ai-edge-torch-nightly 0.3.0.dev20250114__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- ai_edge_torch/__init__.py +32 -0
- ai_edge_torch/_config.py +69 -0
- ai_edge_torch/_convert/__init__.py +14 -0
- ai_edge_torch/_convert/conversion.py +153 -0
- ai_edge_torch/_convert/conversion_utils.py +64 -0
- ai_edge_torch/_convert/converter.py +270 -0
- ai_edge_torch/_convert/fx_passes/__init__.py +23 -0
- ai_edge_torch/_convert/fx_passes/build_aten_composite_pass.py +288 -0
- ai_edge_torch/_convert/fx_passes/build_interpolate_composite_pass.py +131 -0
- ai_edge_torch/_convert/fx_passes/inject_mlir_debuginfo_pass.py +73 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/__init__.py +16 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_check.py +258 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_mark.py +50 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +18 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +68 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +216 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +449 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +30 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/pass_body.py +303 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/utils.py +64 -0
- ai_edge_torch/_convert/fx_passes/remove_non_user_outputs_pass.py +52 -0
- ai_edge_torch/_convert/signature.py +66 -0
- ai_edge_torch/_convert/test/__init__.py +14 -0
- ai_edge_torch/_convert/test/test_convert.py +558 -0
- ai_edge_torch/_convert/test/test_convert_composites.py +234 -0
- ai_edge_torch/_convert/test/test_convert_multisig.py +189 -0
- ai_edge_torch/_convert/test/test_to_channel_last_io.py +96 -0
- ai_edge_torch/_convert/to_channel_last_io.py +92 -0
- ai_edge_torch/conftest.py +20 -0
- ai_edge_torch/debug/__init__.py +17 -0
- ai_edge_torch/debug/culprit.py +496 -0
- ai_edge_torch/debug/test/__init__.py +14 -0
- ai_edge_torch/debug/test/test_culprit.py +140 -0
- ai_edge_torch/debug/test/test_search_model.py +51 -0
- ai_edge_torch/debug/utils.py +59 -0
- ai_edge_torch/experimental/__init__.py +14 -0
- ai_edge_torch/fx_pass_base.py +110 -0
- ai_edge_torch/generative/__init__.py +14 -0
- ai_edge_torch/generative/examples/__init__.py +14 -0
- ai_edge_torch/generative/examples/amd_llama_135m/__init__.py +14 -0
- ai_edge_torch/generative/examples/amd_llama_135m/amd_llama_135m.py +87 -0
- ai_edge_torch/generative/examples/amd_llama_135m/convert_to_tflite.py +70 -0
- ai_edge_torch/generative/examples/amd_llama_135m/verify.py +72 -0
- ai_edge_torch/generative/examples/gemma/__init__.py +14 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/gemma/gemma1.py +107 -0
- ai_edge_torch/generative/examples/gemma/gemma2.py +295 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma1.py +56 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma2.py +43 -0
- ai_edge_torch/generative/examples/gemma/verify_util.py +157 -0
- ai_edge_torch/generative/examples/llama/__init__.py +14 -0
- ai_edge_torch/generative/examples/llama/convert_to_tflite.py +91 -0
- ai_edge_torch/generative/examples/llama/llama.py +196 -0
- ai_edge_torch/generative/examples/llama/verify.py +88 -0
- ai_edge_torch/generative/examples/moonshine/__init__.py +14 -0
- ai_edge_torch/generative/examples/moonshine/convert_moonshine_to_tflite.py +50 -0
- ai_edge_torch/generative/examples/moonshine/moonshine.py +103 -0
- ai_edge_torch/generative/examples/openelm/__init__.py +14 -0
- ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/openelm/openelm.py +127 -0
- ai_edge_torch/generative/examples/openelm/verify.py +71 -0
- ai_edge_torch/generative/examples/paligemma/__init__.py +14 -0
- ai_edge_torch/generative/examples/paligemma/convert_to_tflite.py +95 -0
- ai_edge_torch/generative/examples/paligemma/decoder.py +151 -0
- ai_edge_torch/generative/examples/paligemma/decoder2.py +177 -0
- ai_edge_torch/generative/examples/paligemma/image_encoder.py +160 -0
- ai_edge_torch/generative/examples/paligemma/paligemma.py +179 -0
- ai_edge_torch/generative/examples/paligemma/verify.py +161 -0
- ai_edge_torch/generative/examples/paligemma/verify_decoder.py +75 -0
- ai_edge_torch/generative/examples/paligemma/verify_decoder2.py +72 -0
- ai_edge_torch/generative/examples/paligemma/verify_image_encoder.py +99 -0
- ai_edge_torch/generative/examples/phi/__init__.py +14 -0
- ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/phi/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/phi/phi2.py +107 -0
- ai_edge_torch/generative/examples/phi/phi3.py +219 -0
- ai_edge_torch/generative/examples/phi/verify.py +64 -0
- ai_edge_torch/generative/examples/phi/verify_phi3.py +69 -0
- ai_edge_torch/generative/examples/qwen/__init__.py +14 -0
- ai_edge_torch/generative/examples/qwen/convert_to_tflite.py +93 -0
- ai_edge_torch/generative/examples/qwen/qwen.py +134 -0
- ai_edge_torch/generative/examples/qwen/verify.py +88 -0
- ai_edge_torch/generative/examples/smollm/__init__.py +14 -0
- ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/smollm/convert_v2_to_tflite.py +71 -0
- ai_edge_torch/generative/examples/smollm/smollm.py +125 -0
- ai_edge_torch/generative/examples/smollm/verify.py +86 -0
- ai_edge_torch/generative/examples/stable_diffusion/__init__.py +14 -0
- ai_edge_torch/generative/examples/stable_diffusion/attention.py +108 -0
- ai_edge_torch/generative/examples/stable_diffusion/clip.py +185 -0
- ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +173 -0
- ai_edge_torch/generative/examples/stable_diffusion/decoder.py +398 -0
- ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +749 -0
- ai_edge_torch/generative/examples/stable_diffusion/encoder.py +119 -0
- ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +254 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/__init__.py +19 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +62 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +66 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +74 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +39 -0
- ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +111 -0
- ai_edge_torch/generative/examples/stable_diffusion/util.py +77 -0
- ai_edge_torch/generative/examples/t5/__init__.py +14 -0
- ai_edge_torch/generative/examples/t5/convert_to_tflite.py +138 -0
- ai_edge_torch/generative/examples/t5/t5.py +655 -0
- ai_edge_torch/generative/examples/t5/t5_attention.py +246 -0
- ai_edge_torch/generative/examples/test_models/__init__.py +14 -0
- ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
- ai_edge_torch/generative/examples/test_models/toy_model.py +156 -0
- ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +138 -0
- ai_edge_torch/generative/examples/tiny_llama/__init__.py +14 -0
- ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +88 -0
- ai_edge_torch/generative/examples/tiny_llama/verify.py +72 -0
- ai_edge_torch/generative/fx_passes/__init__.py +30 -0
- ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +50 -0
- ai_edge_torch/generative/layers/__init__.py +14 -0
- ai_edge_torch/generative/layers/attention.py +399 -0
- ai_edge_torch/generative/layers/attention_utils.py +210 -0
- ai_edge_torch/generative/layers/builder.py +160 -0
- ai_edge_torch/generative/layers/feed_forward.py +120 -0
- ai_edge_torch/generative/layers/kv_cache.py +204 -0
- ai_edge_torch/generative/layers/lora.py +557 -0
- ai_edge_torch/generative/layers/model_config.py +238 -0
- ai_edge_torch/generative/layers/normalization.py +222 -0
- ai_edge_torch/generative/layers/rotary_position_embedding.py +94 -0
- ai_edge_torch/generative/layers/scaled_dot_product_attention.py +144 -0
- ai_edge_torch/generative/layers/unet/__init__.py +14 -0
- ai_edge_torch/generative/layers/unet/blocks_2d.py +806 -0
- ai_edge_torch/generative/layers/unet/builder.py +50 -0
- ai_edge_torch/generative/layers/unet/model_config.py +282 -0
- ai_edge_torch/generative/quantize/__init__.py +14 -0
- ai_edge_torch/generative/quantize/example.py +47 -0
- ai_edge_torch/generative/quantize/quant_attrs.py +68 -0
- ai_edge_torch/generative/quantize/quant_recipe.py +154 -0
- ai_edge_torch/generative/quantize/quant_recipe_utils.py +62 -0
- ai_edge_torch/generative/quantize/quant_recipes.py +56 -0
- ai_edge_torch/generative/quantize/supported_schemes.py +32 -0
- ai_edge_torch/generative/test/__init__.py +14 -0
- ai_edge_torch/generative/test/test_custom_dus.py +107 -0
- ai_edge_torch/generative/test/test_kv_cache.py +120 -0
- ai_edge_torch/generative/test/test_loader.py +83 -0
- ai_edge_torch/generative/test/test_lora.py +147 -0
- ai_edge_torch/generative/test/test_model_conversion.py +191 -0
- ai_edge_torch/generative/test/test_model_conversion_large.py +362 -0
- ai_edge_torch/generative/test/test_quantize.py +183 -0
- ai_edge_torch/generative/test/utils.py +82 -0
- ai_edge_torch/generative/utilities/__init__.py +15 -0
- ai_edge_torch/generative/utilities/converter.py +215 -0
- ai_edge_torch/generative/utilities/dynamic_update_slice.py +56 -0
- ai_edge_torch/generative/utilities/loader.py +398 -0
- ai_edge_torch/generative/utilities/model_builder.py +180 -0
- ai_edge_torch/generative/utilities/moonshine_loader.py +154 -0
- ai_edge_torch/generative/utilities/stable_diffusion_loader.py +1032 -0
- ai_edge_torch/generative/utilities/t5_loader.py +512 -0
- ai_edge_torch/generative/utilities/transformers_verifier.py +42 -0
- ai_edge_torch/generative/utilities/verifier.py +335 -0
- ai_edge_torch/hlfb/__init__.py +16 -0
- ai_edge_torch/hlfb/mark_pattern/__init__.py +153 -0
- ai_edge_torch/hlfb/mark_pattern/fx_utils.py +69 -0
- ai_edge_torch/hlfb/mark_pattern/pattern.py +288 -0
- ai_edge_torch/hlfb/test/__init__.py +14 -0
- ai_edge_torch/hlfb/test/test_mark_pattern.py +185 -0
- ai_edge_torch/lowertools/__init__.py +18 -0
- ai_edge_torch/lowertools/_shim.py +86 -0
- ai_edge_torch/lowertools/common_utils.py +142 -0
- ai_edge_torch/lowertools/odml_torch_utils.py +260 -0
- ai_edge_torch/lowertools/test_utils.py +62 -0
- ai_edge_torch/lowertools/torch_xla_utils.py +301 -0
- ai_edge_torch/lowertools/translate_recipe.py +163 -0
- ai_edge_torch/model.py +177 -0
- ai_edge_torch/odml_torch/__init__.py +20 -0
- ai_edge_torch/odml_torch/_torch_future.py +88 -0
- ai_edge_torch/odml_torch/_torch_library.py +19 -0
- ai_edge_torch/odml_torch/composite/__init__.py +16 -0
- ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
- ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
- ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
- ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
- ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
- ai_edge_torch/odml_torch/export.py +403 -0
- ai_edge_torch/odml_torch/export_utils.py +157 -0
- ai_edge_torch/odml_torch/jax_bridge/__init__.py +18 -0
- ai_edge_torch/odml_torch/jax_bridge/_wrap.py +180 -0
- ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
- ai_edge_torch/odml_torch/lowerings/__init__.py +27 -0
- ai_edge_torch/odml_torch/lowerings/_basic.py +294 -0
- ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
- ai_edge_torch/odml_torch/lowerings/_convolution.py +243 -0
- ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +285 -0
- ai_edge_torch/odml_torch/lowerings/_layer_norm.py +87 -0
- ai_edge_torch/odml_torch/lowerings/_quantized_decomposed.py +177 -0
- ai_edge_torch/odml_torch/lowerings/_rand.py +142 -0
- ai_edge_torch/odml_torch/lowerings/context.py +42 -0
- ai_edge_torch/odml_torch/lowerings/decomp.py +69 -0
- ai_edge_torch/odml_torch/lowerings/registry.py +65 -0
- ai_edge_torch/odml_torch/lowerings/utils.py +201 -0
- ai_edge_torch/odml_torch/passes/__init__.py +38 -0
- ai_edge_torch/odml_torch/tf_integration.py +156 -0
- ai_edge_torch/quantize/__init__.py +16 -0
- ai_edge_torch/quantize/pt2e_quantizer.py +466 -0
- ai_edge_torch/quantize/pt2e_quantizer_utils.py +1061 -0
- ai_edge_torch/quantize/quant_config.py +85 -0
- ai_edge_torch/testing/__init__.py +14 -0
- ai_edge_torch/testing/model_coverage/__init__.py +16 -0
- ai_edge_torch/testing/model_coverage/model_coverage.py +145 -0
- ai_edge_torch/version.py +16 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/LICENSE +202 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/METADATA +44 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/RECORD +213 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/WHEEL +5 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/top_level.txt +1 -0
@@ -0,0 +1,806 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
from typing import List, Optional, Tuple, Union
|
17
|
+
|
18
|
+
from ai_edge_torch.generative.layers.attention import CrossAttention
|
19
|
+
from ai_edge_torch.generative.layers.attention import SelfAttention
|
20
|
+
import ai_edge_torch.generative.layers.builder as layers_builder
|
21
|
+
import ai_edge_torch.generative.layers.model_config as layers_cfg
|
22
|
+
import ai_edge_torch.generative.layers.unet.builder as unet_builder
|
23
|
+
import ai_edge_torch.generative.layers.unet.model_config as unet_cfg
|
24
|
+
import torch
|
25
|
+
from torch import nn
|
26
|
+
|
27
|
+
|
28
|
+
class ResidualBlock2D(nn.Module):
|
29
|
+
"""2D Residual block containing two Conv2D with optional time embedding as input."""
|
30
|
+
|
31
|
+
def __init__(self, config: unet_cfg.ResidualBlock2DConfig):
|
32
|
+
"""Initialize an instance of the ResidualBlock2D.
|
33
|
+
|
34
|
+
Args:
|
35
|
+
config (unet_cfg.ResidualBlock2DConfig): the configuration of this block.
|
36
|
+
"""
|
37
|
+
super().__init__()
|
38
|
+
self.config = config
|
39
|
+
self.norm_1 = layers_builder.build_norm(
|
40
|
+
config.in_channels, config.normalization_config
|
41
|
+
)
|
42
|
+
self.conv_1 = nn.Conv2d(
|
43
|
+
config.in_channels,
|
44
|
+
config.hidden_channels,
|
45
|
+
kernel_size=3,
|
46
|
+
stride=1,
|
47
|
+
padding=1,
|
48
|
+
)
|
49
|
+
if config.time_embedding_channels is not None:
|
50
|
+
self.time_emb_proj = nn.Linear(
|
51
|
+
config.time_embedding_channels, config.hidden_channels
|
52
|
+
)
|
53
|
+
else:
|
54
|
+
self.time_emb_proj = None
|
55
|
+
self.norm_2 = layers_builder.build_norm(
|
56
|
+
config.hidden_channels, config.normalization_config
|
57
|
+
)
|
58
|
+
self.conv_2 = nn.Conv2d(
|
59
|
+
config.hidden_channels,
|
60
|
+
config.out_channels,
|
61
|
+
kernel_size=3,
|
62
|
+
stride=1,
|
63
|
+
padding=1,
|
64
|
+
)
|
65
|
+
self.act_fn = layers_builder.get_activation(config.activation_config)
|
66
|
+
if config.in_channels == config.out_channels:
|
67
|
+
self.residual_layer = nn.Identity()
|
68
|
+
else:
|
69
|
+
self.residual_layer = nn.Conv2d(
|
70
|
+
config.in_channels,
|
71
|
+
config.out_channels,
|
72
|
+
kernel_size=1,
|
73
|
+
stride=1,
|
74
|
+
padding=0,
|
75
|
+
)
|
76
|
+
|
77
|
+
def forward(
|
78
|
+
self, input_tensor: torch.Tensor, time_emb: Optional[torch.Tensor] = None
|
79
|
+
) -> torch.Tensor:
|
80
|
+
"""Forward function of the ResidualBlock2D.
|
81
|
+
|
82
|
+
Args:
|
83
|
+
input_tensor (torch.Tensor): the input tensor.
|
84
|
+
time_emb (Optional[torch.Tensor]): optional time embedding tensor.
|
85
|
+
|
86
|
+
Returns:
|
87
|
+
output hidden_states tensor after ResidualBlock2D.
|
88
|
+
"""
|
89
|
+
residual = input_tensor
|
90
|
+
x = self.norm_1(input_tensor)
|
91
|
+
x = self.act_fn(x)
|
92
|
+
x = self.conv_1(x)
|
93
|
+
if self.time_emb_proj is not None:
|
94
|
+
time_emb = self.act_fn(time_emb)
|
95
|
+
time_emb = self.time_emb_proj(time_emb)[:, :, None, None]
|
96
|
+
x = x + time_emb
|
97
|
+
x = self.norm_2(x)
|
98
|
+
x = self.act_fn(x)
|
99
|
+
x = self.conv_2(x)
|
100
|
+
x = x + self.residual_layer(residual)
|
101
|
+
return x
|
102
|
+
|
103
|
+
|
104
|
+
class AttentionBlock2D(nn.Module):
|
105
|
+
"""2D self attention block
|
106
|
+
|
107
|
+
x = SelfAttention(Norm(input_tensor)) + x
|
108
|
+
"""
|
109
|
+
|
110
|
+
def __init__(self, config: unet_cfg.AttentionBlock2DConfig):
|
111
|
+
"""Initialize an instance of the AttentionBlock2D.
|
112
|
+
|
113
|
+
Args:
|
114
|
+
config (unet_cfg.AttentionBlock2DConfig): the configuration of this block.
|
115
|
+
"""
|
116
|
+
super().__init__()
|
117
|
+
self.config = config
|
118
|
+
hidden_dim = config.hidden_dim
|
119
|
+
if not hidden_dim:
|
120
|
+
hidden_dim = config.dim
|
121
|
+
self.norm = layers_builder.build_norm(
|
122
|
+
hidden_dim, config.normalization_config
|
123
|
+
)
|
124
|
+
self.attention = SelfAttention(
|
125
|
+
config.attention_batch_size,
|
126
|
+
hidden_dim,
|
127
|
+
config.attention_config,
|
128
|
+
enable_hlfb=config.enable_hlfb,
|
129
|
+
)
|
130
|
+
|
131
|
+
def forward(self, input_tensor: torch.Tensor) -> torch.Tensor:
|
132
|
+
"""Forward function of the AttentionBlock2D.
|
133
|
+
|
134
|
+
Args:
|
135
|
+
input_tensor (torch.Tensor): the input tensor.
|
136
|
+
|
137
|
+
Returns:
|
138
|
+
output activation tensor after self attention.
|
139
|
+
"""
|
140
|
+
residual = input_tensor
|
141
|
+
B, C, H, W = input_tensor.shape
|
142
|
+
if (
|
143
|
+
self.config.normalization_config.type
|
144
|
+
== layers_cfg.NormalizationType.GROUP_NORM
|
145
|
+
):
|
146
|
+
x = self.norm(input_tensor)
|
147
|
+
x = x.view(B, C, H * W)
|
148
|
+
x = x.transpose(-1, -2)
|
149
|
+
else:
|
150
|
+
x = torch.permute(input_tensor, (0, 2, 3, 1))
|
151
|
+
x = self.norm(x)
|
152
|
+
x = x.view(B, H * W, C)
|
153
|
+
x = x.contiguous() # Prevent BATCH_MATMUL op in converted tflite.
|
154
|
+
x = self.attention(x)
|
155
|
+
x = x.view(B, H, W, C)
|
156
|
+
residual = torch.permute(residual, (0, 2, 3, 1))
|
157
|
+
x = x + residual
|
158
|
+
x = torch.permute(x, (0, 3, 1, 2))
|
159
|
+
return x
|
160
|
+
|
161
|
+
|
162
|
+
class CrossAttentionBlock2D(nn.Module):
|
163
|
+
"""2D cross attention block
|
164
|
+
|
165
|
+
x = CrossAttention(Norm(input_tensor), context) + x
|
166
|
+
"""
|
167
|
+
|
168
|
+
def __init__(self, config: unet_cfg.CrossAttentionBlock2DConfig):
|
169
|
+
"""Initialize an instance of the AttentionBlock2D.
|
170
|
+
|
171
|
+
Args:
|
172
|
+
config (unet_cfg.CrossAttentionBlock2DConfig): the configuration of this
|
173
|
+
block.
|
174
|
+
"""
|
175
|
+
super().__init__()
|
176
|
+
self.config = config
|
177
|
+
self.norm = layers_builder.build_norm(
|
178
|
+
config.output_dim, config.normalization_config
|
179
|
+
)
|
180
|
+
self.attention = CrossAttention(
|
181
|
+
config.attention_batch_size,
|
182
|
+
config.query_dim,
|
183
|
+
config.cross_dim,
|
184
|
+
config.hidden_dim,
|
185
|
+
config.output_dim,
|
186
|
+
config.attention_config,
|
187
|
+
enable_hlfb=config.enable_hlfb,
|
188
|
+
)
|
189
|
+
|
190
|
+
def forward(
|
191
|
+
self, input_tensor: torch.Tensor, context_tensor: torch.Tensor
|
192
|
+
) -> torch.Tensor:
|
193
|
+
"""Forward function of the CrossAttentionBlock2D.
|
194
|
+
|
195
|
+
Args:
|
196
|
+
input_tensor (torch.Tensor): the input tensor.
|
197
|
+
context_tensor (torch.Tensor): the context tensor to apply cross attention
|
198
|
+
on.
|
199
|
+
|
200
|
+
Returns:
|
201
|
+
output activation tensor after cross attention.
|
202
|
+
"""
|
203
|
+
residual = input_tensor
|
204
|
+
B, C, H, W = input_tensor.shape
|
205
|
+
if (
|
206
|
+
self.config.normalization_config.type
|
207
|
+
== layers_cfg.NormalizationType.GROUP_NORM
|
208
|
+
):
|
209
|
+
x = self.norm(input_tensor)
|
210
|
+
x = x.view(B, C, H * W)
|
211
|
+
x = x.transpose(-1, -2)
|
212
|
+
else:
|
213
|
+
x = torch.permute(input_tensor, (0, 2, 3, 1))
|
214
|
+
x = self.norm(x)
|
215
|
+
x = x.view(B, H * W, C)
|
216
|
+
x = self.attention(x, context_tensor)
|
217
|
+
x = x.view(B, H, W, C)
|
218
|
+
residual = torch.permute(residual, (0, 2, 3, 1))
|
219
|
+
x = x + residual
|
220
|
+
x = torch.permute(x, (0, 3, 1, 2))
|
221
|
+
return x
|
222
|
+
|
223
|
+
|
224
|
+
class FeedForwardBlock2D(nn.Module):
|
225
|
+
"""2D feed forward block
|
226
|
+
|
227
|
+
x = w2(Activation(w1(Norm(x)))) + x
|
228
|
+
"""
|
229
|
+
|
230
|
+
def __init__(
|
231
|
+
self,
|
232
|
+
config: unet_cfg.FeedForwardBlock2DConfig,
|
233
|
+
):
|
234
|
+
super().__init__()
|
235
|
+
self.config = config
|
236
|
+
self.act = layers_builder.get_activation(config.activation_config)
|
237
|
+
self.norm = layers_builder.build_norm(
|
238
|
+
config.dim, config.normalization_config
|
239
|
+
)
|
240
|
+
if config.activation_config.type == layers_cfg.ActivationType.GE_GLU:
|
241
|
+
self.w1 = nn.Identity()
|
242
|
+
self.w2 = nn.Linear(config.hidden_dim, config.dim)
|
243
|
+
else:
|
244
|
+
self.w1 = nn.Linear(config.dim, config.hidden_dim)
|
245
|
+
self.w2 = nn.Linear(config.hidden_dim, config.dim)
|
246
|
+
|
247
|
+
def forward(self, input_tensor: torch.Tensor) -> torch.Tensor:
|
248
|
+
residual = input_tensor
|
249
|
+
B, C, H, W = input_tensor.shape
|
250
|
+
if (
|
251
|
+
self.config.normalization_config.type
|
252
|
+
== layers_cfg.NormalizationType.GROUP_NORM
|
253
|
+
):
|
254
|
+
x = self.norm(input_tensor)
|
255
|
+
x = x.view(B, C, H * W)
|
256
|
+
x = x.transpose(-1, -2)
|
257
|
+
else:
|
258
|
+
x = torch.permute(input_tensor, (0, 2, 3, 1))
|
259
|
+
x = self.norm(x)
|
260
|
+
x = x.view(B, H * W, C)
|
261
|
+
x = self.w1(x)
|
262
|
+
x = self.act(x)
|
263
|
+
x = self.w2(x)
|
264
|
+
x = x.view(B, H, W, C)
|
265
|
+
residual = torch.permute(residual, (0, 2, 3, 1))
|
266
|
+
x = x + residual
|
267
|
+
x = torch.permute(x, (0, 3, 1, 2))
|
268
|
+
return x
|
269
|
+
|
270
|
+
|
271
|
+
class TransformerBlock2D(nn.Module):
|
272
|
+
"""Basic transformer block used in UNet of diffusion model
|
273
|
+
|
274
|
+
input_tensor context_tensor
|
275
|
+
| |
|
276
|
+
┌─────────▼─────────┐ |
|
277
|
+
│ ConvIn | │
|
278
|
+
└─────────┬─────────┘ |
|
279
|
+
| |
|
280
|
+
▼ |
|
281
|
+
┌───────────────────┐ |
|
282
|
+
│ Attention Block │ |
|
283
|
+
└─────────┬─────────┘ |
|
284
|
+
│ |
|
285
|
+
┌────────────────────┐ |
|
286
|
+
│CrossAttention Block│◄─────┘
|
287
|
+
└─────────┬──────────┘
|
288
|
+
│
|
289
|
+
┌─────────▼─────────┐
|
290
|
+
│ FeedForwardBlock │
|
291
|
+
└─────────┬─────────┘
|
292
|
+
│
|
293
|
+
┌─────────▼─────────┐
|
294
|
+
│ ConvOut │
|
295
|
+
└─────────┬─────────┘
|
296
|
+
▼
|
297
|
+
hidden_states
|
298
|
+
"""
|
299
|
+
|
300
|
+
def __init__(
|
301
|
+
self, config: unet_cfg.TransformerBlock2DConfig, dim_override=None
|
302
|
+
):
|
303
|
+
"""Initialize an instance of the TransformerBlock2D.
|
304
|
+
|
305
|
+
Args:
|
306
|
+
config (unet_cfg.TransformerBlock2Dconfig): the configuration of this
|
307
|
+
block.
|
308
|
+
dim_override: in case specified, overrides config.attention_block_config.hidden_dim. Set to None by default.
|
309
|
+
"""
|
310
|
+
super().__init__()
|
311
|
+
self.config = config
|
312
|
+
attention_block_config_dim = config.attention_block_config.dim
|
313
|
+
attention_block_config_hidden_dim = config.attention_block_config.hidden_dim
|
314
|
+
if dim_override:
|
315
|
+
attention_block_config_dim = dim_override
|
316
|
+
if not attention_block_config_hidden_dim:
|
317
|
+
attention_block_config_hidden_dim = attention_block_config_dim
|
318
|
+
self.pre_conv_norm = layers_builder.build_norm(
|
319
|
+
attention_block_config_dim, config.pre_conv_normalization_config
|
320
|
+
)
|
321
|
+
self.conv_in = nn.Conv2d(
|
322
|
+
attention_block_config_dim,
|
323
|
+
attention_block_config_hidden_dim,
|
324
|
+
kernel_size=1,
|
325
|
+
padding=0,
|
326
|
+
)
|
327
|
+
self.self_attention = AttentionBlock2D(config.attention_block_config)
|
328
|
+
self.cross_attention = CrossAttentionBlock2D(
|
329
|
+
config.cross_attention_block_config
|
330
|
+
)
|
331
|
+
self.feed_forward = FeedForwardBlock2D(config.feed_forward_block_config)
|
332
|
+
self.conv_out = nn.Conv2d(
|
333
|
+
attention_block_config_hidden_dim,
|
334
|
+
attention_block_config_dim,
|
335
|
+
kernel_size=1,
|
336
|
+
padding=0,
|
337
|
+
)
|
338
|
+
|
339
|
+
def forward(self, x: torch.Tensor, context: torch.Tensor):
|
340
|
+
"""Forward function of the TransformerBlock2D.
|
341
|
+
|
342
|
+
Args:
|
343
|
+
input_tensor (torch.Tensor): the input tensor.
|
344
|
+
context_tensor (torch.Tensor): the context tensor to apply cross attention
|
345
|
+
on.
|
346
|
+
|
347
|
+
Returns:
|
348
|
+
output activation tensor after transformer block.
|
349
|
+
"""
|
350
|
+
residual_long = x
|
351
|
+
|
352
|
+
x = self.pre_conv_norm(x)
|
353
|
+
x = self.conv_in(x)
|
354
|
+
x = self.self_attention(x)
|
355
|
+
x = self.cross_attention(x, context)
|
356
|
+
x = self.feed_forward(x)
|
357
|
+
|
358
|
+
x = self.conv_out(x)
|
359
|
+
x = x + residual_long
|
360
|
+
|
361
|
+
return x
|
362
|
+
|
363
|
+
|
364
|
+
class DownEncoderBlock2D(nn.Module):
|
365
|
+
"""Encoder block containing several residual blocks with optional interleaved transformer blocks.
|
366
|
+
|
367
|
+
input_tensor
|
368
|
+
|
|
369
|
+
┌──────────────▼─────────────┐
|
370
|
+
│ ┌────────────────────┐ │
|
371
|
+
│ │ ResidualBlock2D │ │
|
372
|
+
│ └──────────┬─────────┘ │
|
373
|
+
│ │ │ num_layers
|
374
|
+
│ ┌────────────────────┐ │
|
375
|
+
│ │ (Optional) │ │
|
376
|
+
│ │ TransformerBlock2D │ │
|
377
|
+
│ └──────────┬─────────┘ │
|
378
|
+
└──────────────┬─────────────┘
|
379
|
+
│
|
380
|
+
┌──────────▼─────────┐
|
381
|
+
│ (Optional) │
|
382
|
+
│ Downsampler │
|
383
|
+
└──────────┬─────────┘
|
384
|
+
│
|
385
|
+
▼
|
386
|
+
hidden_states
|
387
|
+
"""
|
388
|
+
|
389
|
+
def __init__(self, config: unet_cfg.DownEncoderBlock2DConfig):
|
390
|
+
"""Initialize an instance of the DownEncoderBlock2D.
|
391
|
+
|
392
|
+
Args:
|
393
|
+
config (unet_cfg.DownEncoderBlock2DConfig): the configuration of this
|
394
|
+
block.
|
395
|
+
"""
|
396
|
+
super().__init__()
|
397
|
+
self.config = config
|
398
|
+
resnets = []
|
399
|
+
transformers = []
|
400
|
+
hidden_channels = config.hidden_channels
|
401
|
+
if not hidden_channels:
|
402
|
+
hidden_channels = config.out_channels
|
403
|
+
for i in range(config.num_layers):
|
404
|
+
input_channels = config.in_channels if i == 0 else config.out_channels
|
405
|
+
resnets.append(
|
406
|
+
ResidualBlock2D(
|
407
|
+
unet_cfg.ResidualBlock2DConfig(
|
408
|
+
in_channels=input_channels,
|
409
|
+
hidden_channels=hidden_channels,
|
410
|
+
out_channels=config.out_channels,
|
411
|
+
residual_out_channels=config.out_channels,
|
412
|
+
time_embedding_channels=config.time_embedding_channels,
|
413
|
+
normalization_config=config.normalization_config,
|
414
|
+
activation_config=config.activation_config,
|
415
|
+
)
|
416
|
+
)
|
417
|
+
)
|
418
|
+
if config.transformer_block_config:
|
419
|
+
transformers.append(TransformerBlock2D(config.transformer_block_config))
|
420
|
+
self.resnets = nn.ModuleList(resnets)
|
421
|
+
self.transformers = (
|
422
|
+
nn.ModuleList(transformers) if len(transformers) > 0 else None
|
423
|
+
)
|
424
|
+
if config.add_downsample:
|
425
|
+
self.downsampler = unet_builder.build_downsampling(config.sampling_config)
|
426
|
+
else:
|
427
|
+
self.downsampler = None
|
428
|
+
|
429
|
+
def forward(
|
430
|
+
self,
|
431
|
+
input_tensor: torch.Tensor,
|
432
|
+
time_emb: Optional[torch.Tensor] = None,
|
433
|
+
context_tensor: Optional[torch.Tensor] = None,
|
434
|
+
output_hidden_states: bool = False,
|
435
|
+
) -> Union[torch.Tensor, Tuple[torch.Tensor, List[torch.Tensor]]]:
|
436
|
+
"""Forward function of the DownEncoderBlock2D.
|
437
|
+
|
438
|
+
Args:
|
439
|
+
input_tensor (torch.Tensor): the input tensor.
|
440
|
+
time_emb (torch.Tensor): optional time embedding tensor, if the block is
|
441
|
+
configured to accept time embedding.
|
442
|
+
context_tensor (torch.Tensor): optional context tensor, if the block if
|
443
|
+
configured to use transofrmer block.
|
444
|
+
output_hidden_states (bool): whether to output hidden states, usually for
|
445
|
+
skip connections.
|
446
|
+
|
447
|
+
Returns:
|
448
|
+
output hidden_states tensor after DownEncoderBlock2D.
|
449
|
+
"""
|
450
|
+
hidden_states = input_tensor
|
451
|
+
output_states = []
|
452
|
+
for i, resnet in enumerate(self.resnets):
|
453
|
+
hidden_states = resnet(hidden_states, time_emb)
|
454
|
+
if self.transformers is not None:
|
455
|
+
hidden_states = self.transformers[i](hidden_states, context_tensor)
|
456
|
+
output_states.append(hidden_states)
|
457
|
+
if self.downsampler:
|
458
|
+
hidden_states = self.downsampler(hidden_states)
|
459
|
+
output_states.append(hidden_states)
|
460
|
+
if output_hidden_states:
|
461
|
+
return hidden_states, output_states
|
462
|
+
else:
|
463
|
+
return hidden_states
|
464
|
+
|
465
|
+
|
466
|
+
class UpDecoderBlock2D(nn.Module):
|
467
|
+
"""Decoder block containing several residual blocks with optional interleaved transformer blocks.
|
468
|
+
|
469
|
+
input_tensor
|
470
|
+
|
|
471
|
+
┌──────────────▼─────────────┐
|
472
|
+
│ ┌────────────────────┐ │
|
473
|
+
│ │ ResidualBlock2D │ │
|
474
|
+
│ └──────────┬─────────┘ │
|
475
|
+
│ │ │ num_layers
|
476
|
+
│ ┌────────────────────┐ │
|
477
|
+
│ │ (Optional) │ │
|
478
|
+
│ │ TransformerBlock2D │ │
|
479
|
+
│ └──────────┬─────────┘ │
|
480
|
+
└──────────────┬─────────────┘
|
481
|
+
│
|
482
|
+
┌──────────▼─────────┐
|
483
|
+
│ (Optional) │
|
484
|
+
│ Upsampler │
|
485
|
+
└──────────┬─────────┘
|
486
|
+
│
|
487
|
+
┌──────────▼─────────┐
|
488
|
+
│ (Optional) │
|
489
|
+
│ Conv2D │
|
490
|
+
└──────────┬─────────┘
|
491
|
+
│
|
492
|
+
▼
|
493
|
+
hidden_states
|
494
|
+
"""
|
495
|
+
|
496
|
+
def __init__(self, config: unet_cfg.UpDecoderBlock2DConfig):
|
497
|
+
"""Initialize an instance of the UpDecoderBlock2D.
|
498
|
+
|
499
|
+
Args:
|
500
|
+
config (unet_cfg.UpDecoderBlock2DConfig): the configuration of this block.
|
501
|
+
"""
|
502
|
+
super().__init__()
|
503
|
+
self.config = config
|
504
|
+
resnets = []
|
505
|
+
transformers = []
|
506
|
+
for i in range(config.num_layers):
|
507
|
+
input_channels = config.in_channels if i == 0 else config.out_channels
|
508
|
+
resnets.append(
|
509
|
+
ResidualBlock2D(
|
510
|
+
unet_cfg.ResidualBlock2DConfig(
|
511
|
+
in_channels=input_channels,
|
512
|
+
hidden_channels=config.out_channels,
|
513
|
+
out_channels=config.out_channels,
|
514
|
+
time_embedding_channels=config.time_embedding_channels,
|
515
|
+
normalization_config=config.normalization_config,
|
516
|
+
activation_config=config.activation_config,
|
517
|
+
)
|
518
|
+
)
|
519
|
+
)
|
520
|
+
if config.transformer_block_config:
|
521
|
+
transformers.append(TransformerBlock2D(config.transformer_block_config))
|
522
|
+
self.resnets = nn.ModuleList(resnets)
|
523
|
+
self.transformers = (
|
524
|
+
nn.ModuleList(transformers) if len(transformers) > 0 else None
|
525
|
+
)
|
526
|
+
if config.add_upsample:
|
527
|
+
self.upsampler = unet_builder.build_upsampling(config.sampling_config)
|
528
|
+
if config.upsample_conv:
|
529
|
+
self.upsample_conv = nn.Conv2d(
|
530
|
+
config.out_channels,
|
531
|
+
config.out_channels,
|
532
|
+
kernel_size=3,
|
533
|
+
stride=1,
|
534
|
+
padding=1,
|
535
|
+
)
|
536
|
+
else:
|
537
|
+
self.upsampler = None
|
538
|
+
|
539
|
+
def forward(
|
540
|
+
self,
|
541
|
+
input_tensor: torch.Tensor,
|
542
|
+
time_emb: Optional[torch.Tensor] = None,
|
543
|
+
context_tensor: Optional[torch.Tensor] = None,
|
544
|
+
) -> torch.Tensor:
|
545
|
+
"""Forward function of the UpDecoderBlock2D.
|
546
|
+
|
547
|
+
Args:
|
548
|
+
input_tensor (torch.Tensor): the input tensor.
|
549
|
+
time_emb (torch.Tensor): optional time embedding tensor, if the block is
|
550
|
+
configured to accept time embedding.
|
551
|
+
context_tensor (torch.Tensor): optional context tensor, if the block if
|
552
|
+
configured to use transofrmer block.
|
553
|
+
|
554
|
+
Returns:
|
555
|
+
output hidden_states tensor after UpDecoderBlock2D.
|
556
|
+
"""
|
557
|
+
hidden_states = input_tensor
|
558
|
+
for i, resnet in enumerate(self.resnets):
|
559
|
+
hidden_states = resnet(hidden_states, time_emb)
|
560
|
+
if self.transformers is not None:
|
561
|
+
hidden_states = self.transformers[i](hidden_states, context_tensor)
|
562
|
+
if self.upsampler:
|
563
|
+
hidden_states = self.upsampler(hidden_states)
|
564
|
+
if self.upsample_conv:
|
565
|
+
hidden_states = self.upsample_conv(hidden_states)
|
566
|
+
return hidden_states
|
567
|
+
|
568
|
+
|
569
|
+
class SkipUpDecoderBlock2D(nn.Module):
|
570
|
+
"""Decoder block contains skip connections and residual blocks with optional interleaved transformer blocks.
|
571
|
+
|
572
|
+
input_tensor, skip_connection_tensors
|
573
|
+
|
|
574
|
+
┌──────────────▼─────────────┐
|
575
|
+
│ ┌────────────────────┐ │
|
576
|
+
│ │ ResidualBlock2D │ │
|
577
|
+
│ └──────────┬─────────┘ │
|
578
|
+
│ │ │ num_layers
|
579
|
+
│ ┌────────────────────┐ │
|
580
|
+
│ │ (Optional) │ │
|
581
|
+
│ │ TransformerBlock2D │ │
|
582
|
+
│ └──────────┬─────────┘ │
|
583
|
+
└──────────────┬─────────────┘
|
584
|
+
│
|
585
|
+
┌──────────▼─────────┐
|
586
|
+
│ (Optional) │
|
587
|
+
│ Upsampler │
|
588
|
+
└──────────┬─────────┘
|
589
|
+
│
|
590
|
+
┌──────────▼─────────┐
|
591
|
+
│ (Optional) │
|
592
|
+
│ Conv2D │
|
593
|
+
└──────────┬─────────┘
|
594
|
+
│
|
595
|
+
▼
|
596
|
+
hidden_states
|
597
|
+
"""
|
598
|
+
|
599
|
+
def __init__(self, config: unet_cfg.SkipUpDecoderBlock2DConfig):
|
600
|
+
"""Initialize an instance of the SkipUpDecoderBlock2D.
|
601
|
+
|
602
|
+
Args:
|
603
|
+
config (unet_cfg.SkipUpDecoderBlock2DConfig): the configuration of this
|
604
|
+
block.
|
605
|
+
"""
|
606
|
+
super().__init__()
|
607
|
+
self.config = config
|
608
|
+
hidden_channels = config.hidden_channels
|
609
|
+
if not hidden_channels:
|
610
|
+
hidden_channels = config.out_channels
|
611
|
+
sub_block_channels = config.sub_block_channels
|
612
|
+
if sub_block_channels:
|
613
|
+
assert len(sub_block_channels) == config.num_layers, (
|
614
|
+
"Assertion failed: The length of 'sub_block_channels'"
|
615
|
+
f" ({len(sub_block_channels)}) does not match 'config.num_layers'"
|
616
|
+
f" ({config.num_layers})."
|
617
|
+
)
|
618
|
+
else:
|
619
|
+
sub_block_channels = [config.out_channels] * config.num_layers
|
620
|
+
resnets = []
|
621
|
+
transformers = []
|
622
|
+
for i in range(config.num_layers):
|
623
|
+
resnet_in_channels = (
|
624
|
+
config.prev_out_channels if i == 0 else sub_block_channels[i - 1]
|
625
|
+
)
|
626
|
+
res_skip_channels = (
|
627
|
+
config.in_channels
|
628
|
+
if (i == config.num_layers - 1)
|
629
|
+
else config.out_channels
|
630
|
+
)
|
631
|
+
residual_out_channel = sub_block_channels[i]
|
632
|
+
resnets.append(
|
633
|
+
ResidualBlock2D(
|
634
|
+
unet_cfg.ResidualBlock2DConfig(
|
635
|
+
in_channels=resnet_in_channels + res_skip_channels,
|
636
|
+
hidden_channels=hidden_channels,
|
637
|
+
out_channels=sub_block_channels[i],
|
638
|
+
residual_out_channels=residual_out_channel,
|
639
|
+
time_embedding_channels=config.time_embedding_channels,
|
640
|
+
normalization_config=config.normalization_config,
|
641
|
+
activation_config=config.activation_config,
|
642
|
+
)
|
643
|
+
)
|
644
|
+
)
|
645
|
+
if config.transformer_block_config:
|
646
|
+
transformers.append(
|
647
|
+
TransformerBlock2D(
|
648
|
+
config.transformer_block_config,
|
649
|
+
dim_override=sub_block_channels[i],
|
650
|
+
)
|
651
|
+
)
|
652
|
+
self.resnets = nn.ModuleList(resnets)
|
653
|
+
self.transformers = (
|
654
|
+
nn.ModuleList(transformers) if len(transformers) > 0 else None
|
655
|
+
)
|
656
|
+
if config.add_upsample:
|
657
|
+
self.upsampler = unet_builder.build_upsampling(config.sampling_config)
|
658
|
+
if config.upsample_conv:
|
659
|
+
self.upsample_conv = nn.Conv2d(
|
660
|
+
config.out_channels,
|
661
|
+
sub_block_channels[0],
|
662
|
+
kernel_size=3,
|
663
|
+
stride=1,
|
664
|
+
padding=1,
|
665
|
+
)
|
666
|
+
else:
|
667
|
+
self.upsampler = None
|
668
|
+
|
669
|
+
def forward(
|
670
|
+
self,
|
671
|
+
input_tensor: torch.Tensor,
|
672
|
+
skip_connection_tensors: List[torch.Tensor],
|
673
|
+
time_emb: Optional[torch.Tensor] = None,
|
674
|
+
context_tensor: Optional[torch.Tensor] = None,
|
675
|
+
) -> torch.Tensor:
|
676
|
+
"""Forward function of the SkipUpDecoderBlock2D.
|
677
|
+
|
678
|
+
Args:
|
679
|
+
input_tensor (torch.Tensor): the input tensor.
|
680
|
+
skip_connection_tensors (List[torch.Tensor]): the skip connection tensors
|
681
|
+
from encoder blocks.
|
682
|
+
time_emb (torch.Tensor): optional time embedding tensor, if the block is
|
683
|
+
configured to accept time embedding.
|
684
|
+
context_tensor (torch.Tensor): optional context tensor, if the block if
|
685
|
+
configured to use transofrmer block.
|
686
|
+
|
687
|
+
Returns:
|
688
|
+
output hidden_states tensor after SkipUpDecoderBlock2D.
|
689
|
+
"""
|
690
|
+
hidden_states = input_tensor
|
691
|
+
for i, (resnet, skip_connection_tensor) in enumerate(
|
692
|
+
zip(self.resnets, skip_connection_tensors)
|
693
|
+
):
|
694
|
+
hidden_states = torch.cat([hidden_states, skip_connection_tensor], dim=1)
|
695
|
+
hidden_states = resnet(hidden_states, time_emb)
|
696
|
+
if self.transformers is not None:
|
697
|
+
hidden_states = self.transformers[i](hidden_states, context_tensor)
|
698
|
+
if self.upsampler:
|
699
|
+
hidden_states = self.upsampler(hidden_states)
|
700
|
+
if self.upsample_conv:
|
701
|
+
hidden_states = self.upsample_conv(hidden_states)
|
702
|
+
return hidden_states
|
703
|
+
|
704
|
+
|
705
|
+
class MidBlock2D(nn.Module):
|
706
|
+
"""Middle block containing at least one residual blocks with optional interleaved attention blocks.
|
707
|
+
|
708
|
+
input_tensor
|
709
|
+
|
|
710
|
+
▼
|
711
|
+
┌───────────────────┐
|
712
|
+
│ ResidualBlock2D │
|
713
|
+
└─────────┬─────────┘
|
714
|
+
│
|
715
|
+
┌──────────────▼─────────────┐
|
716
|
+
│ ┌────────────────────┐ │
|
717
|
+
│ │ (Optional) │ │
|
718
|
+
│ │ AttentionBlock2D │ │
|
719
|
+
│ └──────────┬─────────┘ │
|
720
|
+
│ │ │
|
721
|
+
│ ┌──────────▼─────────┐ │
|
722
|
+
│ │ (Optional) │ │ num_layers
|
723
|
+
│ │ TransformerBlock2D │ │
|
724
|
+
│ └──────────┬─────────┘ │
|
725
|
+
│ │ │
|
726
|
+
│ ┌──────────▼─────────┐ │
|
727
|
+
│ │ ResidualBlock2D │ │
|
728
|
+
│ └────────────────────┘ │
|
729
|
+
└──────────────┬─────────────┘
|
730
|
+
│
|
731
|
+
▼
|
732
|
+
hidden_states
|
733
|
+
"""
|
734
|
+
|
735
|
+
def __init__(self, config: unet_cfg.MidBlock2DConfig):
|
736
|
+
"""Initialize an instance of the MidBlock2D.
|
737
|
+
|
738
|
+
Args:
|
739
|
+
config (unet_cfg.MidBlock2DConfig): the configuration of this block.
|
740
|
+
"""
|
741
|
+
super().__init__()
|
742
|
+
self.config = config
|
743
|
+
resnets = [
|
744
|
+
ResidualBlock2D(
|
745
|
+
unet_cfg.ResidualBlock2DConfig(
|
746
|
+
in_channels=config.in_channels,
|
747
|
+
hidden_channels=config.in_channels,
|
748
|
+
out_channels=config.in_channels,
|
749
|
+
residual_out_channels=config.in_channels,
|
750
|
+
time_embedding_channels=config.time_embedding_channels,
|
751
|
+
normalization_config=config.normalization_config,
|
752
|
+
activation_config=config.activation_config,
|
753
|
+
)
|
754
|
+
)
|
755
|
+
]
|
756
|
+
attentions = []
|
757
|
+
transformers = []
|
758
|
+
for i in range(config.num_layers):
|
759
|
+
if self.config.attention_block_config:
|
760
|
+
attentions.append(AttentionBlock2D(config.attention_block_config))
|
761
|
+
if self.config.transformer_block_config:
|
762
|
+
transformers.append(TransformerBlock2D(config.transformer_block_config))
|
763
|
+
resnets.append(
|
764
|
+
ResidualBlock2D(
|
765
|
+
unet_cfg.ResidualBlock2DConfig(
|
766
|
+
in_channels=config.in_channels,
|
767
|
+
hidden_channels=config.in_channels,
|
768
|
+
out_channels=config.in_channels,
|
769
|
+
time_embedding_channels=config.time_embedding_channels,
|
770
|
+
normalization_config=config.normalization_config,
|
771
|
+
activation_config=config.activation_config,
|
772
|
+
)
|
773
|
+
)
|
774
|
+
)
|
775
|
+
self.resnets = nn.ModuleList(resnets)
|
776
|
+
self.attentions = nn.ModuleList(attentions) if len(attentions) > 0 else None
|
777
|
+
self.transformers = (
|
778
|
+
nn.ModuleList(transformers) if len(transformers) > 0 else None
|
779
|
+
)
|
780
|
+
|
781
|
+
def forward(
|
782
|
+
self,
|
783
|
+
input_tensor: torch.Tensor,
|
784
|
+
time_emb: Optional[torch.Tensor] = None,
|
785
|
+
context_tensor: Optional[torch.Tensor] = None,
|
786
|
+
) -> torch.Tensor:
|
787
|
+
"""Forward function of the MidBlock2D.
|
788
|
+
|
789
|
+
Args:
|
790
|
+
input_tensor (torch.Tensor): the input tensor.
|
791
|
+
time_emb (torch.Tensor): optional time embedding tensor, if the block is
|
792
|
+
configured to accept time embedding.
|
793
|
+
context_tensor (torch.Tensor): optional context tensor, if the block if
|
794
|
+
configured to use transofrmer block.
|
795
|
+
|
796
|
+
Returns:
|
797
|
+
output hidden_states tensor after MidBlock2D.
|
798
|
+
"""
|
799
|
+
hidden_states = self.resnets[0](input_tensor, time_emb)
|
800
|
+
for i, resnet in enumerate(self.resnets[1:]):
|
801
|
+
if self.attentions is not None:
|
802
|
+
hidden_states = self.attentions[i](hidden_states)
|
803
|
+
if self.transformers is not None:
|
804
|
+
hidden_states = self.transformers[i](hidden_states, context_tensor)
|
805
|
+
hidden_states = resnet(hidden_states, time_emb)
|
806
|
+
return hidden_states
|