ai-edge-torch-nightly 0.3.0.dev20250114__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- ai_edge_torch/__init__.py +32 -0
- ai_edge_torch/_config.py +69 -0
- ai_edge_torch/_convert/__init__.py +14 -0
- ai_edge_torch/_convert/conversion.py +153 -0
- ai_edge_torch/_convert/conversion_utils.py +64 -0
- ai_edge_torch/_convert/converter.py +270 -0
- ai_edge_torch/_convert/fx_passes/__init__.py +23 -0
- ai_edge_torch/_convert/fx_passes/build_aten_composite_pass.py +288 -0
- ai_edge_torch/_convert/fx_passes/build_interpolate_composite_pass.py +131 -0
- ai_edge_torch/_convert/fx_passes/inject_mlir_debuginfo_pass.py +73 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/__init__.py +16 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_check.py +258 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_mark.py +50 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +18 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +68 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +216 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +449 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +30 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/pass_body.py +303 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/utils.py +64 -0
- ai_edge_torch/_convert/fx_passes/remove_non_user_outputs_pass.py +52 -0
- ai_edge_torch/_convert/signature.py +66 -0
- ai_edge_torch/_convert/test/__init__.py +14 -0
- ai_edge_torch/_convert/test/test_convert.py +558 -0
- ai_edge_torch/_convert/test/test_convert_composites.py +234 -0
- ai_edge_torch/_convert/test/test_convert_multisig.py +189 -0
- ai_edge_torch/_convert/test/test_to_channel_last_io.py +96 -0
- ai_edge_torch/_convert/to_channel_last_io.py +92 -0
- ai_edge_torch/conftest.py +20 -0
- ai_edge_torch/debug/__init__.py +17 -0
- ai_edge_torch/debug/culprit.py +496 -0
- ai_edge_torch/debug/test/__init__.py +14 -0
- ai_edge_torch/debug/test/test_culprit.py +140 -0
- ai_edge_torch/debug/test/test_search_model.py +51 -0
- ai_edge_torch/debug/utils.py +59 -0
- ai_edge_torch/experimental/__init__.py +14 -0
- ai_edge_torch/fx_pass_base.py +110 -0
- ai_edge_torch/generative/__init__.py +14 -0
- ai_edge_torch/generative/examples/__init__.py +14 -0
- ai_edge_torch/generative/examples/amd_llama_135m/__init__.py +14 -0
- ai_edge_torch/generative/examples/amd_llama_135m/amd_llama_135m.py +87 -0
- ai_edge_torch/generative/examples/amd_llama_135m/convert_to_tflite.py +70 -0
- ai_edge_torch/generative/examples/amd_llama_135m/verify.py +72 -0
- ai_edge_torch/generative/examples/gemma/__init__.py +14 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/gemma/gemma1.py +107 -0
- ai_edge_torch/generative/examples/gemma/gemma2.py +295 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma1.py +56 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma2.py +43 -0
- ai_edge_torch/generative/examples/gemma/verify_util.py +157 -0
- ai_edge_torch/generative/examples/llama/__init__.py +14 -0
- ai_edge_torch/generative/examples/llama/convert_to_tflite.py +91 -0
- ai_edge_torch/generative/examples/llama/llama.py +196 -0
- ai_edge_torch/generative/examples/llama/verify.py +88 -0
- ai_edge_torch/generative/examples/moonshine/__init__.py +14 -0
- ai_edge_torch/generative/examples/moonshine/convert_moonshine_to_tflite.py +50 -0
- ai_edge_torch/generative/examples/moonshine/moonshine.py +103 -0
- ai_edge_torch/generative/examples/openelm/__init__.py +14 -0
- ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/openelm/openelm.py +127 -0
- ai_edge_torch/generative/examples/openelm/verify.py +71 -0
- ai_edge_torch/generative/examples/paligemma/__init__.py +14 -0
- ai_edge_torch/generative/examples/paligemma/convert_to_tflite.py +95 -0
- ai_edge_torch/generative/examples/paligemma/decoder.py +151 -0
- ai_edge_torch/generative/examples/paligemma/decoder2.py +177 -0
- ai_edge_torch/generative/examples/paligemma/image_encoder.py +160 -0
- ai_edge_torch/generative/examples/paligemma/paligemma.py +179 -0
- ai_edge_torch/generative/examples/paligemma/verify.py +161 -0
- ai_edge_torch/generative/examples/paligemma/verify_decoder.py +75 -0
- ai_edge_torch/generative/examples/paligemma/verify_decoder2.py +72 -0
- ai_edge_torch/generative/examples/paligemma/verify_image_encoder.py +99 -0
- ai_edge_torch/generative/examples/phi/__init__.py +14 -0
- ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/phi/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/phi/phi2.py +107 -0
- ai_edge_torch/generative/examples/phi/phi3.py +219 -0
- ai_edge_torch/generative/examples/phi/verify.py +64 -0
- ai_edge_torch/generative/examples/phi/verify_phi3.py +69 -0
- ai_edge_torch/generative/examples/qwen/__init__.py +14 -0
- ai_edge_torch/generative/examples/qwen/convert_to_tflite.py +93 -0
- ai_edge_torch/generative/examples/qwen/qwen.py +134 -0
- ai_edge_torch/generative/examples/qwen/verify.py +88 -0
- ai_edge_torch/generative/examples/smollm/__init__.py +14 -0
- ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/smollm/convert_v2_to_tflite.py +71 -0
- ai_edge_torch/generative/examples/smollm/smollm.py +125 -0
- ai_edge_torch/generative/examples/smollm/verify.py +86 -0
- ai_edge_torch/generative/examples/stable_diffusion/__init__.py +14 -0
- ai_edge_torch/generative/examples/stable_diffusion/attention.py +108 -0
- ai_edge_torch/generative/examples/stable_diffusion/clip.py +185 -0
- ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +173 -0
- ai_edge_torch/generative/examples/stable_diffusion/decoder.py +398 -0
- ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +749 -0
- ai_edge_torch/generative/examples/stable_diffusion/encoder.py +119 -0
- ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +254 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/__init__.py +19 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +62 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +66 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +74 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +39 -0
- ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +111 -0
- ai_edge_torch/generative/examples/stable_diffusion/util.py +77 -0
- ai_edge_torch/generative/examples/t5/__init__.py +14 -0
- ai_edge_torch/generative/examples/t5/convert_to_tflite.py +138 -0
- ai_edge_torch/generative/examples/t5/t5.py +655 -0
- ai_edge_torch/generative/examples/t5/t5_attention.py +246 -0
- ai_edge_torch/generative/examples/test_models/__init__.py +14 -0
- ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
- ai_edge_torch/generative/examples/test_models/toy_model.py +156 -0
- ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +138 -0
- ai_edge_torch/generative/examples/tiny_llama/__init__.py +14 -0
- ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +88 -0
- ai_edge_torch/generative/examples/tiny_llama/verify.py +72 -0
- ai_edge_torch/generative/fx_passes/__init__.py +30 -0
- ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +50 -0
- ai_edge_torch/generative/layers/__init__.py +14 -0
- ai_edge_torch/generative/layers/attention.py +399 -0
- ai_edge_torch/generative/layers/attention_utils.py +210 -0
- ai_edge_torch/generative/layers/builder.py +160 -0
- ai_edge_torch/generative/layers/feed_forward.py +120 -0
- ai_edge_torch/generative/layers/kv_cache.py +204 -0
- ai_edge_torch/generative/layers/lora.py +557 -0
- ai_edge_torch/generative/layers/model_config.py +238 -0
- ai_edge_torch/generative/layers/normalization.py +222 -0
- ai_edge_torch/generative/layers/rotary_position_embedding.py +94 -0
- ai_edge_torch/generative/layers/scaled_dot_product_attention.py +144 -0
- ai_edge_torch/generative/layers/unet/__init__.py +14 -0
- ai_edge_torch/generative/layers/unet/blocks_2d.py +806 -0
- ai_edge_torch/generative/layers/unet/builder.py +50 -0
- ai_edge_torch/generative/layers/unet/model_config.py +282 -0
- ai_edge_torch/generative/quantize/__init__.py +14 -0
- ai_edge_torch/generative/quantize/example.py +47 -0
- ai_edge_torch/generative/quantize/quant_attrs.py +68 -0
- ai_edge_torch/generative/quantize/quant_recipe.py +154 -0
- ai_edge_torch/generative/quantize/quant_recipe_utils.py +62 -0
- ai_edge_torch/generative/quantize/quant_recipes.py +56 -0
- ai_edge_torch/generative/quantize/supported_schemes.py +32 -0
- ai_edge_torch/generative/test/__init__.py +14 -0
- ai_edge_torch/generative/test/test_custom_dus.py +107 -0
- ai_edge_torch/generative/test/test_kv_cache.py +120 -0
- ai_edge_torch/generative/test/test_loader.py +83 -0
- ai_edge_torch/generative/test/test_lora.py +147 -0
- ai_edge_torch/generative/test/test_model_conversion.py +191 -0
- ai_edge_torch/generative/test/test_model_conversion_large.py +362 -0
- ai_edge_torch/generative/test/test_quantize.py +183 -0
- ai_edge_torch/generative/test/utils.py +82 -0
- ai_edge_torch/generative/utilities/__init__.py +15 -0
- ai_edge_torch/generative/utilities/converter.py +215 -0
- ai_edge_torch/generative/utilities/dynamic_update_slice.py +56 -0
- ai_edge_torch/generative/utilities/loader.py +398 -0
- ai_edge_torch/generative/utilities/model_builder.py +180 -0
- ai_edge_torch/generative/utilities/moonshine_loader.py +154 -0
- ai_edge_torch/generative/utilities/stable_diffusion_loader.py +1032 -0
- ai_edge_torch/generative/utilities/t5_loader.py +512 -0
- ai_edge_torch/generative/utilities/transformers_verifier.py +42 -0
- ai_edge_torch/generative/utilities/verifier.py +335 -0
- ai_edge_torch/hlfb/__init__.py +16 -0
- ai_edge_torch/hlfb/mark_pattern/__init__.py +153 -0
- ai_edge_torch/hlfb/mark_pattern/fx_utils.py +69 -0
- ai_edge_torch/hlfb/mark_pattern/pattern.py +288 -0
- ai_edge_torch/hlfb/test/__init__.py +14 -0
- ai_edge_torch/hlfb/test/test_mark_pattern.py +185 -0
- ai_edge_torch/lowertools/__init__.py +18 -0
- ai_edge_torch/lowertools/_shim.py +86 -0
- ai_edge_torch/lowertools/common_utils.py +142 -0
- ai_edge_torch/lowertools/odml_torch_utils.py +260 -0
- ai_edge_torch/lowertools/test_utils.py +62 -0
- ai_edge_torch/lowertools/torch_xla_utils.py +301 -0
- ai_edge_torch/lowertools/translate_recipe.py +163 -0
- ai_edge_torch/model.py +177 -0
- ai_edge_torch/odml_torch/__init__.py +20 -0
- ai_edge_torch/odml_torch/_torch_future.py +88 -0
- ai_edge_torch/odml_torch/_torch_library.py +19 -0
- ai_edge_torch/odml_torch/composite/__init__.py +16 -0
- ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
- ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
- ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
- ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
- ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
- ai_edge_torch/odml_torch/export.py +403 -0
- ai_edge_torch/odml_torch/export_utils.py +157 -0
- ai_edge_torch/odml_torch/jax_bridge/__init__.py +18 -0
- ai_edge_torch/odml_torch/jax_bridge/_wrap.py +180 -0
- ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
- ai_edge_torch/odml_torch/lowerings/__init__.py +27 -0
- ai_edge_torch/odml_torch/lowerings/_basic.py +294 -0
- ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
- ai_edge_torch/odml_torch/lowerings/_convolution.py +243 -0
- ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +285 -0
- ai_edge_torch/odml_torch/lowerings/_layer_norm.py +87 -0
- ai_edge_torch/odml_torch/lowerings/_quantized_decomposed.py +177 -0
- ai_edge_torch/odml_torch/lowerings/_rand.py +142 -0
- ai_edge_torch/odml_torch/lowerings/context.py +42 -0
- ai_edge_torch/odml_torch/lowerings/decomp.py +69 -0
- ai_edge_torch/odml_torch/lowerings/registry.py +65 -0
- ai_edge_torch/odml_torch/lowerings/utils.py +201 -0
- ai_edge_torch/odml_torch/passes/__init__.py +38 -0
- ai_edge_torch/odml_torch/tf_integration.py +156 -0
- ai_edge_torch/quantize/__init__.py +16 -0
- ai_edge_torch/quantize/pt2e_quantizer.py +466 -0
- ai_edge_torch/quantize/pt2e_quantizer_utils.py +1061 -0
- ai_edge_torch/quantize/quant_config.py +85 -0
- ai_edge_torch/testing/__init__.py +14 -0
- ai_edge_torch/testing/model_coverage/__init__.py +16 -0
- ai_edge_torch/testing/model_coverage/model_coverage.py +145 -0
- ai_edge_torch/version.py +16 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/LICENSE +202 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/METADATA +44 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/RECORD +213 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/WHEEL +5 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/top_level.txt +1 -0
@@ -0,0 +1,50 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
# Builder utils for individual components.
|
16
|
+
|
17
|
+
import ai_edge_torch.generative.layers.unet.model_config as unet_config
|
18
|
+
from torch import nn
|
19
|
+
|
20
|
+
|
21
|
+
def build_upsampling(config: unet_config.UpSamplingConfig):
|
22
|
+
if config.mode == unet_config.SamplingType.NEAREST:
|
23
|
+
return nn.UpsamplingNearest2d(scale_factor=config.scale_factor)
|
24
|
+
elif config.mode == unet_config.SamplingType.BILINEAR:
|
25
|
+
return nn.UpsamplingBilinear2d(scale_factor=config.scale_factor)
|
26
|
+
else:
|
27
|
+
raise ValueError("Unsupported upsampling type.")
|
28
|
+
|
29
|
+
|
30
|
+
def build_downsampling(config: unet_config.DownSamplingConfig):
|
31
|
+
if config.mode == unet_config.SamplingType.AVERAGE:
|
32
|
+
return nn.AvgPool2d(
|
33
|
+
config.kernel_size, config.stride, padding=config.padding
|
34
|
+
)
|
35
|
+
elif config.mode == unet_config.SamplingType.CONVOLUTION:
|
36
|
+
out_channels = (
|
37
|
+
config.in_channels
|
38
|
+
if config.out_channels is None
|
39
|
+
else config.out_channels
|
40
|
+
)
|
41
|
+
padding = (0, 1, 0, 1) if config.padding == 0 else config.padding
|
42
|
+
return nn.Conv2d(
|
43
|
+
config.in_channels,
|
44
|
+
out_channels=out_channels,
|
45
|
+
kernel_size=config.kernel_size,
|
46
|
+
stride=config.stride,
|
47
|
+
padding=padding,
|
48
|
+
)
|
49
|
+
else:
|
50
|
+
raise ValueError("Unsupported downsampling type.")
|
@@ -0,0 +1,282 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
# UNet configuration class.
|
17
|
+
import dataclasses
|
18
|
+
import enum
|
19
|
+
from typing import List, Optional
|
20
|
+
|
21
|
+
import ai_edge_torch.generative.layers.model_config as layers_cfg
|
22
|
+
|
23
|
+
|
24
|
+
@enum.unique
|
25
|
+
class SamplingType(enum.Enum):
|
26
|
+
NEAREST = enum.auto()
|
27
|
+
BILINEAR = enum.auto()
|
28
|
+
AVERAGE = enum.auto()
|
29
|
+
CONVOLUTION = enum.auto()
|
30
|
+
|
31
|
+
|
32
|
+
@dataclasses.dataclass
|
33
|
+
class UpSamplingConfig:
|
34
|
+
mode: SamplingType
|
35
|
+
scale_factor: float
|
36
|
+
|
37
|
+
|
38
|
+
@dataclasses.dataclass
|
39
|
+
class DownSamplingConfig:
|
40
|
+
mode: SamplingType
|
41
|
+
in_channels: int
|
42
|
+
kernel_size: int
|
43
|
+
stride: int
|
44
|
+
padding: int
|
45
|
+
out_channels: Optional[int] = None
|
46
|
+
|
47
|
+
|
48
|
+
@dataclasses.dataclass
|
49
|
+
class ResidualBlock2DConfig:
|
50
|
+
in_channels: int
|
51
|
+
hidden_channels: int
|
52
|
+
out_channels: int
|
53
|
+
hidden_channels: int
|
54
|
+
normalization_config: layers_cfg.NormalizationConfig
|
55
|
+
activation_config: layers_cfg.ActivationConfig
|
56
|
+
# Optional time embedding channels if the residual block takes a time embedding context as input
|
57
|
+
time_embedding_channels: Optional[int] = None
|
58
|
+
residual_out_channels: Optional[int] = None
|
59
|
+
|
60
|
+
|
61
|
+
@dataclasses.dataclass
|
62
|
+
class AttentionBlock2DConfig:
|
63
|
+
dim: int
|
64
|
+
normalization_config: layers_cfg.NormalizationConfig
|
65
|
+
attention_config: layers_cfg.AttentionConfig
|
66
|
+
enable_hlfb: bool = True
|
67
|
+
attention_batch_size: int = 1
|
68
|
+
hidden_dim: Optional[int] = None
|
69
|
+
|
70
|
+
|
71
|
+
@dataclasses.dataclass
|
72
|
+
class CrossAttentionBlock2DConfig:
|
73
|
+
query_dim: int
|
74
|
+
cross_dim: int
|
75
|
+
hidden_dim: int
|
76
|
+
output_dim: int
|
77
|
+
normalization_config: layers_cfg.NormalizationConfig
|
78
|
+
attention_config: layers_cfg.AttentionConfig
|
79
|
+
enable_hlfb: bool = True
|
80
|
+
attention_batch_size: int = 1
|
81
|
+
|
82
|
+
|
83
|
+
@dataclasses.dataclass
|
84
|
+
class FeedForwardBlock2DConfig:
|
85
|
+
dim: int
|
86
|
+
hidden_dim: int
|
87
|
+
normalization_config: layers_cfg.NormalizationConfig
|
88
|
+
activation_config: layers_cfg.ActivationConfig
|
89
|
+
use_bias: bool
|
90
|
+
|
91
|
+
|
92
|
+
@dataclasses.dataclass
|
93
|
+
class TransformerBlock2DConfig:
|
94
|
+
pre_conv_normalization_config: layers_cfg.NormalizationConfig
|
95
|
+
attention_block_config: AttentionBlock2DConfig
|
96
|
+
cross_attention_block_config: CrossAttentionBlock2DConfig
|
97
|
+
feed_forward_block_config: FeedForwardBlock2DConfig
|
98
|
+
|
99
|
+
|
100
|
+
@dataclasses.dataclass
|
101
|
+
class UpDecoderBlock2DConfig:
|
102
|
+
in_channels: int
|
103
|
+
out_channels: int
|
104
|
+
normalization_config: layers_cfg.NormalizationConfig
|
105
|
+
activation_config: layers_cfg.ActivationConfig
|
106
|
+
num_layers: int
|
107
|
+
# The dimension of output channels of previous connected block
|
108
|
+
prev_out_channels: Optional[int] = None
|
109
|
+
# Optional time embedding channels if the residual blocks take a time embedding as input
|
110
|
+
time_embedding_channels: Optional[int] = None
|
111
|
+
# Whether to add upsample operation after residual blocks
|
112
|
+
add_upsample: bool = True
|
113
|
+
# Whether to add a conv2d layer after upsample
|
114
|
+
upsample_conv: bool = True
|
115
|
+
# Optional sampling config if add_upsample is True.
|
116
|
+
sampling_config: Optional[UpSamplingConfig] = None
|
117
|
+
# Optional config of transformer blocks interleaved with residual blocks
|
118
|
+
transformer_block_config: Optional[TransformerBlock2DConfig] = None
|
119
|
+
# Optional dimension of context tensor if context tensor is given as input.
|
120
|
+
context_dim: Optional[int] = None
|
121
|
+
|
122
|
+
|
123
|
+
@dataclasses.dataclass
|
124
|
+
class SkipUpDecoderBlock2DConfig:
|
125
|
+
in_channels: int
|
126
|
+
out_channels: int
|
127
|
+
# The dimension of output channels of previous connected block
|
128
|
+
prev_out_channels: int
|
129
|
+
normalization_config: layers_cfg.NormalizationConfig
|
130
|
+
activation_config: layers_cfg.ActivationConfig
|
131
|
+
num_layers: int
|
132
|
+
# Optional time embedding channels if the residual blocks take a time embedding as input
|
133
|
+
time_embedding_channels: Optional[int] = None
|
134
|
+
# Whether to add upsample operation after residual blocks
|
135
|
+
add_upsample: bool = True
|
136
|
+
# Whether to add a conv2d layer after upsample
|
137
|
+
upsample_conv: bool = True
|
138
|
+
# Optional sampling config if add_upsample is True.
|
139
|
+
sampling_config: Optional[UpSamplingConfig] = None
|
140
|
+
# Optional config of transformer blocks interleaved with residual blocks
|
141
|
+
transformer_block_config: Optional[TransformerBlock2DConfig] = None
|
142
|
+
# Optional dimension of context tensor if context tensor is given as input.
|
143
|
+
context_dim: Optional[int] = None
|
144
|
+
sub_block_channels: Optional[tuple] = None
|
145
|
+
hidden_channels: Optional[int] = None
|
146
|
+
|
147
|
+
|
148
|
+
@dataclasses.dataclass
|
149
|
+
class DownEncoderBlock2DConfig:
|
150
|
+
in_channels: int
|
151
|
+
out_channels: int
|
152
|
+
normalization_config: layers_cfg.NormalizationConfig
|
153
|
+
activation_config: layers_cfg.ActivationConfig
|
154
|
+
num_layers: int
|
155
|
+
# Padding for the downsampling convolution.
|
156
|
+
padding: int = 1
|
157
|
+
# Optional time embedding channels if the residual blocks take a time embedding as input
|
158
|
+
time_embedding_channels: Optional[int] = None
|
159
|
+
# Whether to add downsample operation after residual blocks
|
160
|
+
add_downsample: bool = True
|
161
|
+
# Optional sampling config if add_upsample is True.
|
162
|
+
sampling_config: Optional[DownSamplingConfig] = None
|
163
|
+
# Optional config of transformer blocks interleaved with residual blocks
|
164
|
+
transformer_block_config: Optional[TransformerBlock2DConfig] = None
|
165
|
+
# Optional dimension of context tensor if context tensor is given as input.
|
166
|
+
context_dim: Optional[int] = None
|
167
|
+
hidden_channels: Optional[int] = None
|
168
|
+
|
169
|
+
|
170
|
+
@dataclasses.dataclass
|
171
|
+
class MidBlock2DConfig:
|
172
|
+
in_channels: int
|
173
|
+
normalization_config: layers_cfg.NormalizationConfig
|
174
|
+
activation_config: layers_cfg.ActivationConfig
|
175
|
+
num_layers: int
|
176
|
+
# Optional time embedding channels if the residual blocks take a time embedding context as input
|
177
|
+
time_embedding_channels: Optional[int] = None
|
178
|
+
# Optional config of attention blocks interleaved with residual blocks
|
179
|
+
attention_block_config: Optional[AttentionBlock2DConfig] = None
|
180
|
+
# Optional config of transformer blocks interleaved with residual blocks
|
181
|
+
transformer_block_config: Optional[TransformerBlock2DConfig] = None
|
182
|
+
# Optional dimension of context tensor if context tensor is given as input.
|
183
|
+
context_dim: Optional[int] = None
|
184
|
+
|
185
|
+
|
186
|
+
@dataclasses.dataclass
|
187
|
+
class AutoEncoderConfig:
|
188
|
+
"""Configurations of encoder/decoder in the autoencoder model."""
|
189
|
+
|
190
|
+
# The activation type of encoder/decoder blocks.
|
191
|
+
activation_config: layers_cfg.ActivationConfig
|
192
|
+
|
193
|
+
# The output channels of each block.
|
194
|
+
block_out_channels: List[int]
|
195
|
+
|
196
|
+
# Number of channels in the input image.
|
197
|
+
in_channels: int
|
198
|
+
|
199
|
+
# Number of channels in the output.
|
200
|
+
out_channels: int
|
201
|
+
|
202
|
+
# Number of channels in the latent space.
|
203
|
+
latent_channels: int
|
204
|
+
|
205
|
+
# The component-wise standard deviation of the trained latent space computed using the first batch of the
|
206
|
+
# training set. This is used to scale the latent space to have unit variance when training the diffusion
|
207
|
+
# model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
|
208
|
+
# diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
|
209
|
+
# / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
|
210
|
+
# Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
|
211
|
+
scaling_factor: float
|
212
|
+
|
213
|
+
# The layesr number of each encoder/decoder block.
|
214
|
+
layers_per_block: int
|
215
|
+
|
216
|
+
# The normalization config.
|
217
|
+
normalization_config: layers_cfg.NormalizationConfig
|
218
|
+
|
219
|
+
# The configuration of middle blocks, that is, after the last block of encoder and before the first block of decoder.
|
220
|
+
mid_block_config: MidBlock2DConfig
|
221
|
+
|
222
|
+
|
223
|
+
@dataclasses.dataclass
|
224
|
+
class DiffusionModelConfig:
|
225
|
+
"""Configurations of Diffusion model."""
|
226
|
+
|
227
|
+
# Number of channels in the input tensor.
|
228
|
+
in_channels: int
|
229
|
+
|
230
|
+
# Number of channels in the output tensor.
|
231
|
+
out_channels: int
|
232
|
+
|
233
|
+
# The output channels of each block.
|
234
|
+
block_out_channels: List[int]
|
235
|
+
|
236
|
+
# The layesr number of each block.
|
237
|
+
layers_per_block: int
|
238
|
+
|
239
|
+
# The padding to use for the downsampling.
|
240
|
+
downsample_padding: int
|
241
|
+
|
242
|
+
# Normalization config used in residual blocks.
|
243
|
+
residual_norm_config: layers_cfg.NormalizationConfig
|
244
|
+
|
245
|
+
# Activation config used in residual blocks
|
246
|
+
residual_activation_type: layers_cfg.ActivationType
|
247
|
+
|
248
|
+
# The batch size used in transformer blocks, for attention layers.
|
249
|
+
transformer_batch_size: int
|
250
|
+
|
251
|
+
# The number of attention heads used in transformer blocks.
|
252
|
+
transformer_num_attention_heads: int
|
253
|
+
|
254
|
+
# The dimension of cross attention used in transformer blocks.
|
255
|
+
transformer_cross_attention_dim: int
|
256
|
+
|
257
|
+
# Normalization config used in prev conv layer of transformer blocks.
|
258
|
+
transformer_pre_conv_norm_config: layers_cfg.NormalizationConfig
|
259
|
+
|
260
|
+
# Normalization config used in transformer blocks.
|
261
|
+
transformer_norm_config: layers_cfg.NormalizationConfig
|
262
|
+
|
263
|
+
# Activation type of feed forward used in transformer blocks.
|
264
|
+
transformer_ff_activation_type: layers_cfg.ActivationType
|
265
|
+
|
266
|
+
# Number of layers in mid block.
|
267
|
+
mid_block_layers: int
|
268
|
+
|
269
|
+
# Dimension of time embedding.
|
270
|
+
time_embedding_dim: int
|
271
|
+
|
272
|
+
# Time embedding dimensions for blocks.
|
273
|
+
time_embedding_blocks_dim: int
|
274
|
+
|
275
|
+
# Normalization config used for final layer
|
276
|
+
final_norm_config: layers_cfg.NormalizationConfig
|
277
|
+
|
278
|
+
# Activation type used in final layer
|
279
|
+
final_activation_type: layers_cfg.ActivationType
|
280
|
+
|
281
|
+
# Whether to enable StableHLO composite ops in the model.
|
282
|
+
enable_hlfb: bool = False
|
@@ -0,0 +1,14 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
@@ -0,0 +1,47 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
import ai_edge_torch
|
17
|
+
from ai_edge_torch.generative.examples.gemma import gemma1
|
18
|
+
from ai_edge_torch.generative.layers import kv_cache as kv_utils
|
19
|
+
from ai_edge_torch.generative.quantize import quant_recipes
|
20
|
+
from ai_edge_torch.generative.utilities import model_builder
|
21
|
+
import numpy as np
|
22
|
+
import torch
|
23
|
+
|
24
|
+
|
25
|
+
def main():
|
26
|
+
# Build a PyTorch model as usual
|
27
|
+
config = gemma1.get_fake_model_config()
|
28
|
+
model = model_builder.DecoderOnlyModel(config).eval()
|
29
|
+
idx = torch.from_numpy(np.array([[1, 2, 3, 4]]))
|
30
|
+
tokens = torch.full((1, 10), 0, dtype=torch.int, device="cpu")
|
31
|
+
tokens[0, :4] = idx
|
32
|
+
input_pos = torch.arange(0, 10, dtype=torch.int)
|
33
|
+
kv = kv_utils.KVCache.from_model_config(config)
|
34
|
+
|
35
|
+
# Create a quantization recipe to be applied to the model
|
36
|
+
quant_config = quant_recipes.full_int8_dynamic_recipe()
|
37
|
+
print(quant_config)
|
38
|
+
|
39
|
+
# Convert with quantization
|
40
|
+
edge_model = ai_edge_torch.convert(
|
41
|
+
model, (tokens, input_pos, kv), quant_config=quant_config
|
42
|
+
)
|
43
|
+
edge_model.export("/tmp/gemma_2b_quantized.tflite")
|
44
|
+
|
45
|
+
|
46
|
+
if __name__ == "__main__":
|
47
|
+
main()
|
@@ -0,0 +1,68 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
import enum
|
17
|
+
|
18
|
+
|
19
|
+
@enum.unique
|
20
|
+
class Dtype(enum.Enum):
|
21
|
+
"""Data types and precision of tensors."""
|
22
|
+
|
23
|
+
FP32 = enum.auto()
|
24
|
+
FP16 = enum.auto()
|
25
|
+
INT8 = enum.auto()
|
26
|
+
|
27
|
+
|
28
|
+
@enum.unique
|
29
|
+
class Algorithm(enum.Enum):
|
30
|
+
"""Algorithm used to calculate quantization parameters.
|
31
|
+
|
32
|
+
Attributes:
|
33
|
+
MIN_MAX: Maps the min/max of floating point space to the min/max of
|
34
|
+
quantized space and quantize uniformly.
|
35
|
+
FLOAT_CAST: Casts a float to another float of a different type.
|
36
|
+
"""
|
37
|
+
|
38
|
+
MIN_MAX = enum.auto()
|
39
|
+
FLOAT_CAST = enum.auto()
|
40
|
+
|
41
|
+
|
42
|
+
@enum.unique
|
43
|
+
class Mode(enum.Enum):
|
44
|
+
"""Mode of quantization.
|
45
|
+
|
46
|
+
Attributes:
|
47
|
+
DYNAMIC_RANGE: Quantize activations during runtime and weights statically to
|
48
|
+
perform computation in integers.
|
49
|
+
WEIGHT_ONLY: Quantize weights statically and dequantize during runtime to
|
50
|
+
perform computation in floating points.
|
51
|
+
"""
|
52
|
+
|
53
|
+
DYNAMIC_RANGE = enum.auto()
|
54
|
+
WEIGHT_ONLY = enum.auto()
|
55
|
+
|
56
|
+
|
57
|
+
@enum.unique
|
58
|
+
class Granularity(enum.Enum):
|
59
|
+
"""Granularity of quantization parameters.
|
60
|
+
|
61
|
+
Attributes:
|
62
|
+
NONE: Granularity not applicable to this quantization scheme.
|
63
|
+
CHANNELWISE: Or per-channel quantization. Each channel of relevant tensors
|
64
|
+
is quantized independently of one another.
|
65
|
+
"""
|
66
|
+
|
67
|
+
NONE = enum.auto()
|
68
|
+
CHANNELWISE = enum.auto()
|
@@ -0,0 +1,154 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
from dataclasses import dataclass
|
17
|
+
from typing import Optional, Union
|
18
|
+
|
19
|
+
from ai_edge_torch.generative.quantize import quant_attrs
|
20
|
+
from ai_edge_torch.generative.quantize import supported_schemes
|
21
|
+
|
22
|
+
|
23
|
+
@dataclass
|
24
|
+
class LayerQuantRecipe:
|
25
|
+
"""Quantization recipe for a single Edge Generative API layer (e.g. Attention).
|
26
|
+
|
27
|
+
Generic layer-scoped quantization recipe that specifies how this layer should
|
28
|
+
be quantized by the Edge Generative API. This is applicable to layers
|
29
|
+
implemented
|
30
|
+
in ai_edge_torch/generative/layers/. Combinations of attributes that are not
|
31
|
+
supported during runtime will be detected when .verify() is called.
|
32
|
+
|
33
|
+
Attributes:
|
34
|
+
activation_dtype: Desired data type of activation tensors.
|
35
|
+
weight_dtype: Desired data type of weight tensors.
|
36
|
+
mode: Type of quantization.
|
37
|
+
algorithm: Algorithm for calculating quantization parameters.
|
38
|
+
granularity: Granularity of quantization.
|
39
|
+
"""
|
40
|
+
|
41
|
+
activation_dtype: quant_attrs.Dtype
|
42
|
+
weight_dtype: quant_attrs.Dtype
|
43
|
+
mode: quant_attrs.Mode
|
44
|
+
algorithm: quant_attrs.Algorithm
|
45
|
+
granularity: quant_attrs.Granularity
|
46
|
+
|
47
|
+
def __str__(self):
|
48
|
+
return (
|
49
|
+
f'(a:{self.activation_dtype.name}, '
|
50
|
+
f'w:{self.weight_dtype.name}, '
|
51
|
+
f'{self.mode.name}, '
|
52
|
+
f'{self.algorithm.name}, '
|
53
|
+
f'{self.granularity.name})'
|
54
|
+
)
|
55
|
+
|
56
|
+
__repr__ = __str__
|
57
|
+
|
58
|
+
def verify(self):
|
59
|
+
"""Checks if all attributes configured are supported in runtime.
|
60
|
+
|
61
|
+
Raises:
|
62
|
+
ValueError: If any attributes are incompatible.
|
63
|
+
"""
|
64
|
+
is_valid = False
|
65
|
+
for supported in supported_schemes.get_supported_layer_schemes():
|
66
|
+
if (
|
67
|
+
self.activation_dtype == supported[0]
|
68
|
+
and self.weight_dtype == supported[1]
|
69
|
+
and self.mode == supported[2]
|
70
|
+
and self.algorithm == supported[3]
|
71
|
+
and self.granularity == supported[4]
|
72
|
+
):
|
73
|
+
is_valid = True
|
74
|
+
break
|
75
|
+
|
76
|
+
if not is_valid:
|
77
|
+
raise ValueError(
|
78
|
+
'Unsupported LayerQuantRecipe configuration. See'
|
79
|
+
' get_supported_recipe_matrix()'
|
80
|
+
)
|
81
|
+
|
82
|
+
|
83
|
+
@dataclass
|
84
|
+
class GenerativeQuantRecipe:
|
85
|
+
"""Quantization recipe for a model composed of the Edge Generative API layers.
|
86
|
+
|
87
|
+
Some layers can be specified with different `LayerQuantRecipe` for each block
|
88
|
+
by
|
89
|
+
providing a dictionary keyed by the TransformerBlock index, e.g. attention
|
90
|
+
and feedforward. For example,
|
91
|
+
|
92
|
+
```
|
93
|
+
default = LayerQuantRecipeA
|
94
|
+
attention = { 2: LayerQuantRecipeB }
|
95
|
+
feedforward = { 3: LayerQuantRecipeC }
|
96
|
+
```
|
97
|
+
|
98
|
+
will apply LayerQuantRecipeA to the entire model, overriden by
|
99
|
+
LayerQuantRecipeB for the TransformerBlock[2].attention layer and
|
100
|
+
LayerQuantRecipeC for the TransformerBlock[3].feedforward layer. Any config
|
101
|
+
with invalid indices will be ignored.
|
102
|
+
|
103
|
+
Attributes:
|
104
|
+
default: The quantization recipe for global scope of the model.
|
105
|
+
embedding: Recipe for the embedding table.
|
106
|
+
attention: Recipe for the attention blocks. This could be specified with
|
107
|
+
different LayerQuantRecipe for each block by providing a dictionary keyed
|
108
|
+
by the TransformerBlock index.
|
109
|
+
feedforward: Recipe for the feedforward layers. This could be specified with
|
110
|
+
different LayerQuantRecipe for each block by providing a dictionary keyed
|
111
|
+
by the TransformerBlock index.
|
112
|
+
"""
|
113
|
+
|
114
|
+
default: Optional[LayerQuantRecipe] = None
|
115
|
+
embedding: Optional[LayerQuantRecipe] = None
|
116
|
+
attention: Union[
|
117
|
+
Optional[LayerQuantRecipe], Optional[dict[int, LayerQuantRecipe]]
|
118
|
+
] = None
|
119
|
+
feedforward: Union[
|
120
|
+
Optional[LayerQuantRecipe], Optional[dict[int, LayerQuantRecipe]]
|
121
|
+
] = None
|
122
|
+
|
123
|
+
def __str__(self):
|
124
|
+
return f"""GenerativeQuantRecipe(
|
125
|
+
Default: {self.default}
|
126
|
+
Embedding: {self.embedding}
|
127
|
+
Attention: {self.attention}
|
128
|
+
Feedforward: {self.feedforward}
|
129
|
+
)"""
|
130
|
+
|
131
|
+
__repr__ = __str__
|
132
|
+
|
133
|
+
def verify(self):
|
134
|
+
"""Checks if the recipe configured can be supported in runtime.
|
135
|
+
|
136
|
+
Raises:
|
137
|
+
ValueError: If the recipe configured is invalid or unsupported.
|
138
|
+
"""
|
139
|
+
if self.default is not None:
|
140
|
+
self.default.verify()
|
141
|
+
if self.embedding is not None:
|
142
|
+
self.embedding.verify()
|
143
|
+
if self.attention is not None:
|
144
|
+
if isinstance(self.attention, dict):
|
145
|
+
for recipe in self.attention.values():
|
146
|
+
recipe.verify()
|
147
|
+
else:
|
148
|
+
self.attention.verify()
|
149
|
+
if self.feedforward is not None:
|
150
|
+
if isinstance(self.feedforward, dict):
|
151
|
+
for recipe in self.feedforward.values():
|
152
|
+
recipe.verify()
|
153
|
+
else:
|
154
|
+
self.feedforward.verify()
|
@@ -0,0 +1,62 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Helper functions to construct custom quantization recipes.
|
17
|
+
|
18
|
+
These are intended for more advanced users who want to configure their own
|
19
|
+
quantization recipes. For pre-constructed recipes, use `quant_recipes.py`
|
20
|
+
instead.
|
21
|
+
|
22
|
+
Typical usage example:
|
23
|
+
|
24
|
+
1. Applying a single layer recipe to the entire model
|
25
|
+
|
26
|
+
quant_recipe.GenerativeQuantRecipe(
|
27
|
+
default=quant_recipe_utils.create_layer_quant_int8_dynamic()
|
28
|
+
)
|
29
|
+
"""
|
30
|
+
|
31
|
+
from ai_edge_torch.generative.quantize import quant_attrs
|
32
|
+
from ai_edge_torch.generative.quantize import quant_recipe
|
33
|
+
|
34
|
+
|
35
|
+
def create_layer_quant_int8_dynamic() -> quant_recipe.LayerQuantRecipe:
|
36
|
+
return quant_recipe.LayerQuantRecipe(
|
37
|
+
activation_dtype=quant_attrs.Dtype.FP32,
|
38
|
+
weight_dtype=quant_attrs.Dtype.INT8,
|
39
|
+
mode=quant_attrs.Mode.DYNAMIC_RANGE,
|
40
|
+
algorithm=quant_attrs.Algorithm.MIN_MAX,
|
41
|
+
granularity=quant_attrs.Granularity.CHANNELWISE,
|
42
|
+
)
|
43
|
+
|
44
|
+
|
45
|
+
def create_layer_quant_int8_weight_only() -> quant_recipe.LayerQuantRecipe:
|
46
|
+
return quant_recipe.LayerQuantRecipe(
|
47
|
+
activation_dtype=quant_attrs.Dtype.FP32,
|
48
|
+
weight_dtype=quant_attrs.Dtype.INT8,
|
49
|
+
mode=quant_attrs.Mode.WEIGHT_ONLY,
|
50
|
+
algorithm=quant_attrs.Algorithm.MIN_MAX,
|
51
|
+
granularity=quant_attrs.Granularity.CHANNELWISE,
|
52
|
+
)
|
53
|
+
|
54
|
+
|
55
|
+
def create_layer_quant_fp16() -> quant_recipe.LayerQuantRecipe:
|
56
|
+
return quant_recipe.LayerQuantRecipe(
|
57
|
+
activation_dtype=quant_attrs.Dtype.FP32,
|
58
|
+
weight_dtype=quant_attrs.Dtype.FP16,
|
59
|
+
mode=quant_attrs.Mode.WEIGHT_ONLY,
|
60
|
+
algorithm=quant_attrs.Algorithm.FLOAT_CAST,
|
61
|
+
granularity=quant_attrs.Granularity.NONE,
|
62
|
+
)
|