ai-edge-torch-nightly 0.3.0.dev20250114__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- ai_edge_torch/__init__.py +32 -0
- ai_edge_torch/_config.py +69 -0
- ai_edge_torch/_convert/__init__.py +14 -0
- ai_edge_torch/_convert/conversion.py +153 -0
- ai_edge_torch/_convert/conversion_utils.py +64 -0
- ai_edge_torch/_convert/converter.py +270 -0
- ai_edge_torch/_convert/fx_passes/__init__.py +23 -0
- ai_edge_torch/_convert/fx_passes/build_aten_composite_pass.py +288 -0
- ai_edge_torch/_convert/fx_passes/build_interpolate_composite_pass.py +131 -0
- ai_edge_torch/_convert/fx_passes/inject_mlir_debuginfo_pass.py +73 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/__init__.py +16 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_check.py +258 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_mark.py +50 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +18 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +68 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +216 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +449 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +30 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/pass_body.py +303 -0
- ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/utils.py +64 -0
- ai_edge_torch/_convert/fx_passes/remove_non_user_outputs_pass.py +52 -0
- ai_edge_torch/_convert/signature.py +66 -0
- ai_edge_torch/_convert/test/__init__.py +14 -0
- ai_edge_torch/_convert/test/test_convert.py +558 -0
- ai_edge_torch/_convert/test/test_convert_composites.py +234 -0
- ai_edge_torch/_convert/test/test_convert_multisig.py +189 -0
- ai_edge_torch/_convert/test/test_to_channel_last_io.py +96 -0
- ai_edge_torch/_convert/to_channel_last_io.py +92 -0
- ai_edge_torch/conftest.py +20 -0
- ai_edge_torch/debug/__init__.py +17 -0
- ai_edge_torch/debug/culprit.py +496 -0
- ai_edge_torch/debug/test/__init__.py +14 -0
- ai_edge_torch/debug/test/test_culprit.py +140 -0
- ai_edge_torch/debug/test/test_search_model.py +51 -0
- ai_edge_torch/debug/utils.py +59 -0
- ai_edge_torch/experimental/__init__.py +14 -0
- ai_edge_torch/fx_pass_base.py +110 -0
- ai_edge_torch/generative/__init__.py +14 -0
- ai_edge_torch/generative/examples/__init__.py +14 -0
- ai_edge_torch/generative/examples/amd_llama_135m/__init__.py +14 -0
- ai_edge_torch/generative/examples/amd_llama_135m/amd_llama_135m.py +87 -0
- ai_edge_torch/generative/examples/amd_llama_135m/convert_to_tflite.py +70 -0
- ai_edge_torch/generative/examples/amd_llama_135m/verify.py +72 -0
- ai_edge_torch/generative/examples/gemma/__init__.py +14 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/gemma/gemma1.py +107 -0
- ai_edge_torch/generative/examples/gemma/gemma2.py +295 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma1.py +56 -0
- ai_edge_torch/generative/examples/gemma/verify_gemma2.py +43 -0
- ai_edge_torch/generative/examples/gemma/verify_util.py +157 -0
- ai_edge_torch/generative/examples/llama/__init__.py +14 -0
- ai_edge_torch/generative/examples/llama/convert_to_tflite.py +91 -0
- ai_edge_torch/generative/examples/llama/llama.py +196 -0
- ai_edge_torch/generative/examples/llama/verify.py +88 -0
- ai_edge_torch/generative/examples/moonshine/__init__.py +14 -0
- ai_edge_torch/generative/examples/moonshine/convert_moonshine_to_tflite.py +50 -0
- ai_edge_torch/generative/examples/moonshine/moonshine.py +103 -0
- ai_edge_torch/generative/examples/openelm/__init__.py +14 -0
- ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/openelm/openelm.py +127 -0
- ai_edge_torch/generative/examples/openelm/verify.py +71 -0
- ai_edge_torch/generative/examples/paligemma/__init__.py +14 -0
- ai_edge_torch/generative/examples/paligemma/convert_to_tflite.py +95 -0
- ai_edge_torch/generative/examples/paligemma/decoder.py +151 -0
- ai_edge_torch/generative/examples/paligemma/decoder2.py +177 -0
- ai_edge_torch/generative/examples/paligemma/image_encoder.py +160 -0
- ai_edge_torch/generative/examples/paligemma/paligemma.py +179 -0
- ai_edge_torch/generative/examples/paligemma/verify.py +161 -0
- ai_edge_torch/generative/examples/paligemma/verify_decoder.py +75 -0
- ai_edge_torch/generative/examples/paligemma/verify_decoder2.py +72 -0
- ai_edge_torch/generative/examples/paligemma/verify_image_encoder.py +99 -0
- ai_edge_torch/generative/examples/phi/__init__.py +14 -0
- ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/phi/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/phi/phi2.py +107 -0
- ai_edge_torch/generative/examples/phi/phi3.py +219 -0
- ai_edge_torch/generative/examples/phi/verify.py +64 -0
- ai_edge_torch/generative/examples/phi/verify_phi3.py +69 -0
- ai_edge_torch/generative/examples/qwen/__init__.py +14 -0
- ai_edge_torch/generative/examples/qwen/convert_to_tflite.py +93 -0
- ai_edge_torch/generative/examples/qwen/qwen.py +134 -0
- ai_edge_torch/generative/examples/qwen/verify.py +88 -0
- ai_edge_torch/generative/examples/smollm/__init__.py +14 -0
- ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/smollm/convert_v2_to_tflite.py +71 -0
- ai_edge_torch/generative/examples/smollm/smollm.py +125 -0
- ai_edge_torch/generative/examples/smollm/verify.py +86 -0
- ai_edge_torch/generative/examples/stable_diffusion/__init__.py +14 -0
- ai_edge_torch/generative/examples/stable_diffusion/attention.py +108 -0
- ai_edge_torch/generative/examples/stable_diffusion/clip.py +185 -0
- ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +173 -0
- ai_edge_torch/generative/examples/stable_diffusion/decoder.py +398 -0
- ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +749 -0
- ai_edge_torch/generative/examples/stable_diffusion/encoder.py +119 -0
- ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +254 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/__init__.py +19 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +62 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +66 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +74 -0
- ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +39 -0
- ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +111 -0
- ai_edge_torch/generative/examples/stable_diffusion/util.py +77 -0
- ai_edge_torch/generative/examples/t5/__init__.py +14 -0
- ai_edge_torch/generative/examples/t5/convert_to_tflite.py +138 -0
- ai_edge_torch/generative/examples/t5/t5.py +655 -0
- ai_edge_torch/generative/examples/t5/t5_attention.py +246 -0
- ai_edge_torch/generative/examples/test_models/__init__.py +14 -0
- ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
- ai_edge_torch/generative/examples/test_models/toy_model.py +156 -0
- ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +138 -0
- ai_edge_torch/generative/examples/tiny_llama/__init__.py +14 -0
- ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +80 -0
- ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +88 -0
- ai_edge_torch/generative/examples/tiny_llama/verify.py +72 -0
- ai_edge_torch/generative/fx_passes/__init__.py +30 -0
- ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +50 -0
- ai_edge_torch/generative/layers/__init__.py +14 -0
- ai_edge_torch/generative/layers/attention.py +399 -0
- ai_edge_torch/generative/layers/attention_utils.py +210 -0
- ai_edge_torch/generative/layers/builder.py +160 -0
- ai_edge_torch/generative/layers/feed_forward.py +120 -0
- ai_edge_torch/generative/layers/kv_cache.py +204 -0
- ai_edge_torch/generative/layers/lora.py +557 -0
- ai_edge_torch/generative/layers/model_config.py +238 -0
- ai_edge_torch/generative/layers/normalization.py +222 -0
- ai_edge_torch/generative/layers/rotary_position_embedding.py +94 -0
- ai_edge_torch/generative/layers/scaled_dot_product_attention.py +144 -0
- ai_edge_torch/generative/layers/unet/__init__.py +14 -0
- ai_edge_torch/generative/layers/unet/blocks_2d.py +806 -0
- ai_edge_torch/generative/layers/unet/builder.py +50 -0
- ai_edge_torch/generative/layers/unet/model_config.py +282 -0
- ai_edge_torch/generative/quantize/__init__.py +14 -0
- ai_edge_torch/generative/quantize/example.py +47 -0
- ai_edge_torch/generative/quantize/quant_attrs.py +68 -0
- ai_edge_torch/generative/quantize/quant_recipe.py +154 -0
- ai_edge_torch/generative/quantize/quant_recipe_utils.py +62 -0
- ai_edge_torch/generative/quantize/quant_recipes.py +56 -0
- ai_edge_torch/generative/quantize/supported_schemes.py +32 -0
- ai_edge_torch/generative/test/__init__.py +14 -0
- ai_edge_torch/generative/test/test_custom_dus.py +107 -0
- ai_edge_torch/generative/test/test_kv_cache.py +120 -0
- ai_edge_torch/generative/test/test_loader.py +83 -0
- ai_edge_torch/generative/test/test_lora.py +147 -0
- ai_edge_torch/generative/test/test_model_conversion.py +191 -0
- ai_edge_torch/generative/test/test_model_conversion_large.py +362 -0
- ai_edge_torch/generative/test/test_quantize.py +183 -0
- ai_edge_torch/generative/test/utils.py +82 -0
- ai_edge_torch/generative/utilities/__init__.py +15 -0
- ai_edge_torch/generative/utilities/converter.py +215 -0
- ai_edge_torch/generative/utilities/dynamic_update_slice.py +56 -0
- ai_edge_torch/generative/utilities/loader.py +398 -0
- ai_edge_torch/generative/utilities/model_builder.py +180 -0
- ai_edge_torch/generative/utilities/moonshine_loader.py +154 -0
- ai_edge_torch/generative/utilities/stable_diffusion_loader.py +1032 -0
- ai_edge_torch/generative/utilities/t5_loader.py +512 -0
- ai_edge_torch/generative/utilities/transformers_verifier.py +42 -0
- ai_edge_torch/generative/utilities/verifier.py +335 -0
- ai_edge_torch/hlfb/__init__.py +16 -0
- ai_edge_torch/hlfb/mark_pattern/__init__.py +153 -0
- ai_edge_torch/hlfb/mark_pattern/fx_utils.py +69 -0
- ai_edge_torch/hlfb/mark_pattern/pattern.py +288 -0
- ai_edge_torch/hlfb/test/__init__.py +14 -0
- ai_edge_torch/hlfb/test/test_mark_pattern.py +185 -0
- ai_edge_torch/lowertools/__init__.py +18 -0
- ai_edge_torch/lowertools/_shim.py +86 -0
- ai_edge_torch/lowertools/common_utils.py +142 -0
- ai_edge_torch/lowertools/odml_torch_utils.py +260 -0
- ai_edge_torch/lowertools/test_utils.py +62 -0
- ai_edge_torch/lowertools/torch_xla_utils.py +301 -0
- ai_edge_torch/lowertools/translate_recipe.py +163 -0
- ai_edge_torch/model.py +177 -0
- ai_edge_torch/odml_torch/__init__.py +20 -0
- ai_edge_torch/odml_torch/_torch_future.py +88 -0
- ai_edge_torch/odml_torch/_torch_library.py +19 -0
- ai_edge_torch/odml_torch/composite/__init__.py +16 -0
- ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
- ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
- ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
- ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
- ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
- ai_edge_torch/odml_torch/export.py +403 -0
- ai_edge_torch/odml_torch/export_utils.py +157 -0
- ai_edge_torch/odml_torch/jax_bridge/__init__.py +18 -0
- ai_edge_torch/odml_torch/jax_bridge/_wrap.py +180 -0
- ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
- ai_edge_torch/odml_torch/lowerings/__init__.py +27 -0
- ai_edge_torch/odml_torch/lowerings/_basic.py +294 -0
- ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
- ai_edge_torch/odml_torch/lowerings/_convolution.py +243 -0
- ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +285 -0
- ai_edge_torch/odml_torch/lowerings/_layer_norm.py +87 -0
- ai_edge_torch/odml_torch/lowerings/_quantized_decomposed.py +177 -0
- ai_edge_torch/odml_torch/lowerings/_rand.py +142 -0
- ai_edge_torch/odml_torch/lowerings/context.py +42 -0
- ai_edge_torch/odml_torch/lowerings/decomp.py +69 -0
- ai_edge_torch/odml_torch/lowerings/registry.py +65 -0
- ai_edge_torch/odml_torch/lowerings/utils.py +201 -0
- ai_edge_torch/odml_torch/passes/__init__.py +38 -0
- ai_edge_torch/odml_torch/tf_integration.py +156 -0
- ai_edge_torch/quantize/__init__.py +16 -0
- ai_edge_torch/quantize/pt2e_quantizer.py +466 -0
- ai_edge_torch/quantize/pt2e_quantizer_utils.py +1061 -0
- ai_edge_torch/quantize/quant_config.py +85 -0
- ai_edge_torch/testing/__init__.py +14 -0
- ai_edge_torch/testing/model_coverage/__init__.py +16 -0
- ai_edge_torch/testing/model_coverage/model_coverage.py +145 -0
- ai_edge_torch/version.py +16 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/LICENSE +202 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/METADATA +44 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/RECORD +213 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/WHEEL +5 -0
- ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/top_level.txt +1 -0
@@ -0,0 +1,183 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors. All Rights Reserved.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
import ai_edge_torch
|
17
|
+
from ai_edge_torch import config
|
18
|
+
from ai_edge_torch.generative.examples.test_models import toy_model # NOQA
|
19
|
+
from ai_edge_torch.generative.quantize import quant_recipe
|
20
|
+
from ai_edge_torch.generative.quantize import quant_recipe_utils
|
21
|
+
from ai_edge_torch.generative.quantize import quant_recipes
|
22
|
+
from ai_edge_torch.generative.quantize.quant_attrs import Algorithm
|
23
|
+
from ai_edge_torch.generative.quantize.quant_attrs import Dtype
|
24
|
+
from ai_edge_torch.generative.quantize.quant_attrs import Granularity
|
25
|
+
from ai_edge_torch.generative.quantize.quant_attrs import Mode
|
26
|
+
from ai_edge_torch.quantize import quant_config
|
27
|
+
from ai_edge_torch.testing import model_coverage
|
28
|
+
import torch
|
29
|
+
|
30
|
+
from absl.testing import absltest as googletest
|
31
|
+
from absl.testing import parameterized
|
32
|
+
|
33
|
+
|
34
|
+
class TestVerifyRecipes(parameterized.TestCase):
|
35
|
+
"""Unit tests that check for model quantization recipes."""
|
36
|
+
|
37
|
+
@parameterized.parameters([
|
38
|
+
(Dtype.FP32, Dtype.FP32),
|
39
|
+
(Dtype.INT8, Dtype.INT8),
|
40
|
+
(Dtype.INT8, Dtype.FP16),
|
41
|
+
(Dtype.FP16, Dtype.INT8),
|
42
|
+
(Dtype.FP16, Dtype.FP16),
|
43
|
+
])
|
44
|
+
def test_verify_invalid_recipes(
|
45
|
+
self,
|
46
|
+
activation,
|
47
|
+
weight,
|
48
|
+
):
|
49
|
+
for m in Mode:
|
50
|
+
for a in Algorithm:
|
51
|
+
for g in Granularity:
|
52
|
+
with self.assertRaises(ValueError):
|
53
|
+
quant_recipe.LayerQuantRecipe(activation, weight, m, a, g).verify()
|
54
|
+
|
55
|
+
@parameterized.parameters([
|
56
|
+
(
|
57
|
+
Dtype.FP32,
|
58
|
+
Dtype.INT8,
|
59
|
+
Mode.DYNAMIC_RANGE,
|
60
|
+
Algorithm.MIN_MAX,
|
61
|
+
Granularity.CHANNELWISE,
|
62
|
+
),
|
63
|
+
(
|
64
|
+
Dtype.FP32,
|
65
|
+
Dtype.INT8,
|
66
|
+
Mode.WEIGHT_ONLY,
|
67
|
+
Algorithm.MIN_MAX,
|
68
|
+
Granularity.CHANNELWISE,
|
69
|
+
),
|
70
|
+
(
|
71
|
+
Dtype.FP32,
|
72
|
+
Dtype.FP16,
|
73
|
+
Mode.WEIGHT_ONLY,
|
74
|
+
Algorithm.FLOAT_CAST,
|
75
|
+
Granularity.NONE,
|
76
|
+
),
|
77
|
+
])
|
78
|
+
def test_verify_valid_recipes(
|
79
|
+
self,
|
80
|
+
activation,
|
81
|
+
weight,
|
82
|
+
mode,
|
83
|
+
algo,
|
84
|
+
granularity,
|
85
|
+
):
|
86
|
+
quant_recipe.LayerQuantRecipe(
|
87
|
+
activation, weight, mode, algo, granularity
|
88
|
+
).verify()
|
89
|
+
|
90
|
+
|
91
|
+
class TestQuantizeConvert(parameterized.TestCase):
|
92
|
+
"""Test conversion with quantization."""
|
93
|
+
|
94
|
+
def setUp(self):
|
95
|
+
super().setUp()
|
96
|
+
torch.manual_seed(0)
|
97
|
+
torch._dynamo.reset()
|
98
|
+
|
99
|
+
def _attention_int8_dynamic_recipe() -> quant_config.QuantConfig:
|
100
|
+
return quant_config.QuantConfig(
|
101
|
+
generative_recipe=quant_recipe.GenerativeQuantRecipe(
|
102
|
+
attention=quant_recipe_utils.create_layer_quant_int8_dynamic(),
|
103
|
+
)
|
104
|
+
)
|
105
|
+
|
106
|
+
def _feedforward_int8_dynamic_recipe() -> quant_config.QuantConfig:
|
107
|
+
return quant_config.QuantConfig(
|
108
|
+
generative_recipe=quant_recipe.GenerativeQuantRecipe(
|
109
|
+
feedforward=quant_recipe_utils.create_layer_quant_int8_dynamic(),
|
110
|
+
)
|
111
|
+
)
|
112
|
+
|
113
|
+
@parameterized.parameters([
|
114
|
+
(quant_recipes.full_fp16_recipe()),
|
115
|
+
(quant_recipes.full_int8_dynamic_recipe()),
|
116
|
+
(quant_recipes.full_int8_weight_only_recipe()),
|
117
|
+
(_attention_int8_dynamic_recipe()),
|
118
|
+
(_feedforward_int8_dynamic_recipe()),
|
119
|
+
])
|
120
|
+
def test_quantize_convert_toy_sizes(self, quant_config):
|
121
|
+
config = toy_model.get_model_config()
|
122
|
+
pytorch_model = toy_model.ToySingleLayerModel(config)
|
123
|
+
idx = torch.unsqueeze(torch.arange(0, 100, dtype=torch.int), 0)
|
124
|
+
input_pos = torch.arange(0, 100, dtype=torch.int)
|
125
|
+
|
126
|
+
quantized_model = ai_edge_torch.convert(
|
127
|
+
pytorch_model, (idx, input_pos), quant_config=quant_config
|
128
|
+
)
|
129
|
+
float_model = ai_edge_torch.convert(pytorch_model, (idx, input_pos))
|
130
|
+
self.assertLess(
|
131
|
+
len(quantized_model._tflite_model),
|
132
|
+
len(float_model._tflite_model),
|
133
|
+
"Quantized model isn't smaller than F32 model.",
|
134
|
+
)
|
135
|
+
|
136
|
+
def test_quantize_convert_toy_weight_sharing(self):
|
137
|
+
config = toy_model.get_model_config()
|
138
|
+
pytorch_model = toy_model.ToySingleLayerModelWeightSharing(config)
|
139
|
+
idx = torch.unsqueeze(torch.arange(0, 100, dtype=torch.int), 0)
|
140
|
+
input_pos = torch.arange(0, 100, dtype=torch.int)
|
141
|
+
|
142
|
+
quant_config = quant_recipes.full_int8_dynamic_recipe()
|
143
|
+
quantized_model = ai_edge_torch.convert(
|
144
|
+
pytorch_model, (idx, input_pos), quant_config=quant_config
|
145
|
+
)
|
146
|
+
float_model = ai_edge_torch.convert(pytorch_model, (idx, input_pos))
|
147
|
+
self.assertLess(
|
148
|
+
len(quantized_model._tflite_model),
|
149
|
+
len(float_model._tflite_model),
|
150
|
+
"Quantized model isn't smaller than F32 model.",
|
151
|
+
)
|
152
|
+
|
153
|
+
def test_quantize_convert_compare_toy(self):
|
154
|
+
self.skipTest("b/338288901")
|
155
|
+
config = toy_model_with_kv_cache.get_model_config()
|
156
|
+
pytorch_model = toy_model_with_kv_cache.ToyModelWithKV(config)
|
157
|
+
idx, input_pos = torch.tensor([[1]], dtype=torch.int), torch.tensor(
|
158
|
+
[10], dtype=torch.int64
|
159
|
+
)
|
160
|
+
|
161
|
+
quant_config = quant_recipes.full_fp16_recipe()
|
162
|
+
quantized_model = ai_edge_torch.convert(
|
163
|
+
pytorch_model, (idx, input_pos), quant_config=quant_config
|
164
|
+
)
|
165
|
+
float_model = ai_edge_torch.convert(pytorch_model, (idx, input_pos))
|
166
|
+
|
167
|
+
self.assertLess(
|
168
|
+
len(quantized_model._tflite_model), len(float_model._tflite_model)
|
169
|
+
)
|
170
|
+
self.assertTrue(
|
171
|
+
model_coverage.compare_tflite_torch(
|
172
|
+
quantized_model,
|
173
|
+
pytorch_model,
|
174
|
+
(idx, input_pos),
|
175
|
+
num_valid_inputs=1,
|
176
|
+
atol=1e-3,
|
177
|
+
rtol=1e-3,
|
178
|
+
)
|
179
|
+
)
|
180
|
+
|
181
|
+
|
182
|
+
if __name__ == "__main__":
|
183
|
+
googletest.main()
|
@@ -0,0 +1,82 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Common utils for testing."""
|
17
|
+
|
18
|
+
import logging
|
19
|
+
|
20
|
+
from ai_edge_torch import model
|
21
|
+
from ai_edge_torch.generative.layers import kv_cache as kv_utils
|
22
|
+
from ai_edge_torch.lowertools import common_utils
|
23
|
+
import numpy as np
|
24
|
+
import torch
|
25
|
+
from torch.utils import _pytree as pytree
|
26
|
+
|
27
|
+
|
28
|
+
def compare_tflite_torch(
|
29
|
+
edge_model: model.Model,
|
30
|
+
torch_model: torch.nn.Module,
|
31
|
+
tokens: torch.Tensor,
|
32
|
+
input_pos: torch.Tensor,
|
33
|
+
kv_cache: kv_utils.KVCache,
|
34
|
+
signature_name: str,
|
35
|
+
atol: float = 1e-5,
|
36
|
+
rtol: float = 1e-5,
|
37
|
+
**kwargs,
|
38
|
+
) -> bool:
|
39
|
+
"""Compares torch models and TFLite models."""
|
40
|
+
values, spec = pytree.tree_flatten({"kv_cache": kv_cache})
|
41
|
+
flat_names = common_utils.flat_dict_names(spec.children_specs, spec.context)
|
42
|
+
torch_output = torch_model(tokens, input_pos, kv_cache, **kwargs)
|
43
|
+
|
44
|
+
if "pixel_values" in kwargs:
|
45
|
+
kwargs["pixel_values"] = kwargs["pixel_values"].numpy()
|
46
|
+
kwargs.update({k: v.numpy() for k, v in zip(flat_names, values)})
|
47
|
+
edge_output = edge_model(
|
48
|
+
signature_name=signature_name,
|
49
|
+
tokens=tokens.numpy(),
|
50
|
+
input_pos=input_pos.numpy(),
|
51
|
+
**kwargs,
|
52
|
+
)
|
53
|
+
|
54
|
+
return compare_logits(
|
55
|
+
edge_output["logits"], torch_output["logits"].detach().numpy(), atol, rtol
|
56
|
+
)
|
57
|
+
|
58
|
+
|
59
|
+
def compare_logits(
|
60
|
+
edge_logits: np.ndarray,
|
61
|
+
torch_logits: dict[str, torch.Tensor],
|
62
|
+
atol: float = 1e-5,
|
63
|
+
rtol: float = 1e-5,
|
64
|
+
) -> bool:
|
65
|
+
"""Compares logits from edge model and torch model."""
|
66
|
+
if np.allclose(edge_logits, torch_logits, rtol, atol, equal_nan=True):
|
67
|
+
return True
|
68
|
+
|
69
|
+
logging.info("edge_logits: %s", edge_logits)
|
70
|
+
logging.info("torch_logits: %s", torch_logits)
|
71
|
+
|
72
|
+
orig_atol = atol
|
73
|
+
while rtol < 1:
|
74
|
+
atol = orig_atol
|
75
|
+
while atol < 1:
|
76
|
+
if np.allclose(edge_logits, torch_logits, rtol, atol, equal_nan=True):
|
77
|
+
logging.info("Got allclose true with atol=%s, rtol=%s", atol, rtol)
|
78
|
+
return False
|
79
|
+
atol *= 10
|
80
|
+
rtol *= 10
|
81
|
+
logging.info("allclose failed with reasonable atol and rtol.")
|
82
|
+
return False
|
@@ -0,0 +1,15 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
# This module contains common utility functions.
|
@@ -0,0 +1,215 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
|
16
|
+
"""Common utility functions for model conversion."""
|
17
|
+
|
18
|
+
import os
|
19
|
+
from typing import Optional, Union
|
20
|
+
from ai_edge_torch._convert import converter as converter_utils
|
21
|
+
from ai_edge_torch.generative.layers import lora as lora_utils
|
22
|
+
import ai_edge_torch.generative.layers.kv_cache as kv_utils
|
23
|
+
import ai_edge_torch.generative.layers.model_config as cfg
|
24
|
+
from ai_edge_torch.generative.quantize import quant_recipes
|
25
|
+
from ai_edge_torch.generative.utilities.model_builder import ExportConfig
|
26
|
+
import torch
|
27
|
+
|
28
|
+
|
29
|
+
class ExportableModule(torch.nn.Module):
|
30
|
+
|
31
|
+
def __init__(self, module, **extra_kwargs):
|
32
|
+
super().__init__()
|
33
|
+
self.module = module
|
34
|
+
self.extra_kwargs = extra_kwargs
|
35
|
+
|
36
|
+
def forward(self, *export_args, **export_kwargs):
|
37
|
+
full_kwargs = {**export_kwargs, **self.extra_kwargs}
|
38
|
+
return self.module(*export_args, **full_kwargs)
|
39
|
+
|
40
|
+
|
41
|
+
def convert_to_tflite(
|
42
|
+
pytorch_model: torch.nn.Module,
|
43
|
+
output_path: str,
|
44
|
+
output_name_prefix: str,
|
45
|
+
prefill_seq_len: Union[int, list[int]],
|
46
|
+
pixel_values_size: torch.Size = None,
|
47
|
+
quantize: bool = True,
|
48
|
+
config: cfg.ModelConfig = None,
|
49
|
+
lora_ranks: Optional[list[int]] = None,
|
50
|
+
export_config: ExportConfig = None,
|
51
|
+
):
|
52
|
+
"""Converts a nn.Module model to multi-signature tflite model.
|
53
|
+
|
54
|
+
A PyTorch model will be converted to a tflite model with several signatures:
|
55
|
+
* "prefill_[prefill_seq_len]" (or "prefill" if only one prefill_seq_len is
|
56
|
+
passed),
|
57
|
+
* "prefill_[preill_seq_len]_pixel" (or "prefill_pixel" if only one
|
58
|
+
prefill_seq_len is passed) if num_pixel_values > 0, and
|
59
|
+
* "decode".
|
60
|
+
|
61
|
+
"prefill_[prefill_seq_len]" (or "prefill" if only one prefill_seq_len is
|
62
|
+
passed) signature takes as a sample input:
|
63
|
+
* a tensor of shape [1, prefill_seq_len] of token sequence,
|
64
|
+
* a tensor of shape [1, prefill_seq_len] of token positions, and
|
65
|
+
* an external KV cache.
|
66
|
+
|
67
|
+
If num_pixel_values > 0, "prefill_[prefill_seq_len]_pixel" (or "prefill_pixel"
|
68
|
+
if only one prefill_seq_len is passed) signature takes as a sample input:
|
69
|
+
* a tensor of shape [1, prefill_seq_len] of token sequence,
|
70
|
+
* a tensor of shape [1, prefill_seq_len] of token positions,
|
71
|
+
* an external KV cache, and
|
72
|
+
* a tensor of shape [1, num_pixel_values] of pixel values.
|
73
|
+
|
74
|
+
"decode" signature takes as a sample input:
|
75
|
+
* a tensor of shape [1, 1] of token sequence,
|
76
|
+
* a tensor of shape [1, 1] of the token position, and
|
77
|
+
* an external KV cache.
|
78
|
+
|
79
|
+
The final tflite model will be exported to tflite_path.
|
80
|
+
|
81
|
+
Args:
|
82
|
+
pytorch_model (torch.nn.Module): PyTorch model to convert to tflite.
|
83
|
+
output_path (str): The path to export the tflite model.
|
84
|
+
output_name_prefix (str): The prefix of the tflite model name.
|
85
|
+
prefill_seq_len (Union[int, list[int]]): The prefill sequence length to
|
86
|
+
use. If a list, the model will have multiple prefill signatures.
|
87
|
+
pixel_values_size (torch.Size, optional): The size of pixel values to pass
|
88
|
+
to the model. If None, the model is not expected to take pixel values.
|
89
|
+
quantize (bool, optional): Whether the model should be quanized. Defaults
|
90
|
+
to True.
|
91
|
+
config (cfg.ModelConfig, optional): The model config used to configure KV
|
92
|
+
cache. If None, it uses the config of the pytorch_model.
|
93
|
+
lora_ranks (list[int], optional): The ranks of the LORA layers. If None,
|
94
|
+
no LoRA signatures will be added.
|
95
|
+
"""
|
96
|
+
# pylint: disable=protected-access
|
97
|
+
torch._dynamo.config.cache_size_limit = 64
|
98
|
+
|
99
|
+
config = config if config else pytorch_model.config
|
100
|
+
prefill_seq_lens = (
|
101
|
+
[prefill_seq_len] if isinstance(prefill_seq_len, int) else prefill_seq_len
|
102
|
+
)
|
103
|
+
loras = [None]
|
104
|
+
if lora_ranks is not None:
|
105
|
+
for rank in lora_ranks:
|
106
|
+
lora = lora_utils.LoRA.zeros(rank, config)
|
107
|
+
loras.append(lora)
|
108
|
+
|
109
|
+
quant_suffix = 'q8' if quantize else 'f32'
|
110
|
+
kv_size = config.kv_cache_max_len
|
111
|
+
lora_suffix = (
|
112
|
+
'' if not lora_ranks else f'_lora{",".join(map(str, lora_ranks))}'
|
113
|
+
)
|
114
|
+
output_filename = (
|
115
|
+
f'{output_name_prefix}_{quant_suffix}_ekv{kv_size}{lora_suffix}.tflite'
|
116
|
+
)
|
117
|
+
output_file = os.path.join(output_path, output_filename)
|
118
|
+
|
119
|
+
_export_helper(
|
120
|
+
pytorch_model,
|
121
|
+
output_file,
|
122
|
+
prefill_seq_lens,
|
123
|
+
pixel_values_size,
|
124
|
+
quantize,
|
125
|
+
config,
|
126
|
+
loras,
|
127
|
+
export_config,
|
128
|
+
)
|
129
|
+
|
130
|
+
|
131
|
+
def _export_helper(
|
132
|
+
pytorch_model: torch.nn.Module,
|
133
|
+
output_file: str,
|
134
|
+
prefill_seq_lens: list[int],
|
135
|
+
pixel_values_size: torch.Size,
|
136
|
+
quantize: bool,
|
137
|
+
config: cfg.ModelConfig,
|
138
|
+
loras: list[None | lora_utils.LoRA],
|
139
|
+
export_config: ExportConfig,
|
140
|
+
):
|
141
|
+
"""Helper function to export a model to tflite."""
|
142
|
+
prefill_tokens_list = []
|
143
|
+
prefill_input_pos_list = []
|
144
|
+
for seq_len in prefill_seq_lens:
|
145
|
+
prefill_tokens_list.append(torch.full((1, seq_len), 0, dtype=torch.int))
|
146
|
+
prefill_input_pos_list.append(torch.arange(0, seq_len, dtype=torch.int))
|
147
|
+
|
148
|
+
prefill_pixel_values = (
|
149
|
+
torch.full((1,) + pixel_values_size, 0, dtype=torch.float32)
|
150
|
+
if pixel_values_size
|
151
|
+
else None
|
152
|
+
)
|
153
|
+
|
154
|
+
decode_token = torch.tensor([[0]], dtype=torch.int)
|
155
|
+
decode_input_pos = torch.tensor([0], dtype=torch.int)
|
156
|
+
kv = kv_utils.KVCache.from_model_config(config)
|
157
|
+
|
158
|
+
quant_config = quant_recipes.full_int8_dynamic_recipe() if quantize else None
|
159
|
+
|
160
|
+
# For export, we create a module that captures any non-exportable,
|
161
|
+
# arugments, e.g. the generation config object.
|
162
|
+
mod = ExportableModule(pytorch_model, export_config=export_config)
|
163
|
+
|
164
|
+
converter = converter_utils.Converter()
|
165
|
+
for lora in loras:
|
166
|
+
for i in range(len(prefill_seq_lens)):
|
167
|
+
prefill_seq_len = prefill_seq_lens[i]
|
168
|
+
prefill_tokens = prefill_tokens_list[i]
|
169
|
+
prefill_input_pos = prefill_input_pos_list[i]
|
170
|
+
if i == 0 and len(prefill_seq_lens) == 1:
|
171
|
+
prefill_signature_name = 'prefill'
|
172
|
+
else:
|
173
|
+
prefill_signature_name = f'prefill_{prefill_seq_len}'
|
174
|
+
|
175
|
+
sample_kwargs = {
|
176
|
+
'tokens': prefill_tokens,
|
177
|
+
'input_pos': prefill_input_pos,
|
178
|
+
'kv_cache': kv,
|
179
|
+
}
|
180
|
+
if lora is not None:
|
181
|
+
prefill_signature_name += f'_lora_r{lora.get_rank()}'
|
182
|
+
sample_kwargs['lora'] = lora
|
183
|
+
|
184
|
+
converter.add_signature(
|
185
|
+
prefill_signature_name,
|
186
|
+
mod,
|
187
|
+
sample_kwargs=sample_kwargs,
|
188
|
+
)
|
189
|
+
|
190
|
+
if prefill_pixel_values is not None:
|
191
|
+
converter.add_signature(
|
192
|
+
prefill_signature_name + '_pixel',
|
193
|
+
mod,
|
194
|
+
sample_kwargs={
|
195
|
+
**sample_kwargs,
|
196
|
+
'pixel_values': prefill_pixel_values,
|
197
|
+
},
|
198
|
+
)
|
199
|
+
|
200
|
+
sample_kwargs = {
|
201
|
+
'tokens': decode_token,
|
202
|
+
'input_pos': decode_input_pos,
|
203
|
+
'kv_cache': kv,
|
204
|
+
}
|
205
|
+
if lora is not None:
|
206
|
+
sample_kwargs['lora'] = lora
|
207
|
+
|
208
|
+
converter.add_signature(
|
209
|
+
'decode' if lora is None else f'decode_lora_r{lora.get_rank()}',
|
210
|
+
mod,
|
211
|
+
sample_kwargs=sample_kwargs,
|
212
|
+
)
|
213
|
+
|
214
|
+
edge_model = converter.convert(quant_config=quant_config)
|
215
|
+
edge_model.export(output_file)
|
@@ -0,0 +1,56 @@
|
|
1
|
+
# Copyright 2024 The AI Edge Torch Authors.
|
2
|
+
#
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
# you may not use this file except in compliance with the License.
|
5
|
+
# You may obtain a copy of the License at
|
6
|
+
#
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
#
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
# See the License for the specific language governing permissions and
|
13
|
+
# limitations under the License.
|
14
|
+
# ==============================================================================
|
15
|
+
# Common utility functions for data loading etc.
|
16
|
+
from dataclasses import dataclass
|
17
|
+
import glob
|
18
|
+
import os
|
19
|
+
from typing import Sequence
|
20
|
+
from ai_edge_torch.odml_torch import lowerings
|
21
|
+
from jax._src.lib.mlir import ir
|
22
|
+
from jax._src.lib.mlir.dialects import hlo as stablehlo
|
23
|
+
import torch
|
24
|
+
|
25
|
+
|
26
|
+
# Use torch.library.custom_op to define a new custom operator.
|
27
|
+
# TODO: Update impl for multiple non-trivial start_indices
|
28
|
+
@torch.library.custom_op("ai_edge_torch::dynamic_update_slice", mutates_args=())
|
29
|
+
def dynamic_update_slice(
|
30
|
+
in_tensor: torch.Tensor,
|
31
|
+
update: torch.Tensor,
|
32
|
+
start_indices: Sequence[torch.Tensor],
|
33
|
+
) -> torch.Tensor:
|
34
|
+
compare_size = torch.tensor(in_tensor.size()) == torch.tensor(update.size())
|
35
|
+
mismatch = torch.nonzero(~compare_size, as_tuple=False)
|
36
|
+
dim = mismatch[0].item() if len(mismatch) > 0 else 0
|
37
|
+
start = start_indices[dim].item()
|
38
|
+
end = start + update.shape[dim]
|
39
|
+
indices = torch.arange(start, end).to(torch.long)
|
40
|
+
return in_tensor.index_copy(dim, indices, update)
|
41
|
+
|
42
|
+
|
43
|
+
# Use register_fake to add a ``FakeTensor`` kernel for the operator
|
44
|
+
@dynamic_update_slice.register_fake
|
45
|
+
def _(in_tensor, update, start_indices):
|
46
|
+
return in_tensor.clone().detach()
|
47
|
+
|
48
|
+
|
49
|
+
@lowerings.lower(torch.ops.ai_edge_torch.dynamic_update_slice)
|
50
|
+
def _dynamic_update_slice_lower(
|
51
|
+
lctx,
|
52
|
+
in_tensor: ir.Value,
|
53
|
+
update: ir.Value,
|
54
|
+
start_indices: Sequence[ir.Value],
|
55
|
+
):
|
56
|
+
return stablehlo.dynamic_update_slice(in_tensor, update, start_indices)
|