ai-edge-torch-nightly 0.3.0.dev20250114__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (213) hide show
  1. ai_edge_torch/__init__.py +32 -0
  2. ai_edge_torch/_config.py +69 -0
  3. ai_edge_torch/_convert/__init__.py +14 -0
  4. ai_edge_torch/_convert/conversion.py +153 -0
  5. ai_edge_torch/_convert/conversion_utils.py +64 -0
  6. ai_edge_torch/_convert/converter.py +270 -0
  7. ai_edge_torch/_convert/fx_passes/__init__.py +23 -0
  8. ai_edge_torch/_convert/fx_passes/build_aten_composite_pass.py +288 -0
  9. ai_edge_torch/_convert/fx_passes/build_interpolate_composite_pass.py +131 -0
  10. ai_edge_torch/_convert/fx_passes/inject_mlir_debuginfo_pass.py +73 -0
  11. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/__init__.py +16 -0
  12. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_check.py +258 -0
  13. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_mark.py +50 -0
  14. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +18 -0
  15. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +68 -0
  16. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +216 -0
  17. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +449 -0
  18. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +30 -0
  19. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/pass_body.py +303 -0
  20. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/utils.py +64 -0
  21. ai_edge_torch/_convert/fx_passes/remove_non_user_outputs_pass.py +52 -0
  22. ai_edge_torch/_convert/signature.py +66 -0
  23. ai_edge_torch/_convert/test/__init__.py +14 -0
  24. ai_edge_torch/_convert/test/test_convert.py +558 -0
  25. ai_edge_torch/_convert/test/test_convert_composites.py +234 -0
  26. ai_edge_torch/_convert/test/test_convert_multisig.py +189 -0
  27. ai_edge_torch/_convert/test/test_to_channel_last_io.py +96 -0
  28. ai_edge_torch/_convert/to_channel_last_io.py +92 -0
  29. ai_edge_torch/conftest.py +20 -0
  30. ai_edge_torch/debug/__init__.py +17 -0
  31. ai_edge_torch/debug/culprit.py +496 -0
  32. ai_edge_torch/debug/test/__init__.py +14 -0
  33. ai_edge_torch/debug/test/test_culprit.py +140 -0
  34. ai_edge_torch/debug/test/test_search_model.py +51 -0
  35. ai_edge_torch/debug/utils.py +59 -0
  36. ai_edge_torch/experimental/__init__.py +14 -0
  37. ai_edge_torch/fx_pass_base.py +110 -0
  38. ai_edge_torch/generative/__init__.py +14 -0
  39. ai_edge_torch/generative/examples/__init__.py +14 -0
  40. ai_edge_torch/generative/examples/amd_llama_135m/__init__.py +14 -0
  41. ai_edge_torch/generative/examples/amd_llama_135m/amd_llama_135m.py +87 -0
  42. ai_edge_torch/generative/examples/amd_llama_135m/convert_to_tflite.py +70 -0
  43. ai_edge_torch/generative/examples/amd_llama_135m/verify.py +72 -0
  44. ai_edge_torch/generative/examples/gemma/__init__.py +14 -0
  45. ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +80 -0
  46. ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +80 -0
  47. ai_edge_torch/generative/examples/gemma/gemma1.py +107 -0
  48. ai_edge_torch/generative/examples/gemma/gemma2.py +295 -0
  49. ai_edge_torch/generative/examples/gemma/verify_gemma1.py +56 -0
  50. ai_edge_torch/generative/examples/gemma/verify_gemma2.py +43 -0
  51. ai_edge_torch/generative/examples/gemma/verify_util.py +157 -0
  52. ai_edge_torch/generative/examples/llama/__init__.py +14 -0
  53. ai_edge_torch/generative/examples/llama/convert_to_tflite.py +91 -0
  54. ai_edge_torch/generative/examples/llama/llama.py +196 -0
  55. ai_edge_torch/generative/examples/llama/verify.py +88 -0
  56. ai_edge_torch/generative/examples/moonshine/__init__.py +14 -0
  57. ai_edge_torch/generative/examples/moonshine/convert_moonshine_to_tflite.py +50 -0
  58. ai_edge_torch/generative/examples/moonshine/moonshine.py +103 -0
  59. ai_edge_torch/generative/examples/openelm/__init__.py +14 -0
  60. ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +80 -0
  61. ai_edge_torch/generative/examples/openelm/openelm.py +127 -0
  62. ai_edge_torch/generative/examples/openelm/verify.py +71 -0
  63. ai_edge_torch/generative/examples/paligemma/__init__.py +14 -0
  64. ai_edge_torch/generative/examples/paligemma/convert_to_tflite.py +95 -0
  65. ai_edge_torch/generative/examples/paligemma/decoder.py +151 -0
  66. ai_edge_torch/generative/examples/paligemma/decoder2.py +177 -0
  67. ai_edge_torch/generative/examples/paligemma/image_encoder.py +160 -0
  68. ai_edge_torch/generative/examples/paligemma/paligemma.py +179 -0
  69. ai_edge_torch/generative/examples/paligemma/verify.py +161 -0
  70. ai_edge_torch/generative/examples/paligemma/verify_decoder.py +75 -0
  71. ai_edge_torch/generative/examples/paligemma/verify_decoder2.py +72 -0
  72. ai_edge_torch/generative/examples/paligemma/verify_image_encoder.py +99 -0
  73. ai_edge_torch/generative/examples/phi/__init__.py +14 -0
  74. ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +80 -0
  75. ai_edge_torch/generative/examples/phi/convert_to_tflite.py +80 -0
  76. ai_edge_torch/generative/examples/phi/phi2.py +107 -0
  77. ai_edge_torch/generative/examples/phi/phi3.py +219 -0
  78. ai_edge_torch/generative/examples/phi/verify.py +64 -0
  79. ai_edge_torch/generative/examples/phi/verify_phi3.py +69 -0
  80. ai_edge_torch/generative/examples/qwen/__init__.py +14 -0
  81. ai_edge_torch/generative/examples/qwen/convert_to_tflite.py +93 -0
  82. ai_edge_torch/generative/examples/qwen/qwen.py +134 -0
  83. ai_edge_torch/generative/examples/qwen/verify.py +88 -0
  84. ai_edge_torch/generative/examples/smollm/__init__.py +14 -0
  85. ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +80 -0
  86. ai_edge_torch/generative/examples/smollm/convert_v2_to_tflite.py +71 -0
  87. ai_edge_torch/generative/examples/smollm/smollm.py +125 -0
  88. ai_edge_torch/generative/examples/smollm/verify.py +86 -0
  89. ai_edge_torch/generative/examples/stable_diffusion/__init__.py +14 -0
  90. ai_edge_torch/generative/examples/stable_diffusion/attention.py +108 -0
  91. ai_edge_torch/generative/examples/stable_diffusion/clip.py +185 -0
  92. ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +173 -0
  93. ai_edge_torch/generative/examples/stable_diffusion/decoder.py +398 -0
  94. ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +749 -0
  95. ai_edge_torch/generative/examples/stable_diffusion/encoder.py +119 -0
  96. ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +254 -0
  97. ai_edge_torch/generative/examples/stable_diffusion/samplers/__init__.py +19 -0
  98. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +62 -0
  99. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +66 -0
  100. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +74 -0
  101. ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +39 -0
  102. ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +111 -0
  103. ai_edge_torch/generative/examples/stable_diffusion/util.py +77 -0
  104. ai_edge_torch/generative/examples/t5/__init__.py +14 -0
  105. ai_edge_torch/generative/examples/t5/convert_to_tflite.py +138 -0
  106. ai_edge_torch/generative/examples/t5/t5.py +655 -0
  107. ai_edge_torch/generative/examples/t5/t5_attention.py +246 -0
  108. ai_edge_torch/generative/examples/test_models/__init__.py +14 -0
  109. ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
  110. ai_edge_torch/generative/examples/test_models/toy_model.py +156 -0
  111. ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +138 -0
  112. ai_edge_torch/generative/examples/tiny_llama/__init__.py +14 -0
  113. ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +80 -0
  114. ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +88 -0
  115. ai_edge_torch/generative/examples/tiny_llama/verify.py +72 -0
  116. ai_edge_torch/generative/fx_passes/__init__.py +30 -0
  117. ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +50 -0
  118. ai_edge_torch/generative/layers/__init__.py +14 -0
  119. ai_edge_torch/generative/layers/attention.py +399 -0
  120. ai_edge_torch/generative/layers/attention_utils.py +210 -0
  121. ai_edge_torch/generative/layers/builder.py +160 -0
  122. ai_edge_torch/generative/layers/feed_forward.py +120 -0
  123. ai_edge_torch/generative/layers/kv_cache.py +204 -0
  124. ai_edge_torch/generative/layers/lora.py +557 -0
  125. ai_edge_torch/generative/layers/model_config.py +238 -0
  126. ai_edge_torch/generative/layers/normalization.py +222 -0
  127. ai_edge_torch/generative/layers/rotary_position_embedding.py +94 -0
  128. ai_edge_torch/generative/layers/scaled_dot_product_attention.py +144 -0
  129. ai_edge_torch/generative/layers/unet/__init__.py +14 -0
  130. ai_edge_torch/generative/layers/unet/blocks_2d.py +806 -0
  131. ai_edge_torch/generative/layers/unet/builder.py +50 -0
  132. ai_edge_torch/generative/layers/unet/model_config.py +282 -0
  133. ai_edge_torch/generative/quantize/__init__.py +14 -0
  134. ai_edge_torch/generative/quantize/example.py +47 -0
  135. ai_edge_torch/generative/quantize/quant_attrs.py +68 -0
  136. ai_edge_torch/generative/quantize/quant_recipe.py +154 -0
  137. ai_edge_torch/generative/quantize/quant_recipe_utils.py +62 -0
  138. ai_edge_torch/generative/quantize/quant_recipes.py +56 -0
  139. ai_edge_torch/generative/quantize/supported_schemes.py +32 -0
  140. ai_edge_torch/generative/test/__init__.py +14 -0
  141. ai_edge_torch/generative/test/test_custom_dus.py +107 -0
  142. ai_edge_torch/generative/test/test_kv_cache.py +120 -0
  143. ai_edge_torch/generative/test/test_loader.py +83 -0
  144. ai_edge_torch/generative/test/test_lora.py +147 -0
  145. ai_edge_torch/generative/test/test_model_conversion.py +191 -0
  146. ai_edge_torch/generative/test/test_model_conversion_large.py +362 -0
  147. ai_edge_torch/generative/test/test_quantize.py +183 -0
  148. ai_edge_torch/generative/test/utils.py +82 -0
  149. ai_edge_torch/generative/utilities/__init__.py +15 -0
  150. ai_edge_torch/generative/utilities/converter.py +215 -0
  151. ai_edge_torch/generative/utilities/dynamic_update_slice.py +56 -0
  152. ai_edge_torch/generative/utilities/loader.py +398 -0
  153. ai_edge_torch/generative/utilities/model_builder.py +180 -0
  154. ai_edge_torch/generative/utilities/moonshine_loader.py +154 -0
  155. ai_edge_torch/generative/utilities/stable_diffusion_loader.py +1032 -0
  156. ai_edge_torch/generative/utilities/t5_loader.py +512 -0
  157. ai_edge_torch/generative/utilities/transformers_verifier.py +42 -0
  158. ai_edge_torch/generative/utilities/verifier.py +335 -0
  159. ai_edge_torch/hlfb/__init__.py +16 -0
  160. ai_edge_torch/hlfb/mark_pattern/__init__.py +153 -0
  161. ai_edge_torch/hlfb/mark_pattern/fx_utils.py +69 -0
  162. ai_edge_torch/hlfb/mark_pattern/pattern.py +288 -0
  163. ai_edge_torch/hlfb/test/__init__.py +14 -0
  164. ai_edge_torch/hlfb/test/test_mark_pattern.py +185 -0
  165. ai_edge_torch/lowertools/__init__.py +18 -0
  166. ai_edge_torch/lowertools/_shim.py +86 -0
  167. ai_edge_torch/lowertools/common_utils.py +142 -0
  168. ai_edge_torch/lowertools/odml_torch_utils.py +260 -0
  169. ai_edge_torch/lowertools/test_utils.py +62 -0
  170. ai_edge_torch/lowertools/torch_xla_utils.py +301 -0
  171. ai_edge_torch/lowertools/translate_recipe.py +163 -0
  172. ai_edge_torch/model.py +177 -0
  173. ai_edge_torch/odml_torch/__init__.py +20 -0
  174. ai_edge_torch/odml_torch/_torch_future.py +88 -0
  175. ai_edge_torch/odml_torch/_torch_library.py +19 -0
  176. ai_edge_torch/odml_torch/composite/__init__.py +16 -0
  177. ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
  178. ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
  179. ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
  180. ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
  181. ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
  182. ai_edge_torch/odml_torch/export.py +403 -0
  183. ai_edge_torch/odml_torch/export_utils.py +157 -0
  184. ai_edge_torch/odml_torch/jax_bridge/__init__.py +18 -0
  185. ai_edge_torch/odml_torch/jax_bridge/_wrap.py +180 -0
  186. ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
  187. ai_edge_torch/odml_torch/lowerings/__init__.py +27 -0
  188. ai_edge_torch/odml_torch/lowerings/_basic.py +294 -0
  189. ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
  190. ai_edge_torch/odml_torch/lowerings/_convolution.py +243 -0
  191. ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +285 -0
  192. ai_edge_torch/odml_torch/lowerings/_layer_norm.py +87 -0
  193. ai_edge_torch/odml_torch/lowerings/_quantized_decomposed.py +177 -0
  194. ai_edge_torch/odml_torch/lowerings/_rand.py +142 -0
  195. ai_edge_torch/odml_torch/lowerings/context.py +42 -0
  196. ai_edge_torch/odml_torch/lowerings/decomp.py +69 -0
  197. ai_edge_torch/odml_torch/lowerings/registry.py +65 -0
  198. ai_edge_torch/odml_torch/lowerings/utils.py +201 -0
  199. ai_edge_torch/odml_torch/passes/__init__.py +38 -0
  200. ai_edge_torch/odml_torch/tf_integration.py +156 -0
  201. ai_edge_torch/quantize/__init__.py +16 -0
  202. ai_edge_torch/quantize/pt2e_quantizer.py +466 -0
  203. ai_edge_torch/quantize/pt2e_quantizer_utils.py +1061 -0
  204. ai_edge_torch/quantize/quant_config.py +85 -0
  205. ai_edge_torch/testing/__init__.py +14 -0
  206. ai_edge_torch/testing/model_coverage/__init__.py +16 -0
  207. ai_edge_torch/testing/model_coverage/model_coverage.py +145 -0
  208. ai_edge_torch/version.py +16 -0
  209. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/LICENSE +202 -0
  210. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/METADATA +44 -0
  211. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/RECORD +213 -0
  212. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/WHEEL +5 -0
  213. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/top_level.txt +1 -0
@@ -0,0 +1,558 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ """Tests for ai_edge_torch.convert."""
16
+
17
+ import dataclasses
18
+ import os
19
+ from typing import Tuple
20
+
21
+ import ai_edge_torch
22
+ from ai_edge_torch._convert import conversion_utils
23
+ from ai_edge_torch.quantize import pt2e_quantizer
24
+ from ai_edge_torch.testing import model_coverage
25
+ import numpy as np
26
+ import torch
27
+ from torch import nn
28
+ from torch.ao.quantization import quantize_pt2e
29
+ import torchvision
30
+
31
+ from absl.testing import absltest as googletest
32
+ from ai_edge_litert import interpreter as tfl_interpreter # pylint: disable=g-direct-tensorflow-import
33
+
34
+
35
+ @dataclasses.dataclass
36
+ class TestContainer1:
37
+ data_1: torch.Tensor
38
+ data_2: Tuple[torch.Tensor, torch.Tensor]
39
+
40
+
41
+ torch.export.register_dataclass(
42
+ TestContainer1, serialized_type_name="TestContainer1"
43
+ )
44
+
45
+
46
+ class TestConvert(googletest.TestCase):
47
+ """Tests conversion of various modules."""
48
+
49
+ def setUp(self):
50
+ super().setUp()
51
+ torch.manual_seed(0)
52
+
53
+ def test_convert_add(self):
54
+ """Tests conversion of a simple Add module."""
55
+
56
+ class Add(nn.Module):
57
+
58
+ def forward(self, a, b):
59
+ return a + b
60
+
61
+ args = (
62
+ torch.randn((5, 10)),
63
+ torch.randn((5, 10)),
64
+ )
65
+ torch_module = Add().eval()
66
+ edge_model = ai_edge_torch.convert(torch_module, args)
67
+
68
+ self.assertTrue(
69
+ model_coverage.compare_tflite_torch(edge_model, torch_module, args)
70
+ )
71
+
72
+ def test_convert_dot_add(self):
73
+ """Tests conversion of a matrix multiplication followed by an add."""
74
+
75
+ class DotAdd(nn.Module):
76
+
77
+ def forward(self, a, b, c):
78
+ return a @ b + c
79
+
80
+ args = (
81
+ torch.randn((5, 10)),
82
+ torch.randn((10, 5)),
83
+ torch.randn((5, 5)),
84
+ )
85
+ torch_module = DotAdd().eval()
86
+ edge_model = ai_edge_torch.convert(torch_module, args)
87
+
88
+ self.assertTrue(
89
+ model_coverage.compare_tflite_torch(edge_model, torch_module, args)
90
+ )
91
+
92
+ def test_convert_resnet18(self):
93
+ args = (torch.randn(4, 3, 224, 224),)
94
+ torch_module = torchvision.models.resnet18().eval()
95
+ edge_model = ai_edge_torch.convert(torch_module, args)
96
+
97
+ self.assertTrue(
98
+ model_coverage.compare_tflite_torch(edge_model, torch_module, args)
99
+ )
100
+
101
+ def test_signature_args_ordering(self):
102
+ """Tests conversion of a model with more than 10 arguments."""
103
+
104
+ class AddChainWith11Args(nn.Module):
105
+ """A model with 11 arguments."""
106
+
107
+ def forward(
108
+ self,
109
+ arg0: torch.Tensor,
110
+ arg1: torch.Tensor,
111
+ arg2: torch.Tensor,
112
+ arg3: torch.Tensor,
113
+ arg4: torch.Tensor,
114
+ arg5: torch.Tensor,
115
+ arg6: torch.Tensor,
116
+ arg7: torch.Tensor,
117
+ arg8: torch.Tensor,
118
+ arg9: torch.Tensor,
119
+ arg10: torch.Tensor,
120
+ ):
121
+ add0 = torch.add(arg0, arg1)
122
+ add1 = torch.add(add0, arg2)
123
+ add2 = torch.add(add1, arg3)
124
+ add3 = torch.add(add2, arg4)
125
+ add4 = torch.add(add3, arg5)
126
+ add5 = torch.add(add4, arg6)
127
+ add6 = torch.add(add5, arg7)
128
+ add7 = torch.add(add6, arg8)
129
+ add8 = torch.add(add7, arg9)
130
+ add9 = torch.add(add8, arg10)
131
+ return add9
132
+
133
+ sample_input = lambda: (
134
+ torch.rand((64,), dtype=torch.float32),
135
+ torch.rand((64,), dtype=torch.float32),
136
+ torch.rand((64,), dtype=torch.float32),
137
+ torch.rand((64,), dtype=torch.float32),
138
+ torch.rand((64,), dtype=torch.float32),
139
+ torch.rand((64,), dtype=torch.float32),
140
+ torch.rand((64,), dtype=torch.float32),
141
+ torch.rand((64,), dtype=torch.float32),
142
+ torch.rand((64,), dtype=torch.float32),
143
+ torch.rand((64,), dtype=torch.float32),
144
+ torch.rand((64,), dtype=torch.float32),
145
+ )
146
+ torch_model = AddChainWith11Args().eval()
147
+ edge_model = ai_edge_torch.convert(torch_model, sample_input())
148
+
149
+ result = model_coverage.compare_tflite_torch(
150
+ edge_model, torch_model, sample_input, num_valid_inputs=10
151
+ )
152
+ self.assertTrue(result)
153
+
154
+ def test_multi_output_model(self):
155
+ """Tests conversion of a model that returns multiple outputs."""
156
+
157
+ class BasicAddModelWithMultipleOutputs(nn.Module):
158
+ """A model that returns multiple outputs."""
159
+
160
+ def forward(self, arg0, arg1):
161
+ add0 = arg0 + arg1
162
+ mul0 = arg0 * arg1
163
+ return add0, mul0
164
+
165
+ sample_input = (
166
+ torch.rand((64,), dtype=torch.float32),
167
+ torch.rand((64,), dtype=torch.float32),
168
+ )
169
+
170
+ torch_model = BasicAddModelWithMultipleOutputs().eval()
171
+ edge_model = ai_edge_torch.convert(torch_model, sample_input)
172
+
173
+ result = model_coverage.compare_tflite_torch(
174
+ edge_model, torch_model, sample_input
175
+ )
176
+ self.assertTrue(result)
177
+
178
+ def test_12_outputs_model(self):
179
+ """Tests conversion of a model that returns more than 10 outputs."""
180
+
181
+ class BasicAddModelWithMultipleOutputs(nn.Module):
182
+ """A model that returns multiple outputs."""
183
+
184
+ def forward(self, arg0, arg1):
185
+ add0 = arg0 + arg1
186
+ mul0 = arg0 * arg1
187
+ add1 = add0 + mul0
188
+ mul1 = add0 * mul0
189
+ add2 = add1 + mul1
190
+ mul2 = add1 * mul1
191
+ add3 = add2 + mul2
192
+ mul3 = add2 * mul2
193
+ add4 = add3 + mul3
194
+ mul4 = add3 * mul3
195
+ add5 = add4 + mul4
196
+ mul5 = add4 * mul4
197
+
198
+ return (
199
+ add0,
200
+ mul0,
201
+ add1,
202
+ mul1,
203
+ add2,
204
+ mul2,
205
+ add3,
206
+ mul3,
207
+ add4,
208
+ mul4,
209
+ add5,
210
+ mul5,
211
+ )
212
+
213
+ sample_input = (
214
+ torch.rand((64,), dtype=torch.float32),
215
+ torch.rand((64,), dtype=torch.float32),
216
+ )
217
+
218
+ torch_model = BasicAddModelWithMultipleOutputs().eval()
219
+ edge_model = ai_edge_torch.convert(torch_model, sample_input)
220
+
221
+ result = model_coverage.compare_tflite_torch(
222
+ edge_model, torch_model, sample_input
223
+ )
224
+ self.assertTrue(result)
225
+
226
+ def test_apply_tfl_converter_flags(self):
227
+ """Tests if _apply_tfl_converter_flags correctly sets the values in a Converter object."""
228
+
229
+ class MockConverterInternalObject:
230
+
231
+ def __init__(self):
232
+ self.subkey2 = "original_subvalue2"
233
+
234
+ class MockConverter:
235
+
236
+ def __init__(self):
237
+ self.key1 = "original_value1"
238
+ self.key2 = MockConverterInternalObject()
239
+
240
+ mock_converter = MockConverter()
241
+ flags = {"key1": "new_value1", "key2": {"subkey2": "new_subvalue2"}}
242
+ conversion_utils.apply_tfl_converter_flags(mock_converter, flags)
243
+
244
+ self.assertTrue(flags["key1"], "new_value1")
245
+ self.assertTrue(flags["key2"]["subkey2"], "new_subvalue2")
246
+
247
+ def test_convert_add_converter_flags(self):
248
+ """Tests conversion of an add module setting a tflite converter flag."""
249
+
250
+ class Add(nn.Module):
251
+
252
+ def forward(self, a, b):
253
+ return a + b
254
+
255
+ args = (
256
+ torch.randn((5, 10)),
257
+ torch.randn((5, 10)),
258
+ )
259
+ torch_module = Add().eval()
260
+
261
+ tmp_dir_path = self.create_tempdir()
262
+ ir_dump_path = os.path.join(
263
+ tmp_dir_path, "test_convert_add_converter_flags_mlir_dump"
264
+ )
265
+ ai_edge_torch.convert(
266
+ torch_module,
267
+ args,
268
+ _ai_edge_converter_flags={"ir_dump_dir": ir_dump_path},
269
+ )
270
+ self.assertTrue(os.path.isdir(ir_dump_path))
271
+
272
+ def test_convert_conv_transpose_batch_norm(self):
273
+ """Tests conversion of a model with ConvTranspose2d and BatchNorm2d."""
274
+
275
+ channels = 2
276
+ size = 2
277
+ torch_model = nn.Sequential(
278
+ nn.ConvTranspose2d(
279
+ channels, channels, 1, stride=2, dilation=1, bias=False
280
+ ),
281
+ nn.BatchNorm2d(channels),
282
+ )
283
+
284
+ torch_model.eval()
285
+ sample_input = (torch.rand(1, channels, size, size),)
286
+ edge_model = ai_edge_torch.convert(torch_model, sample_input)
287
+
288
+ result = model_coverage.compare_tflite_torch(
289
+ edge_model, torch_model, sample_input
290
+ )
291
+ self.assertTrue(result)
292
+
293
+ @googletest.skipIf(
294
+ not ai_edge_torch.config.use_torch_xla,
295
+ reason="Shape polymorphism is not yet support with odml_torch.",
296
+ )
297
+ def test_convert_model_with_dynamic_batch(self):
298
+ """Test converting a simple model with dynamic batch size."""
299
+
300
+ class SampleModel(nn.Module):
301
+
302
+ def __init__(self):
303
+ super().__init__()
304
+ self.w = torch.ones((10, 10)) * 2.7
305
+
306
+ def forward(self, x, y):
307
+ return x + y + self.w
308
+
309
+ sample_input = (torch.randn(4, 3, 10, 10), torch.randn(4, 3, 10, 10))
310
+ batch = torch.export.Dim("batch")
311
+ dynamic_shapes = ({0: batch}, {0: batch})
312
+
313
+ model = SampleModel().eval()
314
+ edge_model = ai_edge_torch.convert(
315
+ model, sample_input, dynamic_shapes=dynamic_shapes
316
+ )
317
+
318
+ for batch_size in [2, 4, 10]:
319
+ validate_input = (
320
+ torch.randn(batch_size, 3, 10, 10),
321
+ torch.randn(batch_size, 3, 10, 10),
322
+ )
323
+ self.assertTrue(
324
+ model_coverage.compare_tflite_torch(edge_model, model, validate_input)
325
+ )
326
+
327
+ def test_convert_model_with_kwargs(self):
328
+ """Test converting a simple model with sample_kwargs."""
329
+
330
+ class SampleModel(nn.Module):
331
+
332
+ def forward(self, x, y):
333
+ return x + y
334
+
335
+ kwargs_gen = lambda: dict(x=torch.randn(10, 10), y=torch.randn(10, 10))
336
+
337
+ model = SampleModel().eval()
338
+ edge_model = ai_edge_torch.convert(model, sample_kwargs=kwargs_gen())
339
+
340
+ self.assertTrue(
341
+ model_coverage.compare_tflite_torch(
342
+ edge_model, model, kwargs=kwargs_gen
343
+ )
344
+ )
345
+
346
+ def test_convert_model_with_args_kwargs(self):
347
+ """Test converting a simple model with both sample_args and sample_kwargs."""
348
+
349
+ class SampleModel(nn.Module):
350
+
351
+ def forward(self, x, y):
352
+ return x + y
353
+
354
+ args_gen = lambda: (torch.randn(10, 10),)
355
+ kwargs_gen = lambda: dict(y=torch.randn(10, 10))
356
+
357
+ model = SampleModel().eval()
358
+ edge_model = ai_edge_torch.convert(model, args_gen(), kwargs_gen())
359
+
360
+ self.assertTrue(
361
+ model_coverage.compare_tflite_torch(
362
+ edge_model, model, args_gen, kwargs_gen
363
+ )
364
+ )
365
+
366
+ def test_convert_model_with_args_nested_kwargs_1(self):
367
+ """Test converting a simple model with both sample_args and nested sample_kwargs."""
368
+
369
+ class SampleModel(nn.Module):
370
+
371
+ def forward(self, x: torch.Tensor, y: torch.Tensor, z: TestContainer1):
372
+ return x + y + z.data_1 + z.data_2[0] + z.data_2[1]
373
+
374
+ args = (torch.randn(10, 10),)
375
+ kwargs = dict(
376
+ y=torch.randn(10, 10),
377
+ z=TestContainer1(
378
+ data_1=torch.randn(10, 10),
379
+ data_2=(torch.randn(10, 10), torch.randn(10, 10)),
380
+ ),
381
+ )
382
+ flat_inputs = {
383
+ "args_0": args[0].numpy(),
384
+ "y": kwargs["y"].numpy(),
385
+ "z_data_1": kwargs["z"].data_1.numpy(),
386
+ "z_data_2_0": kwargs["z"].data_2[0].numpy(),
387
+ "z_data_2_1": kwargs["z"].data_2[1].numpy(),
388
+ }
389
+ self._compare_tflite_torch_args_kwargs(
390
+ SampleModel(), args, kwargs, flat_inputs
391
+ )
392
+
393
+ def test_convert_model_with_args_nested_kwargs_2(self):
394
+ """Test converting a simple model with both sample_args and nested sample_kwargs."""
395
+
396
+ class SampleModel(nn.Module):
397
+
398
+ def forward(self, x, y, z):
399
+ return x + y + z.data_1 + z.data_2[0][0] + z.data_2[1]
400
+
401
+ args = (torch.randn(10, 10),)
402
+ kwargs = dict(
403
+ y=torch.randn(10, 10),
404
+ z=TestContainer1(
405
+ data_1=torch.randn(10, 10),
406
+ data_2=[(torch.randn(10, 10),), torch.randn(10, 10)],
407
+ ),
408
+ )
409
+ flat_inputs = {
410
+ "args_0": args[0].numpy(),
411
+ "y": kwargs["y"].numpy(),
412
+ "z_data_1": kwargs["z"].data_1.numpy(),
413
+ "z_data_2_0_0": kwargs["z"].data_2[0][0].numpy(),
414
+ "z_data_2_1": kwargs["z"].data_2[1].numpy(),
415
+ }
416
+ self._compare_tflite_torch_args_kwargs(
417
+ SampleModel(), args, kwargs, flat_inputs
418
+ )
419
+
420
+ def test_convert_model_with_args_nested_kwargs_3(self):
421
+ """Test converting a simple model with both sample_args and nested sample_kwargs."""
422
+
423
+ class SampleModel(nn.Module):
424
+
425
+ def forward(self, x, y, z):
426
+ return x + y + z.data_1 + z.data_2[0]["foo"] + z.data_2[1]
427
+
428
+ args = (torch.randn(10, 10),)
429
+ kwargs = dict(
430
+ y=torch.randn(10, 10),
431
+ z=TestContainer1(
432
+ data_1=torch.randn(10, 10),
433
+ data_2=(dict(foo=torch.randn(10, 10)), torch.randn(10, 10)),
434
+ ),
435
+ )
436
+ flat_inputs = {
437
+ "args_0": args[0].numpy(),
438
+ "y": kwargs["y"].numpy(),
439
+ "z_data_1": kwargs["z"].data_1.numpy(),
440
+ "z_data_2_0_foo": kwargs["z"].data_2[0]["foo"].numpy(),
441
+ "z_data_2_1": kwargs["z"].data_2[1].numpy(),
442
+ }
443
+ self._compare_tflite_torch_args_kwargs(
444
+ SampleModel(), args, kwargs, flat_inputs
445
+ )
446
+
447
+ def test_convert_model_non_flat_output_dict(self):
448
+ """Test converting a model with non-flat output structure."""
449
+
450
+ class SampleModel(nn.Module):
451
+
452
+ def forward(self, x, y, z):
453
+ return {"x": x, "y": TestContainer1(data_1=y, data_2=[y, z])}
454
+
455
+ args = (torch.randn(10, 10), torch.randn(10, 10), torch.randn(10, 10))
456
+ kwargs = dict()
457
+ flat_inputs = {
458
+ "args_0": args[0].numpy(),
459
+ "args_1": args[1].numpy(),
460
+ "args_2": args[2].numpy(),
461
+ }
462
+
463
+ edge_model = ai_edge_torch.convert(SampleModel().eval(), args, kwargs)
464
+ edge_output = edge_model(**flat_inputs)
465
+ np.testing.assert_almost_equal(edge_output["x"], args[0])
466
+ np.testing.assert_almost_equal(edge_output["y_data_1"], args[1])
467
+ np.testing.assert_almost_equal(edge_output["y_data_2_0"], args[1])
468
+ np.testing.assert_almost_equal(edge_output["y_data_2_1"], args[2])
469
+
470
+ interpreter = tfl_interpreter.Interpreter(
471
+ model_content=edge_model._tflite_model
472
+ )
473
+ runner = interpreter.get_signature_runner("serving_default")
474
+ output_details = runner.get_output_details()
475
+ self.assertIn("x", output_details.keys())
476
+ self.assertIn("y_data_1", output_details.keys())
477
+ self.assertIn("y_data_2_0", output_details.keys())
478
+ self.assertIn("y_data_2_1", output_details.keys())
479
+
480
+ def _compare_tflite_torch_args_kwargs(self, model, args, kwargs, flat_inputs):
481
+ model.eval()
482
+ edge_model = ai_edge_torch.convert(model, args, kwargs)
483
+ interpreter = tfl_interpreter.Interpreter(
484
+ model_content=edge_model._tflite_model
485
+ )
486
+ runner = interpreter.get_signature_runner("serving_default")
487
+ input_details = runner.get_input_details()
488
+ self.assertEqual(input_details.keys(), flat_inputs.keys())
489
+
490
+ reference_output = model(*args, **kwargs)
491
+ tflite_output = edge_model(**flat_inputs)
492
+ np.testing.assert_almost_equal(reference_output, tflite_output)
493
+
494
+ def test_convert_model_with_input_mutation(self):
495
+ class SampleModel(nn.Module):
496
+
497
+ def forward(self, x):
498
+ x /= 1
499
+ x = x + 10
500
+ return x
501
+
502
+ args = (torch.randn(10, 10),)
503
+ torch_module = SampleModel().eval()
504
+ edge_model = ai_edge_torch.convert(torch_module, args)
505
+
506
+ self.assertTrue(
507
+ model_coverage.compare_tflite_torch(edge_model, torch_module, args)
508
+ )
509
+
510
+ def test_convert_resnet18_pt2e_per_layer(self):
511
+ # Step 1: export resnet18
512
+ args = (torch.randn(1, 3, 224, 224),)
513
+ m = torchvision.models.resnet18().eval()
514
+ m = torch._export.capture_pre_autograd_graph(m, args)
515
+
516
+ # Step 2: Insert observers or fake quantize modules
517
+ quantizer = pt2e_quantizer.PT2EQuantizer().set_global(
518
+ pt2e_quantizer.get_symmetric_quantization_config(is_per_channel=False)
519
+ )
520
+ m = quantize_pt2e.prepare_pt2e(m, quantizer)
521
+
522
+ # Step 3: Quantize the model
523
+ m = quantize_pt2e.convert_pt2e(m, fold_quantize=False)
524
+
525
+ # pylint: disable=broad-except
526
+ try:
527
+ ai_edge_torch.convert(m, args)
528
+ except Exception as err:
529
+ self.fail(f"PT2E conversion failed: {err}")
530
+ # pylint: enable=broad-except
531
+
532
+ def test_convert_resnet18_pt2e_per_channel(self):
533
+ # Step 1: export resnet18
534
+ args = (torch.randn(1, 3, 224, 224),)
535
+ m = torchvision.models.resnet18().eval()
536
+ m = torch._export.capture_pre_autograd_graph(m, args)
537
+
538
+ # Step 2: Insert observers or fake quantize modules
539
+ quantizer = pt2e_quantizer.PT2EQuantizer().set_global(
540
+ pt2e_quantizer.get_symmetric_quantization_config(is_per_channel=True)
541
+ )
542
+ m = quantize_pt2e.prepare_pt2e(m, quantizer)
543
+ # Step 3: Run through example inputs, otherwise per-channel
544
+ # quant may have scalar scale/zero_point
545
+ m(*args)
546
+ # Step 4: Quantize the model
547
+ m = quantize_pt2e.convert_pt2e(m, fold_quantize=False)
548
+
549
+ # pylint: disable=broad-except
550
+ try:
551
+ ai_edge_torch.convert(m, args)
552
+ except Exception as err:
553
+ self.fail(f"PT2E conversion failed: {err}")
554
+ # pylint: enable=broad-except
555
+
556
+
557
+ if __name__ == "__main__":
558
+ googletest.main()