.2.norm1",
|
92
|
+
norm_2="first_stage_model.decoder.up.2.block.2.norm2",
|
93
|
+
conv_1="first_stage_model.decoder.up.2.block.2.conv1",
|
94
|
+
conv_2="first_stage_model.decoder.up.2.block.2.conv2",
|
95
|
+
),
|
96
|
+
],
|
97
|
+
upsample_conv="first_stage_model.decoder.up.2.upsample.conv",
|
98
|
+
),
|
99
|
+
stable_diffusion_loader.UpDecoderBlockTensorNames(
|
100
|
+
residual_block_tensor_names=[
|
101
|
+
stable_diffusion_loader.ResidualBlockTensorNames(
|
102
|
+
norm_1="first_stage_model.decoder.up.1.block.0.norm1",
|
103
|
+
norm_2="first_stage_model.decoder.up.1.block.0.norm2",
|
104
|
+
conv_1="first_stage_model.decoder.up.1.block.0.conv1",
|
105
|
+
conv_2="first_stage_model.decoder.up.1.block.0.conv2",
|
106
|
+
residual_layer=(
|
107
|
+
"first_stage_model.decoder.up.1.block.0.nin_shortcut"
|
108
|
+
),
|
109
|
+
),
|
110
|
+
stable_diffusion_loader.ResidualBlockTensorNames(
|
111
|
+
norm_1="first_stage_model.decoder.up.1.block.1.norm1",
|
112
|
+
norm_2="first_stage_model.decoder.up.1.block.1.norm2",
|
113
|
+
conv_1="first_stage_model.decoder.up.1.block.1.conv1",
|
114
|
+
conv_2="first_stage_model.decoder.up.1.block.1.conv2",
|
115
|
+
),
|
116
|
+
stable_diffusion_loader.ResidualBlockTensorNames(
|
117
|
+
norm_1="first_stage_model.decoder.up.1.block.2.norm1",
|
118
|
+
norm_2="first_stage_model.decoder.up.1.block.2.norm2",
|
119
|
+
conv_1="first_stage_model.decoder.up.1.block.2.conv1",
|
120
|
+
conv_2="first_stage_model.decoder.up.1.block.2.conv2",
|
121
|
+
),
|
122
|
+
],
|
123
|
+
upsample_conv="first_stage_model.decoder.up.1.upsample.conv",
|
124
|
+
),
|
125
|
+
stable_diffusion_loader.UpDecoderBlockTensorNames(
|
126
|
+
residual_block_tensor_names=[
|
127
|
+
stable_diffusion_loader.ResidualBlockTensorNames(
|
128
|
+
norm_1="first_stage_model.decoder.up.0.block.0.norm1",
|
129
|
+
norm_2="first_stage_model.decoder.up.0.block.0.norm2",
|
130
|
+
conv_1="first_stage_model.decoder.up.0.block.0.conv1",
|
131
|
+
conv_2="first_stage_model.decoder.up.0.block.0.conv2",
|
132
|
+
residual_layer=(
|
133
|
+
"first_stage_model.decoder.up.0.block.0.nin_shortcut"
|
134
|
+
),
|
135
|
+
),
|
136
|
+
stable_diffusion_loader.ResidualBlockTensorNames(
|
137
|
+
norm_1="first_stage_model.decoder.up.0.block.1.norm1",
|
138
|
+
norm_2="first_stage_model.decoder.up.0.block.1.norm2",
|
139
|
+
conv_1="first_stage_model.decoder.up.0.block.1.conv1",
|
140
|
+
conv_2="first_stage_model.decoder.up.0.block.1.conv2",
|
141
|
+
),
|
142
|
+
stable_diffusion_loader.ResidualBlockTensorNames(
|
143
|
+
norm_1="first_stage_model.decoder.up.0.block.2.norm1",
|
144
|
+
norm_2="first_stage_model.decoder.up.0.block.2.norm2",
|
145
|
+
conv_1="first_stage_model.decoder.up.0.block.2.conv1",
|
146
|
+
conv_2="first_stage_model.decoder.up.0.block.2.conv2",
|
147
|
+
),
|
148
|
+
],
|
149
|
+
),
|
150
|
+
],
|
151
|
+
final_norm="first_stage_model.decoder.norm_out",
|
152
|
+
conv_out="first_stage_model.decoder.conv_out",
|
153
|
+
)
|
154
|
+
|
155
|
+
|
156
|
+
class Decoder(nn.Module):
|
157
|
+
"""The Decoder model used in Stable Diffusion.
|
158
|
+
|
159
|
+
For details, see https://arxiv.org/abs/2103.00020
|
160
|
+
|
161
|
+
Sturcture of the Decoder:
|
162
|
+
|
163
|
+
latents tensor
|
164
|
+
|
|
165
|
+
▼
|
166
|
+
┌───────────────────┐
|
167
|
+
│ Post Quant Conv │
|
168
|
+
└─────────┬─────────┘
|
169
|
+
│
|
170
|
+
┌─────────▼─────────┐
|
171
|
+
│ ConvIn │
|
172
|
+
└─────────┬─────────┘
|
173
|
+
│
|
174
|
+
┌─────────▼─────────┐
|
175
|
+
│ MidBlock2D │
|
176
|
+
└─────────┬─────────┘
|
177
|
+
│
|
178
|
+
┌─────────▼─────────┐
|
179
|
+
│ UpDecoder2D │ x 4
|
180
|
+
└─────────┬─────────┘
|
181
|
+
│
|
182
|
+
┌─────────▼─────────┐
|
183
|
+
│ FinalNorm │
|
184
|
+
└─────────┬─────────┘
|
185
|
+
|
|
186
|
+
┌─────────▼─────────┐
|
187
|
+
│ Activation │
|
188
|
+
└─────────┬─────────┘
|
189
|
+
|
|
190
|
+
┌─────────▼─────────┐
|
191
|
+
│ ConvOut │
|
192
|
+
└─────────┬─────────┘
|
193
|
+
|
|
194
|
+
▼
|
195
|
+
Output Image
|
196
|
+
"""
|
197
|
+
|
198
|
+
def __init__(self, config: unet_cfg.AutoEncoderConfig):
|
199
|
+
super().__init__()
|
200
|
+
self.config = config
|
201
|
+
self.post_quant_conv = nn.Conv2d(
|
202
|
+
config.latent_channels,
|
203
|
+
config.latent_channels,
|
204
|
+
kernel_size=1,
|
205
|
+
stride=1,
|
206
|
+
padding=0,
|
207
|
+
)
|
208
|
+
reversed_block_out_channels = list(reversed(config.block_out_channels))
|
209
|
+
self.conv_in = nn.Conv2d(
|
210
|
+
config.latent_channels,
|
211
|
+
reversed_block_out_channels[0],
|
212
|
+
kernel_size=3,
|
213
|
+
stride=1,
|
214
|
+
padding=1,
|
215
|
+
)
|
216
|
+
self.mid_block = blocks_2d.MidBlock2D(config.mid_block_config)
|
217
|
+
up_decoder_blocks = []
|
218
|
+
block_out_channels = reversed_block_out_channels[0]
|
219
|
+
for i, out_channels in enumerate(reversed_block_out_channels):
|
220
|
+
prev_output_channel = block_out_channels
|
221
|
+
block_out_channels = out_channels
|
222
|
+
not_final_block = i < len(reversed_block_out_channels) - 1
|
223
|
+
up_decoder_blocks.append(
|
224
|
+
blocks_2d.UpDecoderBlock2D(
|
225
|
+
unet_cfg.UpDecoderBlock2DConfig(
|
226
|
+
in_channels=prev_output_channel,
|
227
|
+
out_channels=block_out_channels,
|
228
|
+
normalization_config=config.normalization_config,
|
229
|
+
activation_config=config.activation_config,
|
230
|
+
num_layers=config.layers_per_block,
|
231
|
+
add_upsample=not_final_block,
|
232
|
+
upsample_conv=True,
|
233
|
+
sampling_config=unet_cfg.UpSamplingConfig(
|
234
|
+
mode=unet_cfg.SamplingType.NEAREST, scale_factor=2
|
235
|
+
),
|
236
|
+
)
|
237
|
+
)
|
238
|
+
)
|
239
|
+
self.up_decoder_blocks = nn.ModuleList(up_decoder_blocks)
|
240
|
+
self.final_norm = layers_builder.build_norm(
|
241
|
+
block_out_channels, config.normalization_config
|
242
|
+
)
|
243
|
+
self.act_fn = layers_builder.get_activation(config.activation_config)
|
244
|
+
self.conv_out = nn.Conv2d(
|
245
|
+
block_out_channels,
|
246
|
+
config.out_channels,
|
247
|
+
kernel_size=3,
|
248
|
+
stride=1,
|
249
|
+
padding=1,
|
250
|
+
)
|
251
|
+
|
252
|
+
def forward(self, latents_tensor: torch.Tensor) -> torch.Tensor:
|
253
|
+
"""Forward function of decoder model.
|
254
|
+
|
255
|
+
Args:
|
256
|
+
latents (torch.Tensor): latents space tensor.
|
257
|
+
|
258
|
+
Returns:
|
259
|
+
output decoded image tensor from decoder model.
|
260
|
+
"""
|
261
|
+
x = latents_tensor / self.config.scaling_factor
|
262
|
+
x = self.post_quant_conv(x)
|
263
|
+
x = self.conv_in(x)
|
264
|
+
x = self.mid_block(x)
|
265
|
+
for up_decoder_block in self.up_decoder_blocks:
|
266
|
+
x = up_decoder_block(x)
|
267
|
+
x = self.final_norm(x)
|
268
|
+
x = self.act_fn(x)
|
269
|
+
x = self.conv_out(x)
|
270
|
+
return x
|
271
|
+
|
272
|
+
|
273
|
+
def get_model_config(device_type: str = "cpu") -> unet_cfg.AutoEncoderConfig:
|
274
|
+
"""Get configs for the Decoder of Stable Diffusion v1.5."""
|
275
|
+
in_channels = 3
|
276
|
+
latent_channels = 4
|
277
|
+
out_channels = 3
|
278
|
+
block_out_channels = [128, 256, 512, 512]
|
279
|
+
scaling_factor = 0.18215
|
280
|
+
layers_per_block = 3
|
281
|
+
|
282
|
+
# For now, only turns on StableHLO composite ops on GPU backend for better
|
283
|
+
# performance. CPU should also switch to it once the support is done.
|
284
|
+
enable_hlfb = True if device_type == "gpu" else False
|
285
|
+
|
286
|
+
norm_config = layers_cfg.NormalizationConfig(
|
287
|
+
layers_cfg.NormalizationType.GROUP_NORM,
|
288
|
+
group_num=32,
|
289
|
+
enable_hlfb=enable_hlfb,
|
290
|
+
)
|
291
|
+
|
292
|
+
att_config = unet_cfg.AttentionBlock2DConfig(
|
293
|
+
dim=block_out_channels[-1],
|
294
|
+
normalization_config=norm_config,
|
295
|
+
attention_config=layers_cfg.AttentionConfig(
|
296
|
+
num_heads=1,
|
297
|
+
head_dim=block_out_channels[-1],
|
298
|
+
num_query_groups=1,
|
299
|
+
qkv_use_bias=True,
|
300
|
+
output_proj_use_bias=True,
|
301
|
+
enable_kv_cache=False,
|
302
|
+
qkv_transpose_before_split=True,
|
303
|
+
qkv_fused_interleaved=False,
|
304
|
+
rotary_base=0,
|
305
|
+
rotary_percentage=0.0,
|
306
|
+
),
|
307
|
+
enable_hlfb=enable_hlfb,
|
308
|
+
)
|
309
|
+
|
310
|
+
mid_block_config = unet_cfg.MidBlock2DConfig(
|
311
|
+
in_channels=block_out_channels[-1],
|
312
|
+
normalization_config=norm_config,
|
313
|
+
activation_config=layers_cfg.ActivationConfig(
|
314
|
+
layers_cfg.ActivationType.SILU
|
315
|
+
),
|
316
|
+
num_layers=1,
|
317
|
+
attention_block_config=att_config,
|
318
|
+
)
|
319
|
+
|
320
|
+
config = unet_cfg.AutoEncoderConfig(
|
321
|
+
in_channels=in_channels,
|
322
|
+
latent_channels=latent_channels,
|
323
|
+
out_channels=out_channels,
|
324
|
+
activation_config=layers_cfg.ActivationConfig(
|
325
|
+
layers_cfg.ActivationType.SILU
|
326
|
+
),
|
327
|
+
block_out_channels=block_out_channels,
|
328
|
+
scaling_factor=scaling_factor,
|
329
|
+
layers_per_block=layers_per_block,
|
330
|
+
normalization_config=norm_config,
|
331
|
+
mid_block_config=mid_block_config,
|
332
|
+
)
|
333
|
+
return config
|
334
|
+
|
335
|
+
|
336
|
+
def get_fake_model_config(
|
337
|
+
device_type: str = "cpu",
|
338
|
+
) -> unet_cfg.AutoEncoderConfig:
|
339
|
+
"""Get fake configs for the Decoder of Stable Diffusion v1.5 for testing."""
|
340
|
+
in_channels = 3
|
341
|
+
latent_channels = 4
|
342
|
+
out_channels = 3
|
343
|
+
block_out_channels = [2, 4]
|
344
|
+
scaling_factor = 0.18215
|
345
|
+
layers_per_block = 2
|
346
|
+
|
347
|
+
# For now, only turns on StableHLO composite ops on GPU backend for better
|
348
|
+
# performance. CPU should also switch to it once the support is done.
|
349
|
+
enable_hlfb = True if device_type == "gpu" else False
|
350
|
+
|
351
|
+
norm_config = layers_cfg.NormalizationConfig(
|
352
|
+
layers_cfg.NormalizationType.GROUP_NORM,
|
353
|
+
group_num=2,
|
354
|
+
enable_hlfb=enable_hlfb,
|
355
|
+
)
|
356
|
+
|
357
|
+
att_config = unet_cfg.AttentionBlock2DConfig(
|
358
|
+
dim=block_out_channels[-1],
|
359
|
+
normalization_config=norm_config,
|
360
|
+
attention_config=layers_cfg.AttentionConfig(
|
361
|
+
num_heads=1,
|
362
|
+
head_dim=block_out_channels[-1],
|
363
|
+
num_query_groups=1,
|
364
|
+
qkv_use_bias=True,
|
365
|
+
output_proj_use_bias=True,
|
366
|
+
enable_kv_cache=False,
|
367
|
+
qkv_transpose_before_split=True,
|
368
|
+
qkv_fused_interleaved=False,
|
369
|
+
rotary_base=0,
|
370
|
+
rotary_percentage=0.0,
|
371
|
+
),
|
372
|
+
enable_hlfb=enable_hlfb,
|
373
|
+
)
|
374
|
+
|
375
|
+
mid_block_config = unet_cfg.MidBlock2DConfig(
|
376
|
+
in_channels=block_out_channels[-1],
|
377
|
+
normalization_config=norm_config,
|
378
|
+
activation_config=layers_cfg.ActivationConfig(
|
379
|
+
layers_cfg.ActivationType.SILU
|
380
|
+
),
|
381
|
+
num_layers=1,
|
382
|
+
attention_block_config=att_config,
|
383
|
+
)
|
384
|
+
|
385
|
+
config = unet_cfg.AutoEncoderConfig(
|
386
|
+
in_channels=in_channels,
|
387
|
+
latent_channels=latent_channels,
|
388
|
+
out_channels=out_channels,
|
389
|
+
activation_config=layers_cfg.ActivationConfig(
|
390
|
+
layers_cfg.ActivationType.SILU
|
391
|
+
),
|
392
|
+
block_out_channels=block_out_channels,
|
393
|
+
scaling_factor=scaling_factor,
|
394
|
+
layers_per_block=layers_per_block,
|
395
|
+
normalization_config=norm_config,
|
396
|
+
mid_block_config=mid_block_config,
|
397
|
+
)
|
398
|
+
return config
|