ai-edge-torch-nightly 0.3.0.dev20250114__py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (213) hide show
  1. ai_edge_torch/__init__.py +32 -0
  2. ai_edge_torch/_config.py +69 -0
  3. ai_edge_torch/_convert/__init__.py +14 -0
  4. ai_edge_torch/_convert/conversion.py +153 -0
  5. ai_edge_torch/_convert/conversion_utils.py +64 -0
  6. ai_edge_torch/_convert/converter.py +270 -0
  7. ai_edge_torch/_convert/fx_passes/__init__.py +23 -0
  8. ai_edge_torch/_convert/fx_passes/build_aten_composite_pass.py +288 -0
  9. ai_edge_torch/_convert/fx_passes/build_interpolate_composite_pass.py +131 -0
  10. ai_edge_torch/_convert/fx_passes/inject_mlir_debuginfo_pass.py +73 -0
  11. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/__init__.py +16 -0
  12. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_check.py +258 -0
  13. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_mark.py +50 -0
  14. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/__init__.py +18 -0
  15. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/greedy.py +68 -0
  16. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_partitioners/min_cut.py +216 -0
  17. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/layout_rewrite.py +449 -0
  18. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/op_func_registry.py +30 -0
  19. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/pass_body.py +303 -0
  20. ai_edge_torch/_convert/fx_passes/optimize_layout_transposes_pass/utils.py +64 -0
  21. ai_edge_torch/_convert/fx_passes/remove_non_user_outputs_pass.py +52 -0
  22. ai_edge_torch/_convert/signature.py +66 -0
  23. ai_edge_torch/_convert/test/__init__.py +14 -0
  24. ai_edge_torch/_convert/test/test_convert.py +558 -0
  25. ai_edge_torch/_convert/test/test_convert_composites.py +234 -0
  26. ai_edge_torch/_convert/test/test_convert_multisig.py +189 -0
  27. ai_edge_torch/_convert/test/test_to_channel_last_io.py +96 -0
  28. ai_edge_torch/_convert/to_channel_last_io.py +92 -0
  29. ai_edge_torch/conftest.py +20 -0
  30. ai_edge_torch/debug/__init__.py +17 -0
  31. ai_edge_torch/debug/culprit.py +496 -0
  32. ai_edge_torch/debug/test/__init__.py +14 -0
  33. ai_edge_torch/debug/test/test_culprit.py +140 -0
  34. ai_edge_torch/debug/test/test_search_model.py +51 -0
  35. ai_edge_torch/debug/utils.py +59 -0
  36. ai_edge_torch/experimental/__init__.py +14 -0
  37. ai_edge_torch/fx_pass_base.py +110 -0
  38. ai_edge_torch/generative/__init__.py +14 -0
  39. ai_edge_torch/generative/examples/__init__.py +14 -0
  40. ai_edge_torch/generative/examples/amd_llama_135m/__init__.py +14 -0
  41. ai_edge_torch/generative/examples/amd_llama_135m/amd_llama_135m.py +87 -0
  42. ai_edge_torch/generative/examples/amd_llama_135m/convert_to_tflite.py +70 -0
  43. ai_edge_torch/generative/examples/amd_llama_135m/verify.py +72 -0
  44. ai_edge_torch/generative/examples/gemma/__init__.py +14 -0
  45. ai_edge_torch/generative/examples/gemma/convert_gemma1_to_tflite.py +80 -0
  46. ai_edge_torch/generative/examples/gemma/convert_gemma2_to_tflite.py +80 -0
  47. ai_edge_torch/generative/examples/gemma/gemma1.py +107 -0
  48. ai_edge_torch/generative/examples/gemma/gemma2.py +295 -0
  49. ai_edge_torch/generative/examples/gemma/verify_gemma1.py +56 -0
  50. ai_edge_torch/generative/examples/gemma/verify_gemma2.py +43 -0
  51. ai_edge_torch/generative/examples/gemma/verify_util.py +157 -0
  52. ai_edge_torch/generative/examples/llama/__init__.py +14 -0
  53. ai_edge_torch/generative/examples/llama/convert_to_tflite.py +91 -0
  54. ai_edge_torch/generative/examples/llama/llama.py +196 -0
  55. ai_edge_torch/generative/examples/llama/verify.py +88 -0
  56. ai_edge_torch/generative/examples/moonshine/__init__.py +14 -0
  57. ai_edge_torch/generative/examples/moonshine/convert_moonshine_to_tflite.py +50 -0
  58. ai_edge_torch/generative/examples/moonshine/moonshine.py +103 -0
  59. ai_edge_torch/generative/examples/openelm/__init__.py +14 -0
  60. ai_edge_torch/generative/examples/openelm/convert_to_tflite.py +80 -0
  61. ai_edge_torch/generative/examples/openelm/openelm.py +127 -0
  62. ai_edge_torch/generative/examples/openelm/verify.py +71 -0
  63. ai_edge_torch/generative/examples/paligemma/__init__.py +14 -0
  64. ai_edge_torch/generative/examples/paligemma/convert_to_tflite.py +95 -0
  65. ai_edge_torch/generative/examples/paligemma/decoder.py +151 -0
  66. ai_edge_torch/generative/examples/paligemma/decoder2.py +177 -0
  67. ai_edge_torch/generative/examples/paligemma/image_encoder.py +160 -0
  68. ai_edge_torch/generative/examples/paligemma/paligemma.py +179 -0
  69. ai_edge_torch/generative/examples/paligemma/verify.py +161 -0
  70. ai_edge_torch/generative/examples/paligemma/verify_decoder.py +75 -0
  71. ai_edge_torch/generative/examples/paligemma/verify_decoder2.py +72 -0
  72. ai_edge_torch/generative/examples/paligemma/verify_image_encoder.py +99 -0
  73. ai_edge_torch/generative/examples/phi/__init__.py +14 -0
  74. ai_edge_torch/generative/examples/phi/convert_phi3_to_tflite.py +80 -0
  75. ai_edge_torch/generative/examples/phi/convert_to_tflite.py +80 -0
  76. ai_edge_torch/generative/examples/phi/phi2.py +107 -0
  77. ai_edge_torch/generative/examples/phi/phi3.py +219 -0
  78. ai_edge_torch/generative/examples/phi/verify.py +64 -0
  79. ai_edge_torch/generative/examples/phi/verify_phi3.py +69 -0
  80. ai_edge_torch/generative/examples/qwen/__init__.py +14 -0
  81. ai_edge_torch/generative/examples/qwen/convert_to_tflite.py +93 -0
  82. ai_edge_torch/generative/examples/qwen/qwen.py +134 -0
  83. ai_edge_torch/generative/examples/qwen/verify.py +88 -0
  84. ai_edge_torch/generative/examples/smollm/__init__.py +14 -0
  85. ai_edge_torch/generative/examples/smollm/convert_to_tflite.py +80 -0
  86. ai_edge_torch/generative/examples/smollm/convert_v2_to_tflite.py +71 -0
  87. ai_edge_torch/generative/examples/smollm/smollm.py +125 -0
  88. ai_edge_torch/generative/examples/smollm/verify.py +86 -0
  89. ai_edge_torch/generative/examples/stable_diffusion/__init__.py +14 -0
  90. ai_edge_torch/generative/examples/stable_diffusion/attention.py +108 -0
  91. ai_edge_torch/generative/examples/stable_diffusion/clip.py +185 -0
  92. ai_edge_torch/generative/examples/stable_diffusion/convert_to_tflite.py +173 -0
  93. ai_edge_torch/generative/examples/stable_diffusion/decoder.py +398 -0
  94. ai_edge_torch/generative/examples/stable_diffusion/diffusion.py +749 -0
  95. ai_edge_torch/generative/examples/stable_diffusion/encoder.py +119 -0
  96. ai_edge_torch/generative/examples/stable_diffusion/pipeline.py +254 -0
  97. ai_edge_torch/generative/examples/stable_diffusion/samplers/__init__.py +19 -0
  98. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler.py +62 -0
  99. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_euler_ancestral.py +66 -0
  100. ai_edge_torch/generative/examples/stable_diffusion/samplers/k_lms.py +74 -0
  101. ai_edge_torch/generative/examples/stable_diffusion/samplers/sampler.py +39 -0
  102. ai_edge_torch/generative/examples/stable_diffusion/tokenizer.py +111 -0
  103. ai_edge_torch/generative/examples/stable_diffusion/util.py +77 -0
  104. ai_edge_torch/generative/examples/t5/__init__.py +14 -0
  105. ai_edge_torch/generative/examples/t5/convert_to_tflite.py +138 -0
  106. ai_edge_torch/generative/examples/t5/t5.py +655 -0
  107. ai_edge_torch/generative/examples/t5/t5_attention.py +246 -0
  108. ai_edge_torch/generative/examples/test_models/__init__.py +14 -0
  109. ai_edge_torch/generative/examples/test_models/convert_toy_model.py +105 -0
  110. ai_edge_torch/generative/examples/test_models/toy_model.py +156 -0
  111. ai_edge_torch/generative/examples/test_models/toy_model_with_kv_cache.py +138 -0
  112. ai_edge_torch/generative/examples/tiny_llama/__init__.py +14 -0
  113. ai_edge_torch/generative/examples/tiny_llama/convert_to_tflite.py +80 -0
  114. ai_edge_torch/generative/examples/tiny_llama/tiny_llama.py +88 -0
  115. ai_edge_torch/generative/examples/tiny_llama/verify.py +72 -0
  116. ai_edge_torch/generative/fx_passes/__init__.py +30 -0
  117. ai_edge_torch/generative/fx_passes/remove_sdpa_zero_mask_pass.py +50 -0
  118. ai_edge_torch/generative/layers/__init__.py +14 -0
  119. ai_edge_torch/generative/layers/attention.py +399 -0
  120. ai_edge_torch/generative/layers/attention_utils.py +210 -0
  121. ai_edge_torch/generative/layers/builder.py +160 -0
  122. ai_edge_torch/generative/layers/feed_forward.py +120 -0
  123. ai_edge_torch/generative/layers/kv_cache.py +204 -0
  124. ai_edge_torch/generative/layers/lora.py +557 -0
  125. ai_edge_torch/generative/layers/model_config.py +238 -0
  126. ai_edge_torch/generative/layers/normalization.py +222 -0
  127. ai_edge_torch/generative/layers/rotary_position_embedding.py +94 -0
  128. ai_edge_torch/generative/layers/scaled_dot_product_attention.py +144 -0
  129. ai_edge_torch/generative/layers/unet/__init__.py +14 -0
  130. ai_edge_torch/generative/layers/unet/blocks_2d.py +806 -0
  131. ai_edge_torch/generative/layers/unet/builder.py +50 -0
  132. ai_edge_torch/generative/layers/unet/model_config.py +282 -0
  133. ai_edge_torch/generative/quantize/__init__.py +14 -0
  134. ai_edge_torch/generative/quantize/example.py +47 -0
  135. ai_edge_torch/generative/quantize/quant_attrs.py +68 -0
  136. ai_edge_torch/generative/quantize/quant_recipe.py +154 -0
  137. ai_edge_torch/generative/quantize/quant_recipe_utils.py +62 -0
  138. ai_edge_torch/generative/quantize/quant_recipes.py +56 -0
  139. ai_edge_torch/generative/quantize/supported_schemes.py +32 -0
  140. ai_edge_torch/generative/test/__init__.py +14 -0
  141. ai_edge_torch/generative/test/test_custom_dus.py +107 -0
  142. ai_edge_torch/generative/test/test_kv_cache.py +120 -0
  143. ai_edge_torch/generative/test/test_loader.py +83 -0
  144. ai_edge_torch/generative/test/test_lora.py +147 -0
  145. ai_edge_torch/generative/test/test_model_conversion.py +191 -0
  146. ai_edge_torch/generative/test/test_model_conversion_large.py +362 -0
  147. ai_edge_torch/generative/test/test_quantize.py +183 -0
  148. ai_edge_torch/generative/test/utils.py +82 -0
  149. ai_edge_torch/generative/utilities/__init__.py +15 -0
  150. ai_edge_torch/generative/utilities/converter.py +215 -0
  151. ai_edge_torch/generative/utilities/dynamic_update_slice.py +56 -0
  152. ai_edge_torch/generative/utilities/loader.py +398 -0
  153. ai_edge_torch/generative/utilities/model_builder.py +180 -0
  154. ai_edge_torch/generative/utilities/moonshine_loader.py +154 -0
  155. ai_edge_torch/generative/utilities/stable_diffusion_loader.py +1032 -0
  156. ai_edge_torch/generative/utilities/t5_loader.py +512 -0
  157. ai_edge_torch/generative/utilities/transformers_verifier.py +42 -0
  158. ai_edge_torch/generative/utilities/verifier.py +335 -0
  159. ai_edge_torch/hlfb/__init__.py +16 -0
  160. ai_edge_torch/hlfb/mark_pattern/__init__.py +153 -0
  161. ai_edge_torch/hlfb/mark_pattern/fx_utils.py +69 -0
  162. ai_edge_torch/hlfb/mark_pattern/pattern.py +288 -0
  163. ai_edge_torch/hlfb/test/__init__.py +14 -0
  164. ai_edge_torch/hlfb/test/test_mark_pattern.py +185 -0
  165. ai_edge_torch/lowertools/__init__.py +18 -0
  166. ai_edge_torch/lowertools/_shim.py +86 -0
  167. ai_edge_torch/lowertools/common_utils.py +142 -0
  168. ai_edge_torch/lowertools/odml_torch_utils.py +260 -0
  169. ai_edge_torch/lowertools/test_utils.py +62 -0
  170. ai_edge_torch/lowertools/torch_xla_utils.py +301 -0
  171. ai_edge_torch/lowertools/translate_recipe.py +163 -0
  172. ai_edge_torch/model.py +177 -0
  173. ai_edge_torch/odml_torch/__init__.py +20 -0
  174. ai_edge_torch/odml_torch/_torch_future.py +88 -0
  175. ai_edge_torch/odml_torch/_torch_library.py +19 -0
  176. ai_edge_torch/odml_torch/composite/__init__.py +16 -0
  177. ai_edge_torch/odml_torch/composite/mark_tensor.py +120 -0
  178. ai_edge_torch/odml_torch/composite/stablehlo_composite_builder.py +106 -0
  179. ai_edge_torch/odml_torch/debuginfo/__init__.py +16 -0
  180. ai_edge_torch/odml_torch/debuginfo/_build.py +43 -0
  181. ai_edge_torch/odml_torch/debuginfo/_op_polyfill.py +55 -0
  182. ai_edge_torch/odml_torch/export.py +403 -0
  183. ai_edge_torch/odml_torch/export_utils.py +157 -0
  184. ai_edge_torch/odml_torch/jax_bridge/__init__.py +18 -0
  185. ai_edge_torch/odml_torch/jax_bridge/_wrap.py +180 -0
  186. ai_edge_torch/odml_torch/jax_bridge/utils.py +75 -0
  187. ai_edge_torch/odml_torch/lowerings/__init__.py +27 -0
  188. ai_edge_torch/odml_torch/lowerings/_basic.py +294 -0
  189. ai_edge_torch/odml_torch/lowerings/_batch_norm.py +65 -0
  190. ai_edge_torch/odml_torch/lowerings/_convolution.py +243 -0
  191. ai_edge_torch/odml_torch/lowerings/_jax_lowerings.py +285 -0
  192. ai_edge_torch/odml_torch/lowerings/_layer_norm.py +87 -0
  193. ai_edge_torch/odml_torch/lowerings/_quantized_decomposed.py +177 -0
  194. ai_edge_torch/odml_torch/lowerings/_rand.py +142 -0
  195. ai_edge_torch/odml_torch/lowerings/context.py +42 -0
  196. ai_edge_torch/odml_torch/lowerings/decomp.py +69 -0
  197. ai_edge_torch/odml_torch/lowerings/registry.py +65 -0
  198. ai_edge_torch/odml_torch/lowerings/utils.py +201 -0
  199. ai_edge_torch/odml_torch/passes/__init__.py +38 -0
  200. ai_edge_torch/odml_torch/tf_integration.py +156 -0
  201. ai_edge_torch/quantize/__init__.py +16 -0
  202. ai_edge_torch/quantize/pt2e_quantizer.py +466 -0
  203. ai_edge_torch/quantize/pt2e_quantizer_utils.py +1061 -0
  204. ai_edge_torch/quantize/quant_config.py +85 -0
  205. ai_edge_torch/testing/__init__.py +14 -0
  206. ai_edge_torch/testing/model_coverage/__init__.py +16 -0
  207. ai_edge_torch/testing/model_coverage/model_coverage.py +145 -0
  208. ai_edge_torch/version.py +16 -0
  209. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/LICENSE +202 -0
  210. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/METADATA +44 -0
  211. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/RECORD +213 -0
  212. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/WHEEL +5 -0
  213. ai_edge_torch_nightly-0.3.0.dev20250114.dist-info/top_level.txt +1 -0
@@ -0,0 +1,335 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ """Common utility functions to verify the reauthored models."""
17
+
18
+ import logging
19
+ from typing import Any, List, Optional
20
+
21
+ from ai_edge_torch.generative.layers import kv_cache as kv_utils
22
+ from ai_edge_torch.generative.utilities.model_builder import ExportConfig
23
+ import torch
24
+
25
+
26
+ class ModelWrapper(torch.nn.Module):
27
+ """A wrapper for the model to be verified.
28
+
29
+ It unifies the interface of forward() and generate() of models for the
30
+ verification to call.
31
+ """
32
+
33
+ def __init__(self, model: torch.nn.Module):
34
+ """Initializes the wrapper.
35
+
36
+ Args:
37
+ model (torch.nn.Module): The model which might have different interfaces
38
+ of forward() and generate(). It could be a model built from HuggingFace
39
+ transformers, a regular PyTorch model, or a model re-authored with
40
+ ai_edge_torch Generative API.
41
+ """
42
+ super().__init__()
43
+ self.model = model
44
+ self.export_config = ExportConfig(output_logits_on_prefill=True)
45
+
46
+ def forward(
47
+ self, tokens: torch.Tensor, pixel_values: torch.Tensor = None
48
+ ) -> torch.Tensor:
49
+ """Gets output logits by forwarding the input tokens.
50
+
51
+ Args:
52
+ tokens (torch.Tensor): The input tokens to forward. Its dimension is
53
+ expected to be (batch_size=1, kv_cache_max_len).
54
+
55
+ Returns:
56
+ The output logits.
57
+ """
58
+ raise NotImplementedError("forward() is not implemented.")
59
+
60
+ def generate(
61
+ self,
62
+ prompts: torch.Tensor,
63
+ max_new_tokens: int,
64
+ pixel_values: torch.Tensor = None,
65
+ ) -> torch.IntTensor:
66
+ """Returns the response token IDs to the given prompts tensor.
67
+
68
+ The maximum number of tokens to generate might be set by subclasses.
69
+
70
+ Args:
71
+ prompts (torch.Tensor): The input token IDs to generate with. Its shape is
72
+ expected to be (batch_size=1, input_ids_len).
73
+ max_new_tokens (int): The maximum number of response token IDs to
74
+ generate.
75
+
76
+ Returns:
77
+ The tensor of response token IDs with shape of (batch_size=1,
78
+ response_ids_len).
79
+ """
80
+ raise NotImplementedError("generate() is not implemented.")
81
+
82
+
83
+ class ReauthoredModelWrapper(ModelWrapper):
84
+ """A wrapper for the model reauthored with ai_edge_torch Generative API."""
85
+
86
+ def _init_kv_cache(self):
87
+ """Returns an initialized KV cache."""
88
+ return kv_utils.KVCache.from_model_config(self.model.config)
89
+
90
+ def _get_extra_args_for_forward(self) -> dict[str, Any]:
91
+ """Returns extra arguments for the forward() method."""
92
+ return {}
93
+
94
+ def _forward_with_kv_cache(
95
+ self,
96
+ tokens: torch.Tensor,
97
+ input_pos: torch.Tensor,
98
+ kv_cache: kv_utils.KVCache,
99
+ pixel_values: torch.Tensor,
100
+ ) -> tuple[torch.Tensor, kv_utils.KVCache]:
101
+ """Forwards the model and updates an external KV cache.
102
+
103
+ Args:
104
+ tokens (torch.Tensor): The input tokens to forward.
105
+ input_pos (torch.Tensor): The input positions to forward.
106
+ kv_cache (KVCache): The KV cache to forward.
107
+ pixel_values (torch.Tensor): The input pixel values to forward.
108
+
109
+ Returns:
110
+ The output logits and the updated KV cache.
111
+ """
112
+ extra_args = self._get_extra_args_for_forward()
113
+ if self.export_config is not None:
114
+ # Verification requires logit outputs on prefill for comparison.
115
+ if not self.export_config.output_logits_on_prefill:
116
+ raise ValueError("Verifier requires logit output on prefill.")
117
+ extra_args["export_config"] = self.export_config
118
+ if pixel_values is not None:
119
+ extra_args["pixel_values"] = pixel_values
120
+ output = self.model.forward(tokens, input_pos, kv_cache, **extra_args)
121
+ return output["logits"], output["kv_cache"]
122
+
123
+ def forward(
124
+ self, tokens: torch.Tensor, pixel_values: torch.Tensor = None
125
+ ) -> torch.Tensor:
126
+ input_pos = torch.arange(0, tokens.shape[1], dtype=torch.int)
127
+ logits, _ = self._forward_with_kv_cache(
128
+ tokens, input_pos, self._init_kv_cache(), pixel_values
129
+ )
130
+ return logits
131
+
132
+ def generate(
133
+ self,
134
+ prompts: torch.Tensor,
135
+ max_new_tokens: int,
136
+ pixel_values: torch.Tensor = None,
137
+ eos_token_id: Optional[int] = None,
138
+ ) -> torch.IntTensor:
139
+ input_ids = prompts[0].int().tolist()
140
+ tokens = torch.tensor([input_ids])
141
+ input_pos = torch.arange(0, tokens.shape[1], dtype=torch.int)
142
+ kv_cache = self._init_kv_cache()
143
+ for _ in range(max_new_tokens):
144
+ logits, kv_cache = self._forward_with_kv_cache(
145
+ tokens, input_pos, kv_cache, pixel_values
146
+ )
147
+ generated_token = logits[0][-1].argmax().item()
148
+ input_ids.append(generated_token)
149
+ if eos_token_id is not None and generated_token == eos_token_id:
150
+ break
151
+ tokens = torch.tensor([[generated_token]])
152
+ input_pos = torch.tensor([len(input_ids) - 1])
153
+ pixel_values = None # Pass only for the first time.
154
+ return torch.tensor([input_ids])
155
+
156
+
157
+ class TokenizerWrapper(torch.nn.Module):
158
+ """A wrapper for the tokenizer used for verification."""
159
+
160
+ def __init__(self, tokenizer: torch.nn.Module):
161
+ """Initializes the wrapper.
162
+
163
+ Args:
164
+ tokenizer (torch.nn.Module): The tokenizer to wrap.
165
+ """
166
+ super().__init__()
167
+ self.tokenizer = tokenizer
168
+
169
+ def encode(self, prompts: str) -> torch.Tensor:
170
+ """Encodes the prompts to token IDs."""
171
+ return self.tokenizer.encode(prompts, return_tensors="pt")
172
+
173
+ def decode(self, token_ids: torch.Tensor) -> str:
174
+ """Decodes the token IDs to a string."""
175
+ return self.tokenizer.decode(token_ids)
176
+
177
+
178
+ def verify_with_input_ids(
179
+ original_model: ModelWrapper,
180
+ reauthored_model: ReauthoredModelWrapper,
181
+ input_ids: List[int],
182
+ kv_cache_max_len: int = 1024,
183
+ rtol: float = 1e-05,
184
+ atol: float = 1e-05,
185
+ ):
186
+ """Verifies if the model reauthored generates the same output of the oringal.
187
+
188
+ It compares only one outputs from the original and the reauthored model.
189
+
190
+ Args:
191
+ original_model (ModelWrapper): The original model.
192
+ reauthored_model (ReauthoredModelWrapper): The model reauthored with
193
+ ai_edge_torch Generative API.
194
+ input_ids (List[int]): The input token IDs to forward with.
195
+ kv_cache_max_len (int): The maximum sequence length of the KV cache.
196
+ rtol (float): The relative tolerance for the comparison.
197
+ atol (float): The absolute tolerance for the comparison.
198
+
199
+ Raises:
200
+ AssertError if the model reauthored fails to generate the same output of the
201
+ original.
202
+ """
203
+ tokens = torch.full((1, kv_cache_max_len), 0, dtype=torch.int, device="cpu")
204
+ tokens[0, : len(input_ids)] = torch.tensor([input_ids]).int()
205
+
206
+ logging.info("Forwarding the original model...")
207
+ outputs_original = original_model.forward(tokens)
208
+ logits_original = outputs_original[0, len(input_ids) - 1, :]
209
+ logging.info("logits_original: %s", logits_original)
210
+
211
+ logging.info("Forwarding the reauthored model...")
212
+ outputs_reauthored = reauthored_model.forward(tokens)
213
+ logits_reauthored = outputs_reauthored[0, len(input_ids) - 1, :]
214
+ logging.info("logits_reauthored: %s", logits_reauthored)
215
+
216
+ assert torch.allclose(
217
+ logits_original, logits_reauthored, rtol=rtol, atol=atol
218
+ )
219
+
220
+
221
+ def verify_model_with_prompts(
222
+ original_model: ModelWrapper,
223
+ reauthored_model: ReauthoredModelWrapper,
224
+ tokenizer: TokenizerWrapper,
225
+ prompts: str,
226
+ max_new_tokens: int,
227
+ ):
228
+ """Verifies if the model reauthored generates the same answer of the oringal.
229
+
230
+ It compares an answer, i.e. multiple continuous outputs generated by the
231
+ original and the reauthored model.
232
+
233
+ Args:
234
+ original_model (ModelWrapper): The original model.
235
+ reauthored_model (ReauthoredModelWrapper): The model reauthored with
236
+ ai_edge_torch Generative API.
237
+ tokenizer (TokenizerWrapper): The tokenizer.
238
+ prompts (str): The input prompts to generate answers.
239
+ max_new_tokens (int): The maximum number of new tokens to generate.
240
+
241
+ Raises:
242
+ AssertError if the model reauthored fails to generate the same answer of the
243
+ original.
244
+ """
245
+ prompt_tokens = tokenizer.encode(prompts)
246
+
247
+ logging.info("Generating answer with the original model...")
248
+ outputs_original = original_model.generate(prompt_tokens, max_new_tokens)
249
+ response_original = tokenizer.decode(outputs_original[0])
250
+ logging.info("outputs_from_original_model: [[%s]]", response_original)
251
+
252
+ logging.info("Generating answer with the reauthored model...")
253
+ outputs_reauthored = reauthored_model.generate(
254
+ prompt_tokens,
255
+ max_new_tokens,
256
+ eos_token_id=getattr(tokenizer.tokenizer, "eos_token_id", None),
257
+ )
258
+ response_reauthored = tokenizer.decode(outputs_reauthored[0])
259
+ logging.info("outputs from reauthored model: [[%s]]", response_reauthored)
260
+
261
+ assert response_original == response_reauthored
262
+
263
+
264
+ def verify_reauthored_model(
265
+ original_model: ModelWrapper,
266
+ reauthored_model: ReauthoredModelWrapper,
267
+ tokenizer: TokenizerWrapper,
268
+ generate_prompts: List[str],
269
+ max_new_tokens: int = 30,
270
+ forward_input_ids: List[List[int]] = [[1, 2, 3, 4]],
271
+ rtol: float = 1e-05,
272
+ atol: float = 1e-05,
273
+ continue_on_failure: bool = False,
274
+ ) -> bool:
275
+ """Verifies the reauthored model against the original model.
276
+
277
+ It verifies the reauthored model with two methods:
278
+ 1. It compares the output of the original and the reauthored model with an
279
+ arbitrary input.
280
+ 2. It compares the answer generated by the original and the reauthored model
281
+ with a prompt.
282
+
283
+ It prints out "PASS" or "FAILED" to the console. It returns True if all
284
+ verification passes, False otherwise.
285
+
286
+ Args:
287
+ original_model (ModelWrapper): The original model.
288
+ reauthored_model (ReauthoredModelWrapper): The model reauthored with
289
+ ai_edge_torch Generative API.
290
+ tokenizer (TokenizerWrapper): The tokenizer.
291
+ generate_prompts (List[str]): List of the input prompts to generate answers.
292
+ max_new_tokens (int): The maximum number of new tokens to generate.
293
+ forward_input_ids (List[torch.Tensor]): List if ihe input token IDs to
294
+ forward with.
295
+ rtol (float): The relative tolerance for the comparison.
296
+ atol (float): The absolute tolerance for the comparison.
297
+ continue_on_failure (bool): If True, it continues to verify the next prompt
298
+ or input IDs even if a previous one fails.
299
+ """
300
+ failure_count = 0
301
+
302
+ for input_ids in forward_input_ids:
303
+ logging.info("Verifying the reauthored model with input IDs: %s", input_ids)
304
+ try:
305
+ verify_with_input_ids(
306
+ original_model, reauthored_model, input_ids, rtol=rtol, atol=atol
307
+ )
308
+ except AssertionError as e:
309
+ logging.error("*** FAILED *** verify with input IDs: %s", input_ids)
310
+ failure_count += 1
311
+ if not continue_on_failure:
312
+ return False
313
+ else:
314
+ logging.info("*** PASSED *** verify with input IDs: %s", input_ids)
315
+
316
+ for prompts in generate_prompts:
317
+ logging.info("Verifying the reauthored model with prompts: %s", prompts)
318
+ try:
319
+ verify_model_with_prompts(
320
+ original_model, reauthored_model, tokenizer, prompts, max_new_tokens
321
+ )
322
+ except AssertionError as e:
323
+ logging.error("*** FAILED *** verify with prompts: %s", prompts)
324
+ failure_count += 1
325
+ if not continue_on_failure:
326
+ return False
327
+ else:
328
+ logging.info("*** PASSED *** verify with prompts: %s", prompts)
329
+
330
+ if failure_count == 0:
331
+ logging.info("*** PASSED *** verify_reauthored_model")
332
+ return True
333
+ else:
334
+ logging.error("*** FAILED *** verify_reauthored_model")
335
+ return False
@@ -0,0 +1,16 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+
16
+ from ai_edge_torch.lowertools import StableHLOCompositeBuilder
@@ -0,0 +1,153 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ import copy
16
+ from typing import Any
17
+ import uuid
18
+
19
+ from ai_edge_torch import lowertools
20
+ from ai_edge_torch.hlfb.mark_pattern import fx_utils
21
+ from ai_edge_torch.hlfb.mark_pattern import pattern as pattern_module
22
+ import torch
23
+
24
+
25
+ @torch._dynamo.assume_constant_result
26
+ def _get_uuid() -> str:
27
+ return uuid.uuid4().hex
28
+
29
+
30
+ # TODO: Move to a general fx utils file.
31
+ def _prepose_placeholder_nodes(graph: torch.fx.Graph):
32
+ nodes = [node for node in graph.nodes if node.op == "placeholder"] + [
33
+ node for node in graph.nodes if node.op != "placeholder"
34
+ ]
35
+
36
+ for a, b in zip(nodes, nodes[1:]):
37
+ if a.next is not b:
38
+ a.append(b)
39
+ return graph
40
+
41
+
42
+ def _insert_marker(
43
+ graph_module: torch.fx.GraphModule,
44
+ node: torch.fx.Node,
45
+ name: str,
46
+ pos: int,
47
+ id: str,
48
+ is_input: bool,
49
+ attr: dict[str, Any] = None,
50
+ ):
51
+ attr = lowertools.serialize_composite_attr(attr) if attr else None
52
+ with graph_module.graph.inserting_after(node):
53
+ new_node = graph_module.graph.call_function(
54
+ lowertools.mark_tensor_op,
55
+ args=(node,),
56
+ kwargs={
57
+ "name": name,
58
+ "pos": pos,
59
+ "id": id,
60
+ "is_input": is_input,
61
+ "attr": attr,
62
+ },
63
+ )
64
+
65
+ new_node.meta = node.meta
66
+ return new_node
67
+
68
+
69
+ def mark_pattern(
70
+ graph_module: torch.fx.GraphModule,
71
+ pattern: pattern_module.Pattern,
72
+ ) -> torch.fx.GraphModule:
73
+ """Mark all existences of pattern graph in the GraphModule with fx pattern matching.
74
+
75
+ The marked subgraphs will be lowered in StableHLO composite ops.
76
+
77
+ Args:
78
+ graph_module (torch.fx.GraphModule): GraphModule to be matched and marked.
79
+ pattern (ai_edge_torch.hlfb.mark_pattern.Pattern): Pattern to match.
80
+
81
+ Returns:
82
+ The modified graph_module with additional marker ops in graph.
83
+ """
84
+ # Create a copy of graph_module and sanitize it for pattern matching.
85
+ graph_module_to_match = copy.deepcopy(graph_module)
86
+ for n, m in zip(graph_module.graph.nodes, graph_module_to_match.graph.nodes):
87
+ m.meta["ORIGINAL_NODE"] = n
88
+
89
+ # Sanitize graph_module to match in the same way as pattern's graph_module.
90
+ graph_module_to_match = fx_utils.remove_clone_ops(graph_module_to_match)
91
+
92
+ match_with_attrs = pattern.match(graph_module_to_match)
93
+
94
+ for match, attr in match_with_attrs:
95
+ match_id = _get_uuid()
96
+
97
+ # NOTE: Current graph rewriter (_insert_marker) does not work perfectly
98
+ # with continuous matches e.g. matching (a + b) on (w + x + y + z). The
99
+ # rewritten results may be undetermined with false negative - some
100
+ # matches may not be marked in the lowering, while the marked ones would
101
+ # always be correct.
102
+ # TODO(cnchan): completely support mark_pattern on continuous matches.
103
+ for i, pattern_input_node in enumerate(pattern.input_nodes):
104
+ input_node = match.nodes_map[pattern_input_node]
105
+ new_input_node = _insert_marker(
106
+ graph_module,
107
+ input_node.meta["ORIGINAL_NODE"],
108
+ name=pattern.name,
109
+ pos=i,
110
+ id=match_id,
111
+ is_input=True,
112
+ )
113
+
114
+ # Only replace input by the marker node for those nodes used in the
115
+ # pattern.
116
+ in_pattern_nodes = set(match.nodes_map.values())
117
+ for user in input_node.users.keys():
118
+ if user not in in_pattern_nodes:
119
+ continue
120
+
121
+ user.meta["ORIGINAL_NODE"].replace_input_with(
122
+ input_node.meta["ORIGINAL_NODE"], new_input_node
123
+ )
124
+ # Pattern matching graph sanitization may remove clone ops, which means
125
+ # the user's input in the original graph may be a clone op. When
126
+ # replacing the input with the marker node, we need to further try
127
+ # replacing the input of the clone op that connects to the user.
128
+ for original_user_input in user.meta["ORIGINAL_NODE"].all_input_nodes:
129
+ if fx_utils.is_clone_op(original_user_input):
130
+ original_user_input.replace_input_with(
131
+ input_node.meta["ORIGINAL_NODE"], new_input_node
132
+ )
133
+
134
+ for i, pattern_output_node in enumerate(pattern.output_nodes):
135
+ output_node = match.nodes_map[pattern_output_node]
136
+ new_output_node = _insert_marker(
137
+ graph_module,
138
+ output_node.meta["ORIGINAL_NODE"],
139
+ name=pattern.name,
140
+ pos=i,
141
+ id=match_id,
142
+ is_input=False,
143
+ attr=attr, # torch_xla internal: only output marker needs attr.
144
+ )
145
+ output_node.meta["ORIGINAL_NODE"].replace_all_uses_with(new_output_node)
146
+ new_output_node.update_arg(0, output_node.meta["ORIGINAL_NODE"])
147
+
148
+ graph_module.graph.eliminate_dead_code()
149
+ _prepose_placeholder_nodes(graph_module.graph)
150
+
151
+ graph_module.graph.lint()
152
+ graph_module.recompile()
153
+ return graph_module
@@ -0,0 +1,69 @@
1
+ # Copyright 2024 The AI Edge Torch Authors.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # ==============================================================================
15
+ """FX graph utilities for pattern matching clean ups."""
16
+
17
+ import torch
18
+
19
+
20
+ def is_clone_op(node: torch.fx.Node) -> bool:
21
+ """Checks if the node is a clone op."""
22
+ return (
23
+ node.op == "call_function" and node.target == torch.ops.aten.clone.default
24
+ )
25
+
26
+
27
+ def remove_clone_ops(gm: torch.fx.GraphModule):
28
+ """Removes clone ops from the graph.
29
+
30
+ torch export adds additional aten.clone nodes to produce contiguous in memory
31
+ tensors depending on tensor sizes for runtime efficiency. However, these
32
+ unpredictable clone nodes can break the pattern matching. Thus remove all
33
+ clones in model and pattern graphs.
34
+
35
+ Args:
36
+ gm: The graph module to remove clone ops from.
37
+
38
+ Returns:
39
+ The graph module with clone ops removed.
40
+ """
41
+ for node in gm.graph.nodes:
42
+ if is_clone_op(node):
43
+ node.replace_all_uses_with(node.args[0])
44
+ gm.graph.erase_node(node)
45
+
46
+ gm.graph.lint()
47
+ gm.recompile()
48
+ return gm
49
+
50
+
51
+ def remove_dangling_args(gm: torch.fx.GraphModule):
52
+ """Removes dangling args from the graph.
53
+
54
+ Args:
55
+ gm: The graph module to remove dangling args from.
56
+
57
+ Returns:
58
+ The graph module with dangling args removed.
59
+ """
60
+ nodes_to_erase = []
61
+ for node in gm.graph.nodes:
62
+ if node.op == "placeholder" and len(node.users) == 0:
63
+ nodes_to_erase.append(node)
64
+ for node in nodes_to_erase:
65
+ gm.graph.erase_node(node)
66
+
67
+ gm.graph.lint()
68
+ gm.recompile()
69
+ return gm