ai-edge-torch-nightly 0.3.0.dev20250114__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (213) hide show
  1. ai_edge_torch/__init__.py +32 -0
  2. ai_edge_torch/_config.py +69 -0
  3. ai_edge_torch/_convert/__init__.py +14 -0
  4. ai_edge_torch/_convert/conversion.py +153 -0
  5. ai_edge_torch/_convert/conversion_utils.py +64 -0
  6. ai_edge_torch/_convert/converter.py +270 -0
  7. ai_edge_torch/_convert/fx_passes/__init__.py +23 -0
  8. ai_edge_torch/_convert/fx_passes/build_aten_composite_pass.py +288 -0
  9. ai_edge_torch/_convert/fx_passes/build_interpolate_composite_pass.py +131 -0
  10. ai_edge_torch/_convert/fx_passes/inject_mlir_debuginfo_pass.py +73 -0
  11. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/__init__.py +16 -0
  12. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_check.py +258 -0
  13. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_mark.py +50 -0
  14. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +18 -0
  15. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +68 -0
  16. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +216 -0
  17. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +449 -0
  18. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +30 -0
  19. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/pass_body.py +303 -0
  20. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/utils.py +64 -0
  21. ai_edge_torch/_convert/fx_passes/remove_non_user_outputs_pass.py +52 -0
  22. ai_edge_torch/_convert/signature.py +66 -0
  23. ai_edge_torch/_convert/test/__init__.py +14 -0
  24. ai_edge_torch/_convert/test/test_convert.py +558 -0
  25. ai_edge_torch/_convert/test/test_convert_composites.py +234 -0
  26. ai_edge_torch/_convert/test/test_convert_multisig.py +189 -0
  27. ai_edge_torch/_convert/test/test_to_channel_last_io.py +96 -0
  28. ai_edge_torch/_convert/to_channel_last_io.py +92 -0
  29. ai_edge_torch/conftest.py +20 -0
  30. ai_edge_torch/debug/__init__.py +17 -0
  31. ai_edge_torch/debug/culprit.py +496 -0
  32. ai_edge_torch/debug/test/__init__.py +14 -0
  33. ai_edge_torch/debug/test/test_culprit.py +140 -0
  34. ai_edge_torch/debug/test/test_search_model.py +51 -0
  35. ai_edge_torch/debug/utils.py +59 -0
  36. ai_edge_torch/experimental/__init__.py +14 -0
  37. ai_edge_torch/fx_pass_base.py +110 -0
  38. ai_edge_torch/generative/__init__.py +14 -0
  39. ai_edge_torch/generative/examples/__init__.py +14 -0
  40. ai_edge_torch/generative/examples/amd_llama_135m/__init__.py +14 -0
  41. ai_edge_torch/generative/examples/amd_llama_135m/amd_llama_135m.py +87 -0
  42. ai_edge_torch/generative/examples/amd_llama_135m/convert_to_tflite.py +70 -0
  43. ai_edge_torch/generative/examples/amd_llama_135m/verify.py +72 -0
  44. ai_edge_torch/generative/examples/gemma/__init__.py +14 -0
  45. ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +80 -0
  46. ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +80 -0
  47. ai_edge_torch/generative/examples/gemma/gemma1.py +107 -0
  48. ai_edge_torch/generative/examples/gemma/gemma2.py +295 -0
  49. ai_edge_torch/generative/examples/gemma/verify_gemma1.py +56 -0
  50. ai_edge_torch/generative/examples/gemma/verify_gemma2.py +43 -0
  51. ai_edge_torch/generative/examples/gemma/verify_util.py +157 -0
  52. ai_edge_torch/generative/examples/llama/__init__.py +14 -0
  53. ai_edge_torch/generative/examples/llama/convert_to_tflite.py +91 -0
  54. ai_edge_torch/generative/examples/llama/llama.py +196 -0
  55. ai_edge_torch/generative/examples/llama/verify.py +88 -0
  56. ai_edge_torch/generative/examples/moonshine/__init__.py +14 -0
  57. ai_edge_torch/generative/examples/moonshine/convert_moonshine_to_tflite.py +50 -0
  58. ai_edge_torch/generative/examples/moonshine/moonshine.py +103 -0
  59. ai_edge_torch/generative/examples/openelm/__init__.py +14 -0
  60. ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +80 -0
  61. ai_edge_torch/generative/examples/openelm/openelm.py +127 -0
  62. ai_edge_torch/generative/examples/openelm/verify.py +71 -0
  63. ai_edge_torch/generative/examples/paligemma/__init__.py +14 -0
  64. ai_edge_torch/generative/examples/paligemma/convert_to_tflite.py +95 -0
  65. ai_edge_torch/generative/examples/paligemma/decoder.py +151 -0
  66. ai_edge_torch/generative/examples/paligemma/decoder2.py +177 -0
  67. ai_edge_torch/generative/examples/paligemma/image_encoder.py +160 -0
  68. ai_edge_torch/generative/examples/paligemma/paligemma.py +179 -0
  69. ai_edge_torch/generative/examples/paligemma/verify.py +161 -0
  70. ai_edge_torch/generative/examples/paligemma/verify_decoder.py +75 -0
  71. ai_edge_torch/generative/examples/paligemma/verify_decoder2.py +72 -0
  72. ai_edge_torch/generative/examples/paligemma/verify_image_encoder.py +99 -0
  73. ai_edge_torch/generative/examples/phi/__init__.py +14 -0
  74. ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +80 -0
  75. ai_edge_torch/generative/examples/phi/convert_to_tflite.py +80 -0
  76. ai_edge_torch/generative/examples/phi/phi2.py +107 -0
  77. ai_edge_torch/generative/examples/phi/phi3.py +219 -0
  78. ai_edge_torch/generative/examples/phi/verify.py +64 -0
  79. ai_edge_torch/generative/examples/phi/verify_phi3.py +69 -0
  80. ai_edge_torch/generative/examples/qwen/__init__.py +14 -0
  81. ai_edge_torch/generative/examples/qwen/convert_to_tflite.py +93 -0
  82. ai_edge_torch/generative/examples/qwen/qwen.py +134 -0
  83. ai_edge_torch/generative/examples/qwen/verify.py +88 -0
  84. ai_edge_torch/generative/examples/smollm/__init__.py +14 -0
  85. ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +80 -0
  86. ai_edge_torch/generative/examples/smollm/convert_v2_to_tflite.py +71 -0
  87. ai_edge_torch/generative/examples/smollm/smollm.py +125 -0
  88. ai_edge_torch/generative/examples/smollm/verify.py +86 -0
  89. ai_edge_torch/generative/examples/stable_diffusion/__init__.py +14 -0
  90. ai_edge_torch/generative/examples/stable_diffusion/attention.py +108 -0
  91. ai_edge_torch/generative/examples/stable_diffusion/clip.py +185 -0
  92. ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +173 -0
  93. ai_edge_torch/generative/examples/stable_diffusion/decoder.py +398 -0
  94. ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +749 -0
  95. ai_edge_torch/generative/examples/stable_diffusion/encoder.py +119 -0
  96. ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +254 -0
  97. ai_edge_torch/generative/examples/stable_diffusion/samplers/__init__.py +19 -0
  98. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +62 -0
  99. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +66 -0
  100. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +74 -0
  101. ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +39 -0
  102. ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +111 -0
  103. ai_edge_torch/generative/examples/stable_diffusion/util.py +77 -0
  104. ai_edge_torch/generative/examples/t5/__init__.py +14 -0
  105. ai_edge_torch/generative/examples/t5/convert_to_tflite.py +138 -0
  106. ai_edge_torch/generative/examples/t5/t5.py +655 -0
  107. ai_edge_torch/generative/examples/t5/t5_attention.py +246 -0
  108. ai_edge_torch/generative/examples/test_models/__init__.py +14 -0
  109. ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
  110. ai_edge_torch/generative/examples/test_models/toy_model.py +156 -0
  111. ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +138 -0
  112. ai_edge_torch/generative/examples/tiny_llama/__init__.py +14 -0
  113. ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +80 -0
  114. ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +88 -0
  115. ai_edge_torch/generative/examples/tiny_llama/verify.py +72 -0
  116. ai_edge_torch/generative/fx_passes/__init__.py +30 -0
  117. ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +50 -0
  118. ai_edge_torch/generative/layers/__init__.py +14 -0
  119. ai_edge_torch/generative/layers/attention.py +399 -0
  120. ai_edge_torch/generative/layers/attention_utils.py +210 -0
  121. ai_edge_torch/generative/layers/builder.py +160 -0
  122. ai_edge_torch/generative/layers/feed_forward.py +120 -0
  123. ai_edge_torch/generative/layers/kv_cache.py +204 -0
  124. ai_edge_torch/generative/layers/lora.py +557 -0
  125. ai_edge_torch/generative/layers/model_config.py +238 -0
  126. ai_edge_torch/generative/layers/normalization.py +222 -0
  127. ai_edge_torch/generative/layers/rotary_position_embedding.py +94 -0
  128. ai_edge_torch/generative/layers/scaled_dot_product_attention.py +144 -0
  129. ai_edge_torch/generative/layers/unet/__init__.py +14 -0
  130. ai_edge_torch/generative/layers/unet/blocks_2d.py +806 -0
  131. ai_edge_torch/generative/layers/unet/builder.py +50 -0
  132. ai_edge_torch/generative/layers/unet/model_config.py +282 -0
  133. ai_edge_torch/generative/quantize/__init__.py +14 -0
  134. ai_edge_torch/generative/quantize/example.py +47 -0
  135. ai_edge_torch/generative/quantize/quant_attrs.py +68 -0
  136. ai_edge_torch/generative/quantize/quant_recipe.py +154 -0
  137. ai_edge_torch/generative/quantize/quant_recipe_utils.py +62 -0
  138. ai_edge_torch/generative/quantize/quant_recipes.py +56 -0
  139. ai_edge_torch/generative/quantize/supported_schemes.py +32 -0
  140. ai_edge_torch/generative/test/__init__.py +14 -0
  141. ai_edge_torch/generative/test/test_custom_dus.py +107 -0
  142. ai_edge_torch/generative/test/test_kv_cache.py +120 -0
  143. ai_edge_torch/generative/test/test_loader.py +83 -0
  144. ai_edge_torch/generative/test/test_lora.py +147 -0
  145. ai_edge_torch/generative/test/test_model_conversion.py +191 -0
  146. ai_edge_torch/generative/test/test_model_conversion_large.py +362 -0
  147. ai_edge_torch/generative/test/test_quantize.py +183 -0
  148. ai_edge_torch/generative/test/utils.py +82 -0
  149. ai_edge_torch/generative/utilities/__init__.py +15 -0
  150. ai_edge_torch/generative/utilities/converter.py +215 -0
  151. ai_edge_torch/generative/utilities/dynamic_update_slice.py +56 -0
  152. ai_edge_torch/generative/utilities/loader.py +398 -0
  153. ai_edge_torch/generative/utilities/model_builder.py +180 -0
  154. ai_edge_torch/generative/utilities/moonshine_loader.py +154 -0
  155. ai_edge_torch/generative/utilities/stable_diffusion_loader.py +1032 -0
  156. ai_edge_torch/generative/utilities/t5_loader.py +512 -0
  157. ai_edge_torch/generative/utilities/transformers_verifier.py +42 -0
  158. ai_edge_torch/generative/utilities/verifier.py +335 -0
  159. ai_edge_torch/hlfb/__init__.py +16 -0
  160. ai_edge_torch/hlfb/mark_pattern/__init__.py +153 -0
  161. ai_edge_torch/hlfb/mark_pattern/fx_utils.py +69 -0
  162. ai_edge_torch/hlfb/mark_pattern/pattern.py +288 -0
  163. ai_edge_torch/hlfb/test/__init__.py +14 -0
  164. ai_edge_torch/hlfb/test/test_mark_pattern.py +185 -0
  165. ai_edge_torch/lowertools/__init__.py +18 -0
  166. ai_edge_torch/lowertools/_shim.py +86 -0
  167. ai_edge_torch/lowertools/common_utils.py +142 -0
  168. ai_edge_torch/lowertools/odml_torch_utils.py +260 -0
  169. ai_edge_torch/lowertools/test_utils.py +62 -0
  170. ai_edge_torch/lowertools/torch_xla_utils.py +301 -0
  171. ai_edge_torch/lowertools/translate_recipe.py +163 -0
  172. ai_edge_torch/model.py +177 -0
  173. ai_edge_torch/odml_torch/__init__.py +20 -0
  174. ai_edge_torch/odml_torch/_torch_future.py +88 -0
  175. ai_edge_torch/odml_torch/_torch_library.py +19 -0
  176. ai_edge_torch/odml_torch/composite/__init__.py +16 -0
  177. ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
  178. ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
  179. ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
  180. ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
  181. ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
  182. ai_edge_torch/odml_torch/export.py +403 -0
  183. ai_edge_torch/odml_torch/export_utils.py +157 -0
  184. ai_edge_torch/odml_torch/jax_bridge/__init__.py +18 -0
  185. ai_edge_torch/odml_torch/jax_bridge/_wrap.py +180 -0
  186. ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
  187. ai_edge_torch/odml_torch/lowerings/__init__.py +27 -0
  188. ai_edge_torch/odml_torch/lowerings/_basic.py +294 -0
  189. ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
  190. ai_edge_torch/odml_torch/lowerings/_convolution.py +243 -0
  191. ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +285 -0
  192. ai_edge_torch/odml_torch/lowerings/_layer_norm.py +87 -0
  193. ai_edge_torch/odml_torch/lowerings/_quantized_decomposed.py +177 -0
  194. ai_edge_torch/odml_torch/lowerings/_rand.py +142 -0
  195. ai_edge_torch/odml_torch/lowerings/context.py +42 -0
  196. ai_edge_torch/odml_torch/lowerings/decomp.py +69 -0
  197. ai_edge_torch/odml_torch/lowerings/registry.py +65 -0
  198. ai_edge_torch/odml_torch/lowerings/utils.py +201 -0
  199. ai_edge_torch/odml_torch/passes/__init__.py +38 -0
  200. ai_edge_torch/odml_torch/tf_integration.py +156 -0
  201. ai_edge_torch/quantize/__init__.py +16 -0
  202. ai_edge_torch/quantize/pt2e_quantizer.py +466 -0
  203. ai_edge_torch/quantize/pt2e_quantizer_utils.py +1061 -0
  204. ai_edge_torch/quantize/quant_config.py +85 -0
  205. ai_edge_torch/testing/__init__.py +14 -0
  206. ai_edge_torch/testing/model_coverage/__init__.py +16 -0
  207. ai_edge_torch/testing/model_coverage/model_coverage.py +145 -0
  208. ai_edge_torch/version.py +16 -0
  209. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/LICENSE +202 -0
  210. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/METADATA +44 -0
  211. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/RECORD +213 -0
  212. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/WHEEL +5 -0
  213. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/top_level.txt +1 -0
@@ -0,0 +1,806 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ from typing import List, Optional, Tuple, Union
17
+
18
+ from ai_edge_torch.generative.layers.attention import CrossAttention
19
+ from ai_edge_torch.generative.layers.attention import SelfAttention
20
+ import ai_edge_torch.generative.layers.builder as layers_builder
21
+ import ai_edge_torch.generative.layers.model_config as layers_cfg
22
+ import ai_edge_torch.generative.layers.unet.builder as unet_builder
23
+ import ai_edge_torch.generative.layers.unet.model_config as unet_cfg
24
+ import torch
25
+ from torch import nn
26
+
27
+
28
+ class ResidualBlock2D(nn.Module):
29
+ """2D Residual block containing two Conv2D with optional time embedding as input."""
30
+
31
+ def __init__(self, config: unet_cfg.ResidualBlock2DConfig):
32
+ """Initialize an instance of the ResidualBlock2D.
33
+
34
+ Args:
35
+ config (unet_cfg.ResidualBlock2DConfig): the configuration of this block.
36
+ """
37
+ super().__init__()
38
+ self.config = config
39
+ self.norm_1 = layers_builder.build_norm(
40
+ config.in_channels, config.normalization_config
41
+ )
42
+ self.conv_1 = nn.Conv2d(
43
+ config.in_channels,
44
+ config.hidden_channels,
45
+ kernel_size=3,
46
+ stride=1,
47
+ padding=1,
48
+ )
49
+ if config.time_embedding_channels is not None:
50
+ self.time_emb_proj = nn.Linear(
51
+ config.time_embedding_channels, config.hidden_channels
52
+ )
53
+ else:
54
+ self.time_emb_proj = None
55
+ self.norm_2 = layers_builder.build_norm(
56
+ config.hidden_channels, config.normalization_config
57
+ )
58
+ self.conv_2 = nn.Conv2d(
59
+ config.hidden_channels,
60
+ config.out_channels,
61
+ kernel_size=3,
62
+ stride=1,
63
+ padding=1,
64
+ )
65
+ self.act_fn = layers_builder.get_activation(config.activation_config)
66
+ if config.in_channels == config.out_channels:
67
+ self.residual_layer = nn.Identity()
68
+ else:
69
+ self.residual_layer = nn.Conv2d(
70
+ config.in_channels,
71
+ config.out_channels,
72
+ kernel_size=1,
73
+ stride=1,
74
+ padding=0,
75
+ )
76
+
77
+ def forward(
78
+ self, input_tensor: torch.Tensor, time_emb: Optional[torch.Tensor] = None
79
+ ) -> torch.Tensor:
80
+ """Forward function of the ResidualBlock2D.
81
+
82
+ Args:
83
+ input_tensor (torch.Tensor): the input tensor.
84
+ time_emb (Optional[torch.Tensor]): optional time embedding tensor.
85
+
86
+ Returns:
87
+ output hidden_states tensor after ResidualBlock2D.
88
+ """
89
+ residual = input_tensor
90
+ x = self.norm_1(input_tensor)
91
+ x = self.act_fn(x)
92
+ x = self.conv_1(x)
93
+ if self.time_emb_proj is not None:
94
+ time_emb = self.act_fn(time_emb)
95
+ time_emb = self.time_emb_proj(time_emb)[:, :, None, None]
96
+ x = x + time_emb
97
+ x = self.norm_2(x)
98
+ x = self.act_fn(x)
99
+ x = self.conv_2(x)
100
+ x = x + self.residual_layer(residual)
101
+ return x
102
+
103
+
104
+ class AttentionBlock2D(nn.Module):
105
+ """2D self attention block
106
+
107
+ x = SelfAttention(Norm(input_tensor)) + x
108
+ """
109
+
110
+ def __init__(self, config: unet_cfg.AttentionBlock2DConfig):
111
+ """Initialize an instance of the AttentionBlock2D.
112
+
113
+ Args:
114
+ config (unet_cfg.AttentionBlock2DConfig): the configuration of this block.
115
+ """
116
+ super().__init__()
117
+ self.config = config
118
+ hidden_dim = config.hidden_dim
119
+ if not hidden_dim:
120
+ hidden_dim = config.dim
121
+ self.norm = layers_builder.build_norm(
122
+ hidden_dim, config.normalization_config
123
+ )
124
+ self.attention = SelfAttention(
125
+ config.attention_batch_size,
126
+ hidden_dim,
127
+ config.attention_config,
128
+ enable_hlfb=config.enable_hlfb,
129
+ )
130
+
131
+ def forward(self, input_tensor: torch.Tensor) -> torch.Tensor:
132
+ """Forward function of the AttentionBlock2D.
133
+
134
+ Args:
135
+ input_tensor (torch.Tensor): the input tensor.
136
+
137
+ Returns:
138
+ output activation tensor after self attention.
139
+ """
140
+ residual = input_tensor
141
+ B, C, H, W = input_tensor.shape
142
+ if (
143
+ self.config.normalization_config.type
144
+ == layers_cfg.NormalizationType.GROUP_NORM
145
+ ):
146
+ x = self.norm(input_tensor)
147
+ x = x.view(B, C, H * W)
148
+ x = x.transpose(-1, -2)
149
+ else:
150
+ x = torch.permute(input_tensor, (0, 2, 3, 1))
151
+ x = self.norm(x)
152
+ x = x.view(B, H * W, C)
153
+ x = x.contiguous() # Prevent BATCH_MATMUL op in converted tflite.
154
+ x = self.attention(x)
155
+ x = x.view(B, H, W, C)
156
+ residual = torch.permute(residual, (0, 2, 3, 1))
157
+ x = x + residual
158
+ x = torch.permute(x, (0, 3, 1, 2))
159
+ return x
160
+
161
+
162
+ class CrossAttentionBlock2D(nn.Module):
163
+ """2D cross attention block
164
+
165
+ x = CrossAttention(Norm(input_tensor), context) + x
166
+ """
167
+
168
+ def __init__(self, config: unet_cfg.CrossAttentionBlock2DConfig):
169
+ """Initialize an instance of the AttentionBlock2D.
170
+
171
+ Args:
172
+ config (unet_cfg.CrossAttentionBlock2DConfig): the configuration of this
173
+ block.
174
+ """
175
+ super().__init__()
176
+ self.config = config
177
+ self.norm = layers_builder.build_norm(
178
+ config.output_dim, config.normalization_config
179
+ )
180
+ self.attention = CrossAttention(
181
+ config.attention_batch_size,
182
+ config.query_dim,
183
+ config.cross_dim,
184
+ config.hidden_dim,
185
+ config.output_dim,
186
+ config.attention_config,
187
+ enable_hlfb=config.enable_hlfb,
188
+ )
189
+
190
+ def forward(
191
+ self, input_tensor: torch.Tensor, context_tensor: torch.Tensor
192
+ ) -> torch.Tensor:
193
+ """Forward function of the CrossAttentionBlock2D.
194
+
195
+ Args:
196
+ input_tensor (torch.Tensor): the input tensor.
197
+ context_tensor (torch.Tensor): the context tensor to apply cross attention
198
+ on.
199
+
200
+ Returns:
201
+ output activation tensor after cross attention.
202
+ """
203
+ residual = input_tensor
204
+ B, C, H, W = input_tensor.shape
205
+ if (
206
+ self.config.normalization_config.type
207
+ == layers_cfg.NormalizationType.GROUP_NORM
208
+ ):
209
+ x = self.norm(input_tensor)
210
+ x = x.view(B, C, H * W)
211
+ x = x.transpose(-1, -2)
212
+ else:
213
+ x = torch.permute(input_tensor, (0, 2, 3, 1))
214
+ x = self.norm(x)
215
+ x = x.view(B, H * W, C)
216
+ x = self.attention(x, context_tensor)
217
+ x = x.view(B, H, W, C)
218
+ residual = torch.permute(residual, (0, 2, 3, 1))
219
+ x = x + residual
220
+ x = torch.permute(x, (0, 3, 1, 2))
221
+ return x
222
+
223
+
224
+ class FeedForwardBlock2D(nn.Module):
225
+ """2D feed forward block
226
+
227
+ x = w2(Activation(w1(Norm(x)))) + x
228
+ """
229
+
230
+ def __init__(
231
+ self,
232
+ config: unet_cfg.FeedForwardBlock2DConfig,
233
+ ):
234
+ super().__init__()
235
+ self.config = config
236
+ self.act = layers_builder.get_activation(config.activation_config)
237
+ self.norm = layers_builder.build_norm(
238
+ config.dim, config.normalization_config
239
+ )
240
+ if config.activation_config.type == layers_cfg.ActivationType.GE_GLU:
241
+ self.w1 = nn.Identity()
242
+ self.w2 = nn.Linear(config.hidden_dim, config.dim)
243
+ else:
244
+ self.w1 = nn.Linear(config.dim, config.hidden_dim)
245
+ self.w2 = nn.Linear(config.hidden_dim, config.dim)
246
+
247
+ def forward(self, input_tensor: torch.Tensor) -> torch.Tensor:
248
+ residual = input_tensor
249
+ B, C, H, W = input_tensor.shape
250
+ if (
251
+ self.config.normalization_config.type
252
+ == layers_cfg.NormalizationType.GROUP_NORM
253
+ ):
254
+ x = self.norm(input_tensor)
255
+ x = x.view(B, C, H * W)
256
+ x = x.transpose(-1, -2)
257
+ else:
258
+ x = torch.permute(input_tensor, (0, 2, 3, 1))
259
+ x = self.norm(x)
260
+ x = x.view(B, H * W, C)
261
+ x = self.w1(x)
262
+ x = self.act(x)
263
+ x = self.w2(x)
264
+ x = x.view(B, H, W, C)
265
+ residual = torch.permute(residual, (0, 2, 3, 1))
266
+ x = x + residual
267
+ x = torch.permute(x, (0, 3, 1, 2))
268
+ return x
269
+
270
+
271
+ class TransformerBlock2D(nn.Module):
272
+ """Basic transformer block used in UNet of diffusion model
273
+
274
+ input_tensor context_tensor
275
+ | |
276
+ ┌─────────▼─────────┐ |
277
+ │ ConvIn | │
278
+ └─────────┬─────────┘ |
279
+ | |
280
+ ▼ |
281
+ ┌───────────────────┐ |
282
+ │ Attention Block │ |
283
+ └─────────┬─────────┘ |
284
+ │ |
285
+ ┌────────────────────┐ |
286
+ │CrossAttention Block│◄─────┘
287
+ └─────────┬──────────┘
288
+
289
+ ┌─────────▼─────────┐
290
+ │ FeedForwardBlock │
291
+ └─────────┬─────────┘
292
+
293
+ ┌─────────▼─────────┐
294
+ │ ConvOut │
295
+ └─────────┬─────────┘
296
+
297
+ hidden_states
298
+ """
299
+
300
+ def __init__(
301
+ self, config: unet_cfg.TransformerBlock2DConfig, dim_override=None
302
+ ):
303
+ """Initialize an instance of the TransformerBlock2D.
304
+
305
+ Args:
306
+ config (unet_cfg.TransformerBlock2Dconfig): the configuration of this
307
+ block.
308
+ dim_override: in case specified, overrides config.attention_block_config.hidden_dim. Set to None by default.
309
+ """
310
+ super().__init__()
311
+ self.config = config
312
+ attention_block_config_dim = config.attention_block_config.dim
313
+ attention_block_config_hidden_dim = config.attention_block_config.hidden_dim
314
+ if dim_override:
315
+ attention_block_config_dim = dim_override
316
+ if not attention_block_config_hidden_dim:
317
+ attention_block_config_hidden_dim = attention_block_config_dim
318
+ self.pre_conv_norm = layers_builder.build_norm(
319
+ attention_block_config_dim, config.pre_conv_normalization_config
320
+ )
321
+ self.conv_in = nn.Conv2d(
322
+ attention_block_config_dim,
323
+ attention_block_config_hidden_dim,
324
+ kernel_size=1,
325
+ padding=0,
326
+ )
327
+ self.self_attention = AttentionBlock2D(config.attention_block_config)
328
+ self.cross_attention = CrossAttentionBlock2D(
329
+ config.cross_attention_block_config
330
+ )
331
+ self.feed_forward = FeedForwardBlock2D(config.feed_forward_block_config)
332
+ self.conv_out = nn.Conv2d(
333
+ attention_block_config_hidden_dim,
334
+ attention_block_config_dim,
335
+ kernel_size=1,
336
+ padding=0,
337
+ )
338
+
339
+ def forward(self, x: torch.Tensor, context: torch.Tensor):
340
+ """Forward function of the TransformerBlock2D.
341
+
342
+ Args:
343
+ input_tensor (torch.Tensor): the input tensor.
344
+ context_tensor (torch.Tensor): the context tensor to apply cross attention
345
+ on.
346
+
347
+ Returns:
348
+ output activation tensor after transformer block.
349
+ """
350
+ residual_long = x
351
+
352
+ x = self.pre_conv_norm(x)
353
+ x = self.conv_in(x)
354
+ x = self.self_attention(x)
355
+ x = self.cross_attention(x, context)
356
+ x = self.feed_forward(x)
357
+
358
+ x = self.conv_out(x)
359
+ x = x + residual_long
360
+
361
+ return x
362
+
363
+
364
+ class DownEncoderBlock2D(nn.Module):
365
+ """Encoder block containing several residual blocks with optional interleaved transformer blocks.
366
+
367
+ input_tensor
368
+ |
369
+ ┌──────────────▼─────────────┐
370
+ │ ┌────────────────────┐ │
371
+ │ │ ResidualBlock2D │ │
372
+ │ └──────────┬─────────┘ │
373
+ │ │ │ num_layers
374
+ │ ┌────────────────────┐ │
375
+ │ │ (Optional) │ │
376
+ │ │ TransformerBlock2D │ │
377
+ │ └──────────┬─────────┘ │
378
+ └──────────────┬─────────────┘
379
+
380
+ ┌──────────▼─────────┐
381
+ │ (Optional) │
382
+ │ Downsampler │
383
+ └──────────┬─────────┘
384
+
385
+
386
+ hidden_states
387
+ """
388
+
389
+ def __init__(self, config: unet_cfg.DownEncoderBlock2DConfig):
390
+ """Initialize an instance of the DownEncoderBlock2D.
391
+
392
+ Args:
393
+ config (unet_cfg.DownEncoderBlock2DConfig): the configuration of this
394
+ block.
395
+ """
396
+ super().__init__()
397
+ self.config = config
398
+ resnets = []
399
+ transformers = []
400
+ hidden_channels = config.hidden_channels
401
+ if not hidden_channels:
402
+ hidden_channels = config.out_channels
403
+ for i in range(config.num_layers):
404
+ input_channels = config.in_channels if i == 0 else config.out_channels
405
+ resnets.append(
406
+ ResidualBlock2D(
407
+ unet_cfg.ResidualBlock2DConfig(
408
+ in_channels=input_channels,
409
+ hidden_channels=hidden_channels,
410
+ out_channels=config.out_channels,
411
+ residual_out_channels=config.out_channels,
412
+ time_embedding_channels=config.time_embedding_channels,
413
+ normalization_config=config.normalization_config,
414
+ activation_config=config.activation_config,
415
+ )
416
+ )
417
+ )
418
+ if config.transformer_block_config:
419
+ transformers.append(TransformerBlock2D(config.transformer_block_config))
420
+ self.resnets = nn.ModuleList(resnets)
421
+ self.transformers = (
422
+ nn.ModuleList(transformers) if len(transformers) > 0 else None
423
+ )
424
+ if config.add_downsample:
425
+ self.downsampler = unet_builder.build_downsampling(config.sampling_config)
426
+ else:
427
+ self.downsampler = None
428
+
429
+ def forward(
430
+ self,
431
+ input_tensor: torch.Tensor,
432
+ time_emb: Optional[torch.Tensor] = None,
433
+ context_tensor: Optional[torch.Tensor] = None,
434
+ output_hidden_states: bool = False,
435
+ ) -> Union[torch.Tensor, Tuple[torch.Tensor, List[torch.Tensor]]]:
436
+ """Forward function of the DownEncoderBlock2D.
437
+
438
+ Args:
439
+ input_tensor (torch.Tensor): the input tensor.
440
+ time_emb (torch.Tensor): optional time embedding tensor, if the block is
441
+ configured to accept time embedding.
442
+ context_tensor (torch.Tensor): optional context tensor, if the block if
443
+ configured to use transofrmer block.
444
+ output_hidden_states (bool): whether to output hidden states, usually for
445
+ skip connections.
446
+
447
+ Returns:
448
+ output hidden_states tensor after DownEncoderBlock2D.
449
+ """
450
+ hidden_states = input_tensor
451
+ output_states = []
452
+ for i, resnet in enumerate(self.resnets):
453
+ hidden_states = resnet(hidden_states, time_emb)
454
+ if self.transformers is not None:
455
+ hidden_states = self.transformers[i](hidden_states, context_tensor)
456
+ output_states.append(hidden_states)
457
+ if self.downsampler:
458
+ hidden_states = self.downsampler(hidden_states)
459
+ output_states.append(hidden_states)
460
+ if output_hidden_states:
461
+ return hidden_states, output_states
462
+ else:
463
+ return hidden_states
464
+
465
+
466
+ class UpDecoderBlock2D(nn.Module):
467
+ """Decoder block containing several residual blocks with optional interleaved transformer blocks.
468
+
469
+ input_tensor
470
+ |
471
+ ┌──────────────▼─────────────┐
472
+ │ ┌────────────────────┐ │
473
+ │ │ ResidualBlock2D │ │
474
+ │ └──────────┬─────────┘ │
475
+ │ │ │ num_layers
476
+ │ ┌────────────────────┐ │
477
+ │ │ (Optional) │ │
478
+ │ │ TransformerBlock2D │ │
479
+ │ └──────────┬─────────┘ │
480
+ └──────────────┬─────────────┘
481
+
482
+ ┌──────────▼─────────┐
483
+ │ (Optional) │
484
+ │ Upsampler │
485
+ └──────────┬─────────┘
486
+
487
+ ┌──────────▼─────────┐
488
+ │ (Optional) │
489
+ │ Conv2D │
490
+ └──────────┬─────────┘
491
+
492
+
493
+ hidden_states
494
+ """
495
+
496
+ def __init__(self, config: unet_cfg.UpDecoderBlock2DConfig):
497
+ """Initialize an instance of the UpDecoderBlock2D.
498
+
499
+ Args:
500
+ config (unet_cfg.UpDecoderBlock2DConfig): the configuration of this block.
501
+ """
502
+ super().__init__()
503
+ self.config = config
504
+ resnets = []
505
+ transformers = []
506
+ for i in range(config.num_layers):
507
+ input_channels = config.in_channels if i == 0 else config.out_channels
508
+ resnets.append(
509
+ ResidualBlock2D(
510
+ unet_cfg.ResidualBlock2DConfig(
511
+ in_channels=input_channels,
512
+ hidden_channels=config.out_channels,
513
+ out_channels=config.out_channels,
514
+ time_embedding_channels=config.time_embedding_channels,
515
+ normalization_config=config.normalization_config,
516
+ activation_config=config.activation_config,
517
+ )
518
+ )
519
+ )
520
+ if config.transformer_block_config:
521
+ transformers.append(TransformerBlock2D(config.transformer_block_config))
522
+ self.resnets = nn.ModuleList(resnets)
523
+ self.transformers = (
524
+ nn.ModuleList(transformers) if len(transformers) > 0 else None
525
+ )
526
+ if config.add_upsample:
527
+ self.upsampler = unet_builder.build_upsampling(config.sampling_config)
528
+ if config.upsample_conv:
529
+ self.upsample_conv = nn.Conv2d(
530
+ config.out_channels,
531
+ config.out_channels,
532
+ kernel_size=3,
533
+ stride=1,
534
+ padding=1,
535
+ )
536
+ else:
537
+ self.upsampler = None
538
+
539
+ def forward(
540
+ self,
541
+ input_tensor: torch.Tensor,
542
+ time_emb: Optional[torch.Tensor] = None,
543
+ context_tensor: Optional[torch.Tensor] = None,
544
+ ) -> torch.Tensor:
545
+ """Forward function of the UpDecoderBlock2D.
546
+
547
+ Args:
548
+ input_tensor (torch.Tensor): the input tensor.
549
+ time_emb (torch.Tensor): optional time embedding tensor, if the block is
550
+ configured to accept time embedding.
551
+ context_tensor (torch.Tensor): optional context tensor, if the block if
552
+ configured to use transofrmer block.
553
+
554
+ Returns:
555
+ output hidden_states tensor after UpDecoderBlock2D.
556
+ """
557
+ hidden_states = input_tensor
558
+ for i, resnet in enumerate(self.resnets):
559
+ hidden_states = resnet(hidden_states, time_emb)
560
+ if self.transformers is not None:
561
+ hidden_states = self.transformers[i](hidden_states, context_tensor)
562
+ if self.upsampler:
563
+ hidden_states = self.upsampler(hidden_states)
564
+ if self.upsample_conv:
565
+ hidden_states = self.upsample_conv(hidden_states)
566
+ return hidden_states
567
+
568
+
569
+ class SkipUpDecoderBlock2D(nn.Module):
570
+ """Decoder block contains skip connections and residual blocks with optional interleaved transformer blocks.
571
+
572
+ input_tensor, skip_connection_tensors
573
+ |
574
+ ┌──────────────▼─────────────┐
575
+ │ ┌────────────────────┐ │
576
+ │ │ ResidualBlock2D │ │
577
+ │ └──────────┬─────────┘ │
578
+ │ │ │ num_layers
579
+ │ ┌────────────────────┐ │
580
+ │ │ (Optional) │ │
581
+ │ │ TransformerBlock2D │ │
582
+ │ └──────────┬─────────┘ │
583
+ └──────────────┬─────────────┘
584
+
585
+ ┌──────────▼─────────┐
586
+ │ (Optional) │
587
+ │ Upsampler │
588
+ └──────────┬─────────┘
589
+
590
+ ┌──────────▼─────────┐
591
+ │ (Optional) │
592
+ │ Conv2D │
593
+ └──────────┬─────────┘
594
+
595
+
596
+ hidden_states
597
+ """
598
+
599
+ def __init__(self, config: unet_cfg.SkipUpDecoderBlock2DConfig):
600
+ """Initialize an instance of the SkipUpDecoderBlock2D.
601
+
602
+ Args:
603
+ config (unet_cfg.SkipUpDecoderBlock2DConfig): the configuration of this
604
+ block.
605
+ """
606
+ super().__init__()
607
+ self.config = config
608
+ hidden_channels = config.hidden_channels
609
+ if not hidden_channels:
610
+ hidden_channels = config.out_channels
611
+ sub_block_channels = config.sub_block_channels
612
+ if sub_block_channels:
613
+ assert len(sub_block_channels) == config.num_layers, (
614
+ "Assertion failed: The length of 'sub_block_channels'"
615
+ f" ({len(sub_block_channels)}) does not match 'config.num_layers'"
616
+ f" ({config.num_layers})."
617
+ )
618
+ else:
619
+ sub_block_channels = [config.out_channels] * config.num_layers
620
+ resnets = []
621
+ transformers = []
622
+ for i in range(config.num_layers):
623
+ resnet_in_channels = (
624
+ config.prev_out_channels if i == 0 else sub_block_channels[i - 1]
625
+ )
626
+ res_skip_channels = (
627
+ config.in_channels
628
+ if (i == config.num_layers - 1)
629
+ else config.out_channels
630
+ )
631
+ residual_out_channel = sub_block_channels[i]
632
+ resnets.append(
633
+ ResidualBlock2D(
634
+ unet_cfg.ResidualBlock2DConfig(
635
+ in_channels=resnet_in_channels + res_skip_channels,
636
+ hidden_channels=hidden_channels,
637
+ out_channels=sub_block_channels[i],
638
+ residual_out_channels=residual_out_channel,
639
+ time_embedding_channels=config.time_embedding_channels,
640
+ normalization_config=config.normalization_config,
641
+ activation_config=config.activation_config,
642
+ )
643
+ )
644
+ )
645
+ if config.transformer_block_config:
646
+ transformers.append(
647
+ TransformerBlock2D(
648
+ config.transformer_block_config,
649
+ dim_override=sub_block_channels[i],
650
+ )
651
+ )
652
+ self.resnets = nn.ModuleList(resnets)
653
+ self.transformers = (
654
+ nn.ModuleList(transformers) if len(transformers) > 0 else None
655
+ )
656
+ if config.add_upsample:
657
+ self.upsampler = unet_builder.build_upsampling(config.sampling_config)
658
+ if config.upsample_conv:
659
+ self.upsample_conv = nn.Conv2d(
660
+ config.out_channels,
661
+ sub_block_channels[0],
662
+ kernel_size=3,
663
+ stride=1,
664
+ padding=1,
665
+ )
666
+ else:
667
+ self.upsampler = None
668
+
669
+ def forward(
670
+ self,
671
+ input_tensor: torch.Tensor,
672
+ skip_connection_tensors: List[torch.Tensor],
673
+ time_emb: Optional[torch.Tensor] = None,
674
+ context_tensor: Optional[torch.Tensor] = None,
675
+ ) -> torch.Tensor:
676
+ """Forward function of the SkipUpDecoderBlock2D.
677
+
678
+ Args:
679
+ input_tensor (torch.Tensor): the input tensor.
680
+ skip_connection_tensors (List[torch.Tensor]): the skip connection tensors
681
+ from encoder blocks.
682
+ time_emb (torch.Tensor): optional time embedding tensor, if the block is
683
+ configured to accept time embedding.
684
+ context_tensor (torch.Tensor): optional context tensor, if the block if
685
+ configured to use transofrmer block.
686
+
687
+ Returns:
688
+ output hidden_states tensor after SkipUpDecoderBlock2D.
689
+ """
690
+ hidden_states = input_tensor
691
+ for i, (resnet, skip_connection_tensor) in enumerate(
692
+ zip(self.resnets, skip_connection_tensors)
693
+ ):
694
+ hidden_states = torch.cat([hidden_states, skip_connection_tensor], dim=1)
695
+ hidden_states = resnet(hidden_states, time_emb)
696
+ if self.transformers is not None:
697
+ hidden_states = self.transformers[i](hidden_states, context_tensor)
698
+ if self.upsampler:
699
+ hidden_states = self.upsampler(hidden_states)
700
+ if self.upsample_conv:
701
+ hidden_states = self.upsample_conv(hidden_states)
702
+ return hidden_states
703
+
704
+
705
+ class MidBlock2D(nn.Module):
706
+ """Middle block containing at least one residual blocks with optional interleaved attention blocks.
707
+
708
+ input_tensor
709
+ |
710
+
711
+ ┌───────────────────┐
712
+ │ ResidualBlock2D │
713
+ └─────────┬─────────┘
714
+
715
+ ┌──────────────▼─────────────┐
716
+ │ ┌────────────────────┐ │
717
+ │ │ (Optional) │ │
718
+ │ │ AttentionBlock2D │ │
719
+ │ └──────────┬─────────┘ │
720
+ │ │ │
721
+ │ ┌──────────▼─────────┐ │
722
+ │ │ (Optional) │ │ num_layers
723
+ │ │ TransformerBlock2D │ │
724
+ │ └──────────┬─────────┘ │
725
+ │ │ │
726
+ │ ┌──────────▼─────────┐ │
727
+ │ │ ResidualBlock2D │ │
728
+ │ └────────────────────┘ │
729
+ └──────────────┬─────────────┘
730
+
731
+
732
+ hidden_states
733
+ """
734
+
735
+ def __init__(self, config: unet_cfg.MidBlock2DConfig):
736
+ """Initialize an instance of the MidBlock2D.
737
+
738
+ Args:
739
+ config (unet_cfg.MidBlock2DConfig): the configuration of this block.
740
+ """
741
+ super().__init__()
742
+ self.config = config
743
+ resnets = [
744
+ ResidualBlock2D(
745
+ unet_cfg.ResidualBlock2DConfig(
746
+ in_channels=config.in_channels,
747
+ hidden_channels=config.in_channels,
748
+ out_channels=config.in_channels,
749
+ residual_out_channels=config.in_channels,
750
+ time_embedding_channels=config.time_embedding_channels,
751
+ normalization_config=config.normalization_config,
752
+ activation_config=config.activation_config,
753
+ )
754
+ )
755
+ ]
756
+ attentions = []
757
+ transformers = []
758
+ for i in range(config.num_layers):
759
+ if self.config.attention_block_config:
760
+ attentions.append(AttentionBlock2D(config.attention_block_config))
761
+ if self.config.transformer_block_config:
762
+ transformers.append(TransformerBlock2D(config.transformer_block_config))
763
+ resnets.append(
764
+ ResidualBlock2D(
765
+ unet_cfg.ResidualBlock2DConfig(
766
+ in_channels=config.in_channels,
767
+ hidden_channels=config.in_channels,
768
+ out_channels=config.in_channels,
769
+ time_embedding_channels=config.time_embedding_channels,
770
+ normalization_config=config.normalization_config,
771
+ activation_config=config.activation_config,
772
+ )
773
+ )
774
+ )
775
+ self.resnets = nn.ModuleList(resnets)
776
+ self.attentions = nn.ModuleList(attentions) if len(attentions) > 0 else None
777
+ self.transformers = (
778
+ nn.ModuleList(transformers) if len(transformers) > 0 else None
779
+ )
780
+
781
+ def forward(
782
+ self,
783
+ input_tensor: torch.Tensor,
784
+ time_emb: Optional[torch.Tensor] = None,
785
+ context_tensor: Optional[torch.Tensor] = None,
786
+ ) -> torch.Tensor:
787
+ """Forward function of the MidBlock2D.
788
+
789
+ Args:
790
+ input_tensor (torch.Tensor): the input tensor.
791
+ time_emb (torch.Tensor): optional time embedding tensor, if the block is
792
+ configured to accept time embedding.
793
+ context_tensor (torch.Tensor): optional context tensor, if the block if
794
+ configured to use transofrmer block.
795
+
796
+ Returns:
797
+ output hidden_states tensor after MidBlock2D.
798
+ """
799
+ hidden_states = self.resnets[0](input_tensor, time_emb)
800
+ for i, resnet in enumerate(self.resnets[1:]):
801
+ if self.attentions is not None:
802
+ hidden_states = self.attentions[i](hidden_states)
803
+ if self.transformers is not None:
804
+ hidden_states = self.transformers[i](hidden_states, context_tensor)
805
+ hidden_states = resnet(hidden_states, time_emb)
806
+ return hidden_states