ai-edge-torch-nightly 0.3.0.dev20250114__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- ai_edge_torch/__init__.py +32 -0
- ai_edge_torch/_config.py +69 -0
- ai_edge_torch/_convert/__init__.py +14 -0
- ai_edge_torch/_convert/conversion.py +153 -0
- ai_edge_torch/_convert/conversion_utils.py +64 -0
- ai_edge_torch/_convert/converter.py +270 -0
- ai_edge_torch/_convert/fx_passes/__init__.py +23 -0
- ai_edge_torch/_convert/fx_passes/build_aten_composite_pass.py +288 -0
- ai_edge_torch/_convert/fx_passes/build_interpolate_composite_pass.py +131 -0
- ai_edge_torch/_convert/fx_passes/inject_mlir_debuginfo_pass.py +73 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/__init__.py +16 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_check.py +258 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_mark.py +50 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +18 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +68 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +216 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +449 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +30 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/pass_body.py +303 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/utils.py +64 -0
- ai_edge_torch/_convert/fx_passes/remove_non_user_outputs_pass.py +52 -0
- ai_edge_torch/_convert/signature.py +66 -0
- ai_edge_torch/_convert/test/__init__.py +14 -0
- ai_edge_torch/_convert/test/test_convert.py +558 -0
- ai_edge_torch/_convert/test/test_convert_composites.py +234 -0
- ai_edge_torch/_convert/test/test_convert_multisig.py +189 -0
- ai_edge_torch/_convert/test/test_to_channel_last_io.py +96 -0
- ai_edge_torch/_convert/to_channel_last_io.py +92 -0
- ai_edge_torch/conftest.py +20 -0
- ai_edge_torch/debug/__init__.py +17 -0
- ai_edge_torch/debug/culprit.py +496 -0
- ai_edge_torch/debug/test/__init__.py +14 -0
- ai_edge_torch/debug/test/test_culprit.py +140 -0
- ai_edge_torch/debug/test/test_search_model.py +51 -0
- ai_edge_torch/debug/utils.py +59 -0
- ai_edge_torch/experimental/__init__.py +14 -0
- ai_edge_torch/fx_pass_base.py +110 -0
- ai_edge_torch/generative/__init__.py +14 -0
- ai_edge_torch/generative/examples/__init__.py +14 -0
- ai_edge_torch/generative/examples/amd_llama_135m/__init__.py +14 -0
- ai_edge_torch/generative/examples/amd_llama_135m/amd_llama_135m.py +87 -0
- ai_edge_torch/generative/examples/amd_llama_135m/convert_to_tflite.py +70 -0
- ai_edge_torch/generative/examples/amd_llama_135m/verify.py +72 -0
- ai_edge_torch/generative/examples/gemma/__init__.py +14 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/gemma/gemma1.py +107 -0
- ai_edge_torch/generative/examples/gemma/gemma2.py +295 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma1.py +56 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma2.py +43 -0
- ai_edge_torch/generative/examples/gemma/verify_util.py +157 -0
- ai_edge_torch/generative/examples/llama/__init__.py +14 -0
- ai_edge_torch/generative/examples/llama/convert_to_tflite.py +91 -0
- ai_edge_torch/generative/examples/llama/llama.py +196 -0
- ai_edge_torch/generative/examples/llama/verify.py +88 -0
- ai_edge_torch/generative/examples/moonshine/__init__.py +14 -0
- ai_edge_torch/generative/examples/moonshine/convert_moonshine_to_tflite.py +50 -0
- ai_edge_torch/generative/examples/moonshine/moonshine.py +103 -0
- ai_edge_torch/generative/examples/openelm/__init__.py +14 -0
- ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/openelm/openelm.py +127 -0
- ai_edge_torch/generative/examples/openelm/verify.py +71 -0
- ai_edge_torch/generative/examples/paligemma/__init__.py +14 -0
- ai_edge_torch/generative/examples/paligemma/convert_to_tflite.py +95 -0
- ai_edge_torch/generative/examples/paligemma/decoder.py +151 -0
- ai_edge_torch/generative/examples/paligemma/decoder2.py +177 -0
- ai_edge_torch/generative/examples/paligemma/image_encoder.py +160 -0
- ai_edge_torch/generative/examples/paligemma/paligemma.py +179 -0
- ai_edge_torch/generative/examples/paligemma/verify.py +161 -0
- ai_edge_torch/generative/examples/paligemma/verify_decoder.py +75 -0
- ai_edge_torch/generative/examples/paligemma/verify_decoder2.py +72 -0
- ai_edge_torch/generative/examples/paligemma/verify_image_encoder.py +99 -0
- ai_edge_torch/generative/examples/phi/__init__.py +14 -0
- ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/phi/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/phi/phi2.py +107 -0
- ai_edge_torch/generative/examples/phi/phi3.py +219 -0
- ai_edge_torch/generative/examples/phi/verify.py +64 -0
- ai_edge_torch/generative/examples/phi/verify_phi3.py +69 -0
- ai_edge_torch/generative/examples/qwen/__init__.py +14 -0
- ai_edge_torch/generative/examples/qwen/convert_to_tflite.py +93 -0
- ai_edge_torch/generative/examples/qwen/qwen.py +134 -0
- ai_edge_torch/generative/examples/qwen/verify.py +88 -0
- ai_edge_torch/generative/examples/smollm/__init__.py +14 -0
- ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/smollm/convert_v2_to_tflite.py +71 -0
- ai_edge_torch/generative/examples/smollm/smollm.py +125 -0
- ai_edge_torch/generative/examples/smollm/verify.py +86 -0
- ai_edge_torch/generative/examples/stable_diffusion/__init__.py +14 -0
- ai_edge_torch/generative/examples/stable_diffusion/attention.py +108 -0
- ai_edge_torch/generative/examples/stable_diffusion/clip.py +185 -0
- ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +173 -0
- ai_edge_torch/generative/examples/stable_diffusion/decoder.py +398 -0
- ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +749 -0
- ai_edge_torch/generative/examples/stable_diffusion/encoder.py +119 -0
- ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +254 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/__init__.py +19 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +62 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +66 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +74 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +39 -0
- ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +111 -0
- ai_edge_torch/generative/examples/stable_diffusion/util.py +77 -0
- ai_edge_torch/generative/examples/t5/__init__.py +14 -0
- ai_edge_torch/generative/examples/t5/convert_to_tflite.py +138 -0
- ai_edge_torch/generative/examples/t5/t5.py +655 -0
- ai_edge_torch/generative/examples/t5/t5_attention.py +246 -0
- ai_edge_torch/generative/examples/test_models/__init__.py +14 -0
- ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
- ai_edge_torch/generative/examples/test_models/toy_model.py +156 -0
- ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +138 -0
- ai_edge_torch/generative/examples/tiny_llama/__init__.py +14 -0
- ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +88 -0
- ai_edge_torch/generative/examples/tiny_llama/verify.py +72 -0
- ai_edge_torch/generative/fx_passes/__init__.py +30 -0
- ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +50 -0
- ai_edge_torch/generative/layers/__init__.py +14 -0
- ai_edge_torch/generative/layers/attention.py +399 -0
- ai_edge_torch/generative/layers/attention_utils.py +210 -0
- ai_edge_torch/generative/layers/builder.py +160 -0
- ai_edge_torch/generative/layers/feed_forward.py +120 -0
- ai_edge_torch/generative/layers/kv_cache.py +204 -0
- ai_edge_torch/generative/layers/lora.py +557 -0
- ai_edge_torch/generative/layers/model_config.py +238 -0
- ai_edge_torch/generative/layers/normalization.py +222 -0
- ai_edge_torch/generative/layers/rotary_position_embedding.py +94 -0
- ai_edge_torch/generative/layers/scaled_dot_product_attention.py +144 -0
- ai_edge_torch/generative/layers/unet/__init__.py +14 -0
- ai_edge_torch/generative/layers/unet/blocks_2d.py +806 -0
- ai_edge_torch/generative/layers/unet/builder.py +50 -0
- ai_edge_torch/generative/layers/unet/model_config.py +282 -0
- ai_edge_torch/generative/quantize/__init__.py +14 -0
- ai_edge_torch/generative/quantize/example.py +47 -0
- ai_edge_torch/generative/quantize/quant_attrs.py +68 -0
- ai_edge_torch/generative/quantize/quant_recipe.py +154 -0
- ai_edge_torch/generative/quantize/quant_recipe_utils.py +62 -0
- ai_edge_torch/generative/quantize/quant_recipes.py +56 -0
- ai_edge_torch/generative/quantize/supported_schemes.py +32 -0
- ai_edge_torch/generative/test/__init__.py +14 -0
- ai_edge_torch/generative/test/test_custom_dus.py +107 -0
- ai_edge_torch/generative/test/test_kv_cache.py +120 -0
- ai_edge_torch/generative/test/test_loader.py +83 -0
- ai_edge_torch/generative/test/test_lora.py +147 -0
- ai_edge_torch/generative/test/test_model_conversion.py +191 -0
- ai_edge_torch/generative/test/test_model_conversion_large.py +362 -0
- ai_edge_torch/generative/test/test_quantize.py +183 -0
- ai_edge_torch/generative/test/utils.py +82 -0
- ai_edge_torch/generative/utilities/__init__.py +15 -0
- ai_edge_torch/generative/utilities/converter.py +215 -0
- ai_edge_torch/generative/utilities/dynamic_update_slice.py +56 -0
- ai_edge_torch/generative/utilities/loader.py +398 -0
- ai_edge_torch/generative/utilities/model_builder.py +180 -0
- ai_edge_torch/generative/utilities/moonshine_loader.py +154 -0
- ai_edge_torch/generative/utilities/stable_diffusion_loader.py +1032 -0
- ai_edge_torch/generative/utilities/t5_loader.py +512 -0
- ai_edge_torch/generative/utilities/transformers_verifier.py +42 -0
- ai_edge_torch/generative/utilities/verifier.py +335 -0
- ai_edge_torch/hlfb/__init__.py +16 -0
- ai_edge_torch/hlfb/mark_pattern/__init__.py +153 -0
- ai_edge_torch/hlfb/mark_pattern/fx_utils.py +69 -0
- ai_edge_torch/hlfb/mark_pattern/pattern.py +288 -0
- ai_edge_torch/hlfb/test/__init__.py +14 -0
- ai_edge_torch/hlfb/test/test_mark_pattern.py +185 -0
- ai_edge_torch/lowertools/__init__.py +18 -0
- ai_edge_torch/lowertools/_shim.py +86 -0
- ai_edge_torch/lowertools/common_utils.py +142 -0
- ai_edge_torch/lowertools/odml_torch_utils.py +260 -0
- ai_edge_torch/lowertools/test_utils.py +62 -0
- ai_edge_torch/lowertools/torch_xla_utils.py +301 -0
- ai_edge_torch/lowertools/translate_recipe.py +163 -0
- ai_edge_torch/model.py +177 -0
- ai_edge_torch/odml_torch/__init__.py +20 -0
- ai_edge_torch/odml_torch/_torch_future.py +88 -0
- ai_edge_torch/odml_torch/_torch_library.py +19 -0
- ai_edge_torch/odml_torch/composite/__init__.py +16 -0
- ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
- ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
- ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
- ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
- ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
- ai_edge_torch/odml_torch/export.py +403 -0
- ai_edge_torch/odml_torch/export_utils.py +157 -0
- ai_edge_torch/odml_torch/jax_bridge/__init__.py +18 -0
- ai_edge_torch/odml_torch/jax_bridge/_wrap.py +180 -0
- ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
- ai_edge_torch/odml_torch/lowerings/__init__.py +27 -0
- ai_edge_torch/odml_torch/lowerings/_basic.py +294 -0
- ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
- ai_edge_torch/odml_torch/lowerings/_convolution.py +243 -0
- ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +285 -0
- ai_edge_torch/odml_torch/lowerings/_layer_norm.py +87 -0
- ai_edge_torch/odml_torch/lowerings/_quantized_decomposed.py +177 -0
- ai_edge_torch/odml_torch/lowerings/_rand.py +142 -0
- ai_edge_torch/odml_torch/lowerings/context.py +42 -0
- ai_edge_torch/odml_torch/lowerings/decomp.py +69 -0
- ai_edge_torch/odml_torch/lowerings/registry.py +65 -0
- ai_edge_torch/odml_torch/lowerings/utils.py +201 -0
- ai_edge_torch/odml_torch/passes/__init__.py +38 -0
- ai_edge_torch/odml_torch/tf_integration.py +156 -0
- ai_edge_torch/quantize/__init__.py +16 -0
- ai_edge_torch/quantize/pt2e_quantizer.py +466 -0
- ai_edge_torch/quantize/pt2e_quantizer_utils.py +1061 -0
- ai_edge_torch/quantize/quant_config.py +85 -0
- ai_edge_torch/testing/__init__.py +14 -0
- ai_edge_torch/testing/model_coverage/__init__.py +16 -0
- ai_edge_torch/testing/model_coverage/model_coverage.py +145 -0
- ai_edge_torch/version.py +16 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/LICENSE +202 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/METADATA +44 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/RECORD +213 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/WHEEL +5 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/top_level.txt +1 -0
@@ -0,0 +1,91 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Example of converting Llama 3.2 1B model to multi-signature tflite model."""
|
17
|
+
|
18
|
+
import os
|
19
|
+
import pathlib
|
20
|
+
|
21
|
+
from absl import app
|
22
|
+
from absl import flags
|
23
|
+
from ai_edge_torch.generative.examples.llama import llama
|
24
|
+
from ai_edge_torch.generative.utilities import converter
|
25
|
+
from ai_edge_torch.generative.utilities.model_builder import ExportConfig
|
26
|
+
|
27
|
+
_MODEL_SIZE = flags.DEFINE_enum(
|
28
|
+
'model_size',
|
29
|
+
'1b',
|
30
|
+
['1b', '3b'],
|
31
|
+
'The size of the model to verify.',
|
32
|
+
)
|
33
|
+
_CHECKPOINT_PATH = flags.DEFINE_string(
|
34
|
+
'checkpoint_path',
|
35
|
+
os.path.join(pathlib.Path.home(), 'Downloads/llm_data/llama'),
|
36
|
+
'The path to the model checkpoint, or directory holding the checkpoint.',
|
37
|
+
)
|
38
|
+
_OUTPUT_PATH = flags.DEFINE_string(
|
39
|
+
'output_path',
|
40
|
+
'/tmp/',
|
41
|
+
'The path to export the tflite model.',
|
42
|
+
)
|
43
|
+
_OUTPUT_NAME_PREFIX = flags.DEFINE_string(
|
44
|
+
'output_name_prefix',
|
45
|
+
'llama',
|
46
|
+
'The prefix of the output tflite model name.',
|
47
|
+
)
|
48
|
+
_PREFILL_SEQ_LENS = flags.DEFINE_multi_integer(
|
49
|
+
'prefill_seq_lens',
|
50
|
+
(8, 64, 128, 256, 512, 1024),
|
51
|
+
'List of the maximum sizes of prefill input tensors.',
|
52
|
+
)
|
53
|
+
_KV_CACHE_MAX_LEN = flags.DEFINE_integer(
|
54
|
+
'kv_cache_max_len',
|
55
|
+
1280,
|
56
|
+
'The maximum size of KV cache buffer, including both prefill and decode.',
|
57
|
+
)
|
58
|
+
_QUANTIZE = flags.DEFINE_bool(
|
59
|
+
'quantize',
|
60
|
+
True,
|
61
|
+
'Whether the model should be quantized.',
|
62
|
+
)
|
63
|
+
_LORA_RANKS = flags.DEFINE_multi_integer(
|
64
|
+
'lora_ranks',
|
65
|
+
None,
|
66
|
+
'If set, the model will be converted with the provided list of LoRA ranks.',
|
67
|
+
)
|
68
|
+
|
69
|
+
_BUILDER = {
|
70
|
+
'1b': llama.build_1b_model,
|
71
|
+
'3b': llama.build_3b_model,
|
72
|
+
}
|
73
|
+
|
74
|
+
|
75
|
+
def main(_):
|
76
|
+
pytorch_model = _BUILDER[_MODEL_SIZE.value](
|
77
|
+
_CHECKPOINT_PATH.value, kv_cache_max_len=_KV_CACHE_MAX_LEN.value
|
78
|
+
)
|
79
|
+
converter.convert_to_tflite(
|
80
|
+
pytorch_model,
|
81
|
+
output_path=_OUTPUT_PATH.value,
|
82
|
+
output_name_prefix=_OUTPUT_NAME_PREFIX.value,
|
83
|
+
prefill_seq_len=_PREFILL_SEQ_LENS.value,
|
84
|
+
quantize=_QUANTIZE.value,
|
85
|
+
lora_ranks=_LORA_RANKS.value,
|
86
|
+
export_config=ExportConfig(),
|
87
|
+
)
|
88
|
+
|
89
|
+
|
90
|
+
if __name__ == '__main__':
|
91
|
+
app.run(main)
|
@@ -0,0 +1,196 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Example of building Llama 3.2 models."""
|
17
|
+
|
18
|
+
from functools import partial
|
19
|
+
import math
|
20
|
+
from typing import Tuple
|
21
|
+
|
22
|
+
import ai_edge_torch.generative.layers.model_config as cfg
|
23
|
+
from ai_edge_torch.generative.utilities import model_builder
|
24
|
+
import torch
|
25
|
+
|
26
|
+
TENSOR_NAMES = model_builder.TENSOR_NAMES
|
27
|
+
|
28
|
+
|
29
|
+
def _build_llama3_rope_cache(
|
30
|
+
input_pos: torch.Tensor,
|
31
|
+
n_elem: int,
|
32
|
+
base: int,
|
33
|
+
condense_ratio: int,
|
34
|
+
dtype: torch.dtype,
|
35
|
+
device: torch.device,
|
36
|
+
factor: float,
|
37
|
+
low_freq_factor: float,
|
38
|
+
high_freq_factor: float,
|
39
|
+
max_seq_len: int,
|
40
|
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
41
|
+
"""Computes Rotary Positional Embeddings for Llama 3.2 model.
|
42
|
+
|
43
|
+
It's a modified version of attn_utils.build_rope_cache with additional
|
44
|
+
arguments for Llama 3.2 model. It precomputes Rotary Positional Embedding Sin
|
45
|
+
and Cos values with scaling factors for quick lookup during the inference.
|
46
|
+
|
47
|
+
Reference:
|
48
|
+
https://github.com/huggingface/transformers/blob/main/src/transformers/modeling_rope_utils.py#L307
|
49
|
+
|
50
|
+
Args:
|
51
|
+
input_pos (torch.Tensor): the given input sequence positions
|
52
|
+
n_elem (int): Each sequence's dimmension.
|
53
|
+
base (int): Rope base value.
|
54
|
+
condense_ratio (int): The ratio by which sequence indicies are condensed.
|
55
|
+
dtype (torch.dtype): Output tensor's data type.
|
56
|
+
device (torch.device): Output tensor's data type.
|
57
|
+
factor (float): Factor to scale theta down for tokens in long range in the
|
58
|
+
sequence.
|
59
|
+
low_freq_factor (float): Factor to determine if tokens are in long range
|
60
|
+
in the sequence.
|
61
|
+
high_freq_factor (float): Factor to determine if tokens are in short range
|
62
|
+
in the sequence.
|
63
|
+
max_seq_len (int): The original token sequence length before extending
|
64
|
+
ROPE to support longer sequence.
|
65
|
+
|
66
|
+
Returns:
|
67
|
+
Tuple[torch.Tensor, torch.Tensor]: Rope's Cosine and Sine waves.
|
68
|
+
"""
|
69
|
+
theta = 1.0 / (base ** (torch.arange(0, n_elem, 2).float() / n_elem))
|
70
|
+
low_freq_wavelen = max_seq_len / low_freq_factor
|
71
|
+
high_freq_wavelen = max_seq_len / high_freq_factor
|
72
|
+
wavelen = 2 * math.pi / theta
|
73
|
+
# wavelen < high_freq_wavelen: do nothing
|
74
|
+
# wavelen > low_freq_wavelen: divide by factor
|
75
|
+
theta = torch.where(wavelen > low_freq_wavelen, theta / factor, theta)
|
76
|
+
# otherwise: interpolate between the two, using a smooth factor
|
77
|
+
smooth_factor = (max_seq_len / wavelen - low_freq_factor) / (
|
78
|
+
high_freq_factor - low_freq_factor
|
79
|
+
)
|
80
|
+
smoothed_theta = (1 - smooth_factor) * theta / factor + smooth_factor * theta
|
81
|
+
is_medium = ~(wavelen < high_freq_wavelen) * ~(wavelen > low_freq_wavelen)
|
82
|
+
theta = torch.where(is_medium, smoothed_theta, theta)
|
83
|
+
|
84
|
+
seq_idx = input_pos / condense_ratio
|
85
|
+
idx_theta = torch.outer(seq_idx, theta)
|
86
|
+
cos = torch.cos(idx_theta).to(dtype=dtype, device=device)
|
87
|
+
sin = torch.sin(idx_theta).to(dtype=dtype, device=device)
|
88
|
+
return cos, sin
|
89
|
+
|
90
|
+
|
91
|
+
class Llama(model_builder.DecoderOnlyModel):
|
92
|
+
"""A Llama model built from the Edge Generative API layers.
|
93
|
+
|
94
|
+
Llama 3.2 shares the same architecture as TinyLlama except ROPE calculation.
|
95
|
+
"""
|
96
|
+
|
97
|
+
def __init__(self, config: cfg.ModelConfig):
|
98
|
+
super().__init__(config)
|
99
|
+
attn_config = self.config.block_config(0).attn_config
|
100
|
+
|
101
|
+
|
102
|
+
def get_1b_model_config(kv_cache_max_len: int = 1024) -> cfg.ModelConfig:
|
103
|
+
"""Returns the model config for a Llama 3.2-1B model.
|
104
|
+
|
105
|
+
Args:
|
106
|
+
kv_cache_max_len (int): The maximum sequence length of the KV cache. Default
|
107
|
+
is 1024.
|
108
|
+
|
109
|
+
Returns:
|
110
|
+
The model config for a SmolLM model.
|
111
|
+
"""
|
112
|
+
attn_config = cfg.AttentionConfig(
|
113
|
+
num_heads=32,
|
114
|
+
head_dim=64,
|
115
|
+
num_query_groups=8,
|
116
|
+
rotary_base=500000,
|
117
|
+
rotary_percentage=1.0,
|
118
|
+
)
|
119
|
+
ff_config = cfg.FeedForwardConfig(
|
120
|
+
type=cfg.FeedForwardType.GATED,
|
121
|
+
activation=cfg.ActivationConfig(cfg.ActivationType.SILU),
|
122
|
+
intermediate_size=8192,
|
123
|
+
)
|
124
|
+
norm_config = cfg.NormalizationConfig(type=cfg.NormalizationType.RMS_NORM)
|
125
|
+
block_config = cfg.TransformerBlockConfig(
|
126
|
+
attn_config=attn_config,
|
127
|
+
ff_config=ff_config,
|
128
|
+
pre_attention_norm_config=norm_config,
|
129
|
+
post_attention_norm_config=norm_config,
|
130
|
+
)
|
131
|
+
|
132
|
+
max_seq_len = 8192
|
133
|
+
# Create the RoPE callable
|
134
|
+
build_rope = partial(
|
135
|
+
_build_llama3_rope_cache,
|
136
|
+
condense_ratio=1,
|
137
|
+
dtype=torch.float32,
|
138
|
+
device=torch.device("cpu"),
|
139
|
+
factor=32.0,
|
140
|
+
low_freq_factor=1.0,
|
141
|
+
high_freq_factor=4.0,
|
142
|
+
max_seq_len=max_seq_len,
|
143
|
+
)
|
144
|
+
|
145
|
+
config = cfg.ModelConfig(
|
146
|
+
vocab_size=128256,
|
147
|
+
num_layers=16,
|
148
|
+
max_seq_len=max_seq_len,
|
149
|
+
embedding_dim=2048,
|
150
|
+
kv_cache_max_len=kv_cache_max_len,
|
151
|
+
block_configs=block_config,
|
152
|
+
final_norm_config=norm_config,
|
153
|
+
enable_hlfb=True,
|
154
|
+
build_rope=build_rope,
|
155
|
+
)
|
156
|
+
return config
|
157
|
+
|
158
|
+
|
159
|
+
def get_3b_model_config(kv_cache_max_len: int = 1024) -> cfg.ModelConfig:
|
160
|
+
"""Returns the model config for a Llama 3.2-3B model."""
|
161
|
+
config = get_1b_model_config(kv_cache_max_len)
|
162
|
+
# Llama 3.2 has only one block config.
|
163
|
+
attn_config = config.block_config(0).attn_config
|
164
|
+
attn_config.num_heads = 24
|
165
|
+
attn_config.head_dim = 128
|
166
|
+
config.num_layers = 28
|
167
|
+
config.embedding_dim = 3072
|
168
|
+
return config
|
169
|
+
|
170
|
+
|
171
|
+
def get_fake_model_config(**kwargs) -> cfg.ModelConfig:
|
172
|
+
config = get_1b_model_config(**kwargs)
|
173
|
+
config.vocab_size = 128
|
174
|
+
config.num_layers = 2
|
175
|
+
# SmolLM has only one block config.
|
176
|
+
config.block_config(0).ff_config.intermediate_size = 64
|
177
|
+
return config
|
178
|
+
|
179
|
+
|
180
|
+
def _build_model(
|
181
|
+
checkpoint_path: str, config: cfg.ModelConfig
|
182
|
+
) -> torch.nn.Module:
|
183
|
+
return model_builder.build_decoder_only_model(
|
184
|
+
checkpoint_path=checkpoint_path,
|
185
|
+
config=config,
|
186
|
+
tensor_names=TENSOR_NAMES,
|
187
|
+
model_class=Llama,
|
188
|
+
)
|
189
|
+
|
190
|
+
|
191
|
+
def build_1b_model(checkpoint_path: str, **kwargs) -> torch.nn.Module:
|
192
|
+
return _build_model(checkpoint_path, get_1b_model_config(**kwargs))
|
193
|
+
|
194
|
+
|
195
|
+
def build_3b_model(checkpoint_path: str, **kwargs) -> torch.nn.Module:
|
196
|
+
return _build_model(checkpoint_path, get_3b_model_config(**kwargs))
|
@@ -0,0 +1,88 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Verifies the reauthored Llama 3.2-1B model."""
|
17
|
+
|
18
|
+
import logging
|
19
|
+
import pathlib
|
20
|
+
|
21
|
+
from absl import app
|
22
|
+
from absl import flags
|
23
|
+
from ai_edge_torch.generative.examples.llama import llama
|
24
|
+
from ai_edge_torch.generative.utilities import transformers_verifier
|
25
|
+
from ai_edge_torch.generative.utilities import verifier
|
26
|
+
import transformers
|
27
|
+
|
28
|
+
_MODEL_SIZE = flags.DEFINE_enum(
|
29
|
+
"model_size",
|
30
|
+
"1b",
|
31
|
+
["1b", "3b"],
|
32
|
+
"The size of the model to verify.",
|
33
|
+
)
|
34
|
+
_PROMPTS = flags.DEFINE_multi_string(
|
35
|
+
"prompts",
|
36
|
+
"What is the meaning of life?",
|
37
|
+
"The input prompts to generate answers.",
|
38
|
+
)
|
39
|
+
_MAX_NEW_TOKENS = flags.DEFINE_integer(
|
40
|
+
"max_new_tokens",
|
41
|
+
30,
|
42
|
+
"The maximum size of the generated tokens.",
|
43
|
+
)
|
44
|
+
|
45
|
+
_CHECKPOINT = {
|
46
|
+
"1b": "meta-llama/Llama-3.2-1B-Instruct",
|
47
|
+
"3b": "meta-llama/Llama-3.2-3B-Instruct",
|
48
|
+
}
|
49
|
+
|
50
|
+
_BUILDER = {
|
51
|
+
"1b": llama.build_1b_model,
|
52
|
+
"3b": llama.build_3b_model,
|
53
|
+
}
|
54
|
+
|
55
|
+
|
56
|
+
def main(_):
|
57
|
+
checkpoint = _CHECKPOINT[_MODEL_SIZE.value]
|
58
|
+
logging.info("Loading the original model from: %s", checkpoint)
|
59
|
+
original_model = transformers.AutoModelForCausalLM.from_pretrained(checkpoint)
|
60
|
+
|
61
|
+
# Locate the cached dir.
|
62
|
+
cached_config_file = transformers.utils.cached_file(
|
63
|
+
checkpoint, transformers.utils.CONFIG_NAME
|
64
|
+
)
|
65
|
+
reauthored_checkpoint = pathlib.Path(cached_config_file).parent
|
66
|
+
logging.info("Building the reauthored model from: %s", reauthored_checkpoint)
|
67
|
+
reauthored_model = _BUILDER[_MODEL_SIZE.value](reauthored_checkpoint)
|
68
|
+
|
69
|
+
logging.info("Loading the tokenizer from: %s", checkpoint)
|
70
|
+
# Llama tokenizer_config.json sets a fast tokenizer class explicitly,
|
71
|
+
# "PreTrainedTokenizerFast". It works only when the fast tokenizer is
|
72
|
+
# available.
|
73
|
+
tokenizer = transformers.AutoTokenizer.from_pretrained(checkpoint)
|
74
|
+
|
75
|
+
verifier.verify_reauthored_model(
|
76
|
+
original_model=transformers_verifier.TransformersModelWrapper(
|
77
|
+
original_model
|
78
|
+
),
|
79
|
+
reauthored_model=verifier.ReauthoredModelWrapper(reauthored_model),
|
80
|
+
tokenizer=verifier.TokenizerWrapper(tokenizer),
|
81
|
+
generate_prompts=_PROMPTS.value,
|
82
|
+
max_new_tokens=_MAX_NEW_TOKENS.value,
|
83
|
+
atol=1e-04,
|
84
|
+
)
|
85
|
+
|
86
|
+
|
87
|
+
if __name__ == "__main__":
|
88
|
+
app.run(main)
|
@@ -0,0 +1,14 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
@@ -0,0 +1,50 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Example of converting a Moonshine model to multi-signature tflite model."""
|
17
|
+
|
18
|
+
import os
|
19
|
+
import pathlib
|
20
|
+
|
21
|
+
from absl import app
|
22
|
+
from absl import flags
|
23
|
+
import ai_edge_torch
|
24
|
+
from ai_edge_torch.generative.examples.moonshine import moonshine
|
25
|
+
from ai_edge_torch.generative.utilities import converter
|
26
|
+
import torch
|
27
|
+
|
28
|
+
_CHECKPOINT_PATH = flags.DEFINE_string(
|
29
|
+
'checkpoint_path',
|
30
|
+
os.path.join(pathlib.Path.home(), 'Downloads/llm_data/moonshine'),
|
31
|
+
'The path to the model checkpoint, or directory holding the checkpoint.',
|
32
|
+
)
|
33
|
+
_TFLITE_PATH = flags.DEFINE_string(
|
34
|
+
'tflite_path',
|
35
|
+
'/tmp/',
|
36
|
+
'The tflite file path to export.',
|
37
|
+
)
|
38
|
+
|
39
|
+
|
40
|
+
def main(_):
|
41
|
+
p_model = moonshine.build_preprocessor(_CHECKPOINT_PATH.value)
|
42
|
+
output_filename = f'moonshine_preprocessor.tflite'
|
43
|
+
_input = torch.randn((1, 1, 159414), dtype=torch.float)
|
44
|
+
edge_model = ai_edge_torch.convert(p_model, (_input,), quant_config=None)
|
45
|
+
tflite_path = os.path.join(_TFLITE_PATH.value, output_filename)
|
46
|
+
edge_model.export(tflite_path)
|
47
|
+
|
48
|
+
|
49
|
+
if __name__ == '__main__':
|
50
|
+
app.run(main)
|
@@ -0,0 +1,103 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Example of building the Moonshine model."""
|
17
|
+
|
18
|
+
import os
|
19
|
+
import pathlib
|
20
|
+
from typing import Optional, Tuple
|
21
|
+
from absl import app
|
22
|
+
from ai_edge_torch.generative.layers import attention
|
23
|
+
from ai_edge_torch.generative.layers import builder
|
24
|
+
from ai_edge_torch.generative.layers import kv_cache as kv_utils
|
25
|
+
import ai_edge_torch.generative.layers.attention_utils as attn_utils
|
26
|
+
import ai_edge_torch.generative.layers.model_config as cfg
|
27
|
+
import ai_edge_torch.generative.layers.normalization as normalization
|
28
|
+
import ai_edge_torch.generative.utilities.moonshine_loader as loading_utils
|
29
|
+
import h5py
|
30
|
+
import torch
|
31
|
+
from torch import nn
|
32
|
+
import torch.nn as nn
|
33
|
+
|
34
|
+
TENSOR_NAMES = loading_utils.ModelLoader.TensorNames(
|
35
|
+
conv1D_0="layers/sequential/layers/conv1d/vars",
|
36
|
+
conv1D_1="layers/sequential/layers/conv1d_1/vars",
|
37
|
+
conv1D_2="layers/sequential/layers/conv1d_2/vars",
|
38
|
+
group_norm="layers/sequential/layers/group_normalization/vars",
|
39
|
+
)
|
40
|
+
|
41
|
+
|
42
|
+
class AudioPreprocessor(nn.Module):
|
43
|
+
|
44
|
+
def __init__(self, dim):
|
45
|
+
super(AudioPreprocessor, self).__init__()
|
46
|
+
self.conv1 = nn.Conv1d(
|
47
|
+
in_channels=1, out_channels=dim, kernel_size=127, stride=64, bias=False
|
48
|
+
)
|
49
|
+
self.tanh = nn.Tanh()
|
50
|
+
self.group_norm = normalization.GroupNorm(group_num=1, dim=dim, eps=1e-5)
|
51
|
+
self.conv2 = nn.Conv1d(
|
52
|
+
in_channels=dim,
|
53
|
+
out_channels=2 * dim,
|
54
|
+
kernel_size=7,
|
55
|
+
stride=3,
|
56
|
+
padding=0, # Equivalent to padding="valid"
|
57
|
+
)
|
58
|
+
self.gelu1 = nn.GELU()
|
59
|
+
self.conv3 = nn.Conv1d(
|
60
|
+
in_channels=2 * dim,
|
61
|
+
out_channels=dim,
|
62
|
+
kernel_size=3,
|
63
|
+
stride=2,
|
64
|
+
padding=0, # Equivalent to padding="valid"
|
65
|
+
)
|
66
|
+
self.gelu2 = nn.GELU()
|
67
|
+
|
68
|
+
def forward(self, inputs):
|
69
|
+
x = self.conv1(inputs)
|
70
|
+
x = self.tanh(x)
|
71
|
+
x = self.group_norm(x)
|
72
|
+
x = self.conv2(x)
|
73
|
+
x = self.gelu1(x)
|
74
|
+
x = self.conv3(x)
|
75
|
+
x = self.gelu2(x)
|
76
|
+
return x
|
77
|
+
|
78
|
+
|
79
|
+
def build_preprocessor(checkpoint_path: str, **kwargs) -> nn.Module:
|
80
|
+
ap = AudioPreprocessor(dim=416)
|
81
|
+
loader = loading_utils.ModelLoader(checkpoint_path, TENSOR_NAMES)
|
82
|
+
loader.load(ap, strict=True)
|
83
|
+
return ap
|
84
|
+
|
85
|
+
|
86
|
+
def main(_):
|
87
|
+
# TODO(b/375421767) Remove golden checks once full model is implemented.
|
88
|
+
HF_PATH = os.path.join(pathlib.Path.home(), "Downloads/llm_data/moonshine")
|
89
|
+
|
90
|
+
test_data_path = pathlib.Path(__file__).parent.resolve()
|
91
|
+
INPUT_PATH = test_data_path / "data" / "pp_input.pt")
|
92
|
+
GOLDEN_PATH = test_data_path / "data" / "pp_output.pt")
|
93
|
+
|
94
|
+
ap = build_preprocessor(HF_PATH)
|
95
|
+
ap.eval()
|
96
|
+
inputs = torch.load(INPUT_PATH).reshape((1, 1, 159414))
|
97
|
+
out = ap(inputs)
|
98
|
+
golden = torch.load(GOLDEN_PATH).transpose(1, 2)
|
99
|
+
assert torch.allclose(out, golden, atol=1e-4, rtol=1e-4)
|
100
|
+
|
101
|
+
|
102
|
+
if __name__ == "__main__":
|
103
|
+
app.run(main)
|
@@ -0,0 +1,14 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
@@ -0,0 +1,80 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Example of converting OpenELM model to multi-signature tflite model."""
|
17
|
+
|
18
|
+
import os
|
19
|
+
import pathlib
|
20
|
+
|
21
|
+
from absl import app
|
22
|
+
from absl import flags
|
23
|
+
from ai_edge_torch.generative.examples.openelm import openelm
|
24
|
+
from ai_edge_torch.generative.utilities import converter
|
25
|
+
from ai_edge_torch.generative.utilities.model_builder import ExportConfig
|
26
|
+
|
27
|
+
_CHECKPOINT_PATH = flags.DEFINE_string(
|
28
|
+
'checkpoint_path',
|
29
|
+
os.path.join(pathlib.Path.home(), 'Downloads/llm_data/openelm'),
|
30
|
+
'The path to the model checkpoint, or directory holding the checkpoint.',
|
31
|
+
)
|
32
|
+
_OUTPUT_PATH = flags.DEFINE_string(
|
33
|
+
'output_path',
|
34
|
+
'/tmp/',
|
35
|
+
'The path to export the tflite model.',
|
36
|
+
)
|
37
|
+
_OUTPUT_NAME_PREFIX = flags.DEFINE_string(
|
38
|
+
'output_name_prefix',
|
39
|
+
'openelm',
|
40
|
+
'The prefix of the output tflite model name.',
|
41
|
+
)
|
42
|
+
_PREFILL_SEQ_LENS = flags.DEFINE_multi_integer(
|
43
|
+
'prefill_seq_lens',
|
44
|
+
(8, 64, 128, 256, 512, 1024),
|
45
|
+
'List of the maximum sizes of prefill input tensors.',
|
46
|
+
)
|
47
|
+
_KV_CACHE_MAX_LEN = flags.DEFINE_integer(
|
48
|
+
'kv_cache_max_len',
|
49
|
+
1280,
|
50
|
+
'The maximum size of KV cache buffer, including both prefill and decode.',
|
51
|
+
)
|
52
|
+
_QUANTIZE = flags.DEFINE_bool(
|
53
|
+
'quantize',
|
54
|
+
True,
|
55
|
+
'Whether the model should be quantized.',
|
56
|
+
)
|
57
|
+
_LORA_RANKS = flags.DEFINE_multi_integer(
|
58
|
+
'lora_ranks',
|
59
|
+
None,
|
60
|
+
'If set, the model will be converted with the provided list of LoRA ranks.',
|
61
|
+
)
|
62
|
+
|
63
|
+
|
64
|
+
def main(_):
|
65
|
+
pytorch_model = openelm.build_model(
|
66
|
+
_CHECKPOINT_PATH.value, kv_cache_max_len=_KV_CACHE_MAX_LEN.value
|
67
|
+
)
|
68
|
+
converter.convert_to_tflite(
|
69
|
+
pytorch_model,
|
70
|
+
output_path=_OUTPUT_PATH.value,
|
71
|
+
output_name_prefix=_OUTPUT_NAME_PREFIX.value,
|
72
|
+
prefill_seq_len=_PREFILL_SEQ_LENS.value,
|
73
|
+
quantize=_QUANTIZE.value,
|
74
|
+
lora_ranks=_LORA_RANKS.value,
|
75
|
+
export_config=ExportConfig(),
|
76
|
+
)
|
77
|
+
|
78
|
+
|
79
|
+
if __name__ == '__main__':
|
80
|
+
app.run(main)
|