nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc9__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (200) hide show
  1. nexaai/_stub.cpython-310-darwin.so +0 -0
  2. nexaai/_version.py +1 -1
  3. nexaai/binds/libnexa_bridge.dylib +0 -0
  4. nexaai/mlx_backend/vlm/generate_qwen3_vl.py +14 -31
  5. nexaai/mlx_backend/vlm/generate_qwen3_vl_moe.py +15 -32
  6. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/qwen3vl.py +7 -23
  7. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +8 -24
  8. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/METADATA +1 -1
  9. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/RECORD +11 -200
  10. nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
  11. nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
  12. nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
  13. nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
  14. nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
  15. nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
  16. nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
  17. nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
  18. nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
  19. nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
  20. nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
  21. nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
  22. nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
  23. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
  24. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
  25. nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
  26. nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
  27. nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
  28. nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
  29. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
  30. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
  31. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
  32. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
  33. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
  34. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
  35. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
  36. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
  37. nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
  38. nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
  39. nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
  40. nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
  41. nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
  42. nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
  43. nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
  44. nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
  45. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
  46. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
  47. nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
  48. nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
  49. nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
  50. nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
  51. nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
  52. nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
  53. nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
  54. nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
  55. nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
  56. nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
  57. nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
  58. nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
  59. nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
  60. nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
  61. nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
  62. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
  63. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
  64. nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
  65. nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
  66. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
  67. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
  68. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
  69. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
  70. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
  71. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
  72. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
  73. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
  74. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
  75. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
  76. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
  77. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
  78. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
  79. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
  80. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
  81. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
  82. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
  83. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
  84. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
  85. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
  86. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
  87. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
  88. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
  89. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
  90. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
  91. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
  92. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
  93. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
  94. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
  95. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
  96. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
  97. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
  98. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
  99. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
  100. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
  101. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
  102. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
  103. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
  104. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
  105. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
  106. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
  107. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
  108. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
  109. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
  110. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
  111. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
  112. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
  113. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
  114. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
  115. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
  116. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
  117. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
  118. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
  119. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
  120. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
  121. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
  122. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
  123. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
  124. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
  125. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
  126. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
  127. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
  128. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
  129. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
  130. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
  131. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
  132. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
  133. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
  134. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
  135. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
  136. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
  137. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
  138. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
  139. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
  140. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
  141. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
  142. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
  143. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
  144. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
  145. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
  146. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
  147. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
  148. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
  149. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
  150. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
  151. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
  152. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
  153. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
  154. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
  155. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
  156. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
  157. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
  158. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
  159. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
  160. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
  161. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
  162. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
  163. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
  164. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
  165. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
  166. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
  167. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
  168. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  169. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
  170. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
  171. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
  172. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
  173. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
  174. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
  175. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
  176. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
  177. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  178. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
  179. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
  180. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
  181. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
  182. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
  183. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
  184. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
  185. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
  186. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
  187. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
  188. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
  189. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
  190. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
  191. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
  192. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
  193. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
  194. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
  195. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
  196. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
  197. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
  198. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
  199. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/WHEEL +0 -0
  200. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/top_level.txt +0 -0
@@ -1,928 +0,0 @@
1
- import copy
2
- import glob
3
- import importlib
4
- import inspect
5
- import json
6
- import logging
7
- import shutil
8
- from io import BytesIO
9
- from pathlib import Path
10
- from textwrap import dedent
11
- from typing import Any, Callable, Dict, Generator, List, Optional, Tuple, Union
12
-
13
- import mlx.core as mx
14
- import mlx.nn as nn
15
- import numpy as np
16
- import requests
17
- import scipy.signal as signal
18
- import soundfile as sf
19
- from huggingface_hub import snapshot_download
20
- from mlx.utils import tree_flatten, tree_map_with_path, tree_reduce, tree_unflatten
21
- from mlx_lm.utils import quantize_model
22
- from PIL import Image, ImageOps
23
- from transformers import (
24
- AutoConfig,
25
- AutoProcessor,
26
- PreTrainedTokenizer,
27
- PreTrainedTokenizerFast,
28
- )
29
-
30
- from .models.base import BaseImageProcessor
31
- from .tokenizer_utils import load_tokenizer
32
- from .trainer import apply_lora_layers
33
-
34
- # Constants
35
- MODEL_REMAPPING = {"llava-qwen2": "llava_bunny", "bunny-llama": "llava_bunny"}
36
-
37
- MAX_FILE_SIZE_GB = 5
38
-
39
- MODEL_CONVERSION_DTYPES = ["float16", "bfloat16", "float32"]
40
-
41
-
42
- def skip_multimodal_module(path: str) -> bool:
43
- """
44
- Check if a multimodal module (vision/audio) should skip quantization.
45
-
46
- Args:
47
- path: The module path to check
48
-
49
- Returns:
50
- bool: True if the module is multimodal and should skip quantization, False otherwise
51
- """
52
- return (
53
- "vision_model" in path
54
- or "vision_tower" in path
55
- or "audio_model" in path
56
- or "audio_tower" in path
57
- )
58
-
59
-
60
- def get_model_and_args(config: dict):
61
- """
62
- Retrieve the model object based on the configuration.
63
-
64
- Args:
65
- config (dict): The model configuration.
66
-
67
- Returns:
68
- A tuple containing the Model class and the ModelArgs class.
69
- """
70
- model_type = config["model_type"]
71
- model_type = MODEL_REMAPPING.get(model_type, model_type)
72
- try:
73
- # ===== NEXAAI CHANGES BEGIN =====
74
- arch = importlib.import_module(f"vlm.modeling.models.{model_type}")
75
- # ===== NEXAAI CHANGES END =====
76
- except ImportError:
77
- msg = f"Model type {model_type} not supported."
78
- logging.error(msg)
79
- raise ValueError(msg)
80
-
81
- return arch, model_type
82
-
83
-
84
- def get_model_path(
85
- path_or_hf_repo: str, revision: Optional[str] = None, force_download: bool = False
86
- ) -> Path:
87
- """
88
- Ensures the model is available locally. If the path does not exist locally,
89
- it is downloaded from the Hugging Face Hub.
90
-
91
- Args:
92
- path_or_hf_repo (str): The local path or Hugging Face repository ID of the model.
93
- revision (str, optional): A revision id which can be a branch name, a tag, or a commit hash.
94
-
95
- Returns:
96
- Path: The path to the model.
97
- """
98
- model_path = Path(path_or_hf_repo)
99
- if not model_path.exists():
100
- model_path = Path(
101
- snapshot_download(
102
- repo_id=path_or_hf_repo,
103
- revision=revision,
104
- allow_patterns=[
105
- "*.json",
106
- "*.safetensors",
107
- "*.py",
108
- "*.model",
109
- "*.tiktoken",
110
- "*.txt",
111
- "*.jinja",
112
- ],
113
- force_download=force_download,
114
- )
115
- )
116
- return model_path
117
-
118
-
119
- def load_model(model_path: Path, lazy: bool = False, **kwargs) -> nn.Module:
120
- """
121
- Load and initialize the model from a given path.
122
-
123
- Args:
124
- model_path (Path): The path to load the model from.
125
- lazy (bool): If False eval the model parameters to make sure they are
126
- loaded in memory before returning, otherwise they will be loaded
127
- when needed. Default: ``False``
128
- revision (str, optional): A revision id which can be a branch name,
129
- a tag, or a commit hash. Default: ``None``.
130
-
131
- Returns:
132
- nn.Module: The loaded and initialized model.
133
-
134
- Raises:
135
- FileNotFoundError: If the weight files (.safetensors) are not found.
136
- ValueError: If the model class or args class are not found or cannot be instantiated.
137
- """
138
- config = load_config(model_path, **kwargs)
139
- quantization = config.get("quantization", None)
140
-
141
- weight_files = glob.glob(str(model_path / "*.safetensors"))
142
- if not weight_files:
143
- logging.error(f"No safetensors found in {model_path}")
144
- message = f"""
145
- No safetensors found in {model_path}
146
- Create safetensors using the following code:
147
- ```
148
- from transformers import AutoModelForCausalLM, AutoProcessor
149
-
150
- model_id= "<huggingface_model_id>"
151
- model = AutoModelForCausalLM.from_pretrained(model_id)
152
- processor = AutoProcessor.from_pretrained(model_id)
153
-
154
- model.save_pretrained("<local_dir>")
155
- processor.save_pretrained("<local_dir>")
156
- ```
157
- Then use the <local_dir> as the --hf-path in the convert script.
158
- ```
159
- python -m mlx_vlm.convert --hf-path <local_dir> --mlx-path <mlx_dir>
160
- ```
161
- """
162
- raise FileNotFoundError(message)
163
-
164
- weights = {}
165
- for wf in weight_files:
166
- weights.update(mx.load(wf))
167
-
168
- model_class, model_type = get_model_and_args(config=config)
169
-
170
- # Initialize text and vision configs if not present
171
- config.setdefault("text_config", {})
172
- config.setdefault("vision_config", {})
173
- config.setdefault("audio_config", {})
174
-
175
- # Initialize model config and update it with module configs
176
- model_config = model_class.ModelConfig.from_dict(config)
177
- modules = ["text", "vision", "perceiver", "projector", "audio"]
178
- model_config = update_module_configs(model_config, model_class, config, modules)
179
-
180
- model = model_class.Model(model_config)
181
-
182
- # Sanitize weights
183
- weights = sanitize_weights(model, weights)
184
- weights = sanitize_weights(
185
- model_class.VisionModel, weights, model_config.vision_config
186
- )
187
- weights = sanitize_weights(
188
- model_class.LanguageModel, weights, model_config.text_config
189
- )
190
- if hasattr(model_class, "AudioModel"):
191
- weights = sanitize_weights(
192
- model_class.AudioModel, weights, model_config.audio_config
193
- )
194
-
195
- if (quantization := config.get("quantization", None)) is not None:
196
- # Handle legacy models which may or may not have vision quantized
197
- # TODO: Re-upload the models with the new quantization config and remove this
198
- skip_vision = config.get("vision_config", {}).get("skip_vision", False)
199
-
200
- def get_class_predicate(p, m):
201
- # Always skip vision and audio models
202
- if skip_multimodal_module(p) and skip_vision:
203
- return False
204
- # Handle custom per layer quantizations
205
- if p in config["quantization"]:
206
- return config["quantization"][p]
207
- if not hasattr(m, "to_quantized"):
208
- return False
209
- # Skip layers not divisible by 64
210
- if hasattr(m, "weight") and m.weight.size % 64 != 0:
211
- return False
212
- # Handle legacy models which may not have everything quantized
213
- return f"{p}.scales" in weights
214
-
215
- nn.quantize(
216
- model,
217
- group_size=quantization["group_size"],
218
- bits=quantization["bits"],
219
- class_predicate=get_class_predicate,
220
- )
221
-
222
- model.load_weights(list(weights.items()))
223
- if not lazy:
224
- mx.eval(model.parameters())
225
-
226
- model.eval()
227
- return model
228
-
229
-
230
- def sanitize_weights(model_obj, weights, config=None):
231
- """Helper function to sanitize weights if the model has a sanitize method"""
232
- if hasattr(model_obj, "sanitize"):
233
- if config is not None:
234
- model_obj = model_obj(config)
235
- weights = model_obj.sanitize(weights)
236
- return weights
237
-
238
-
239
- def update_module_configs(model_config, model_class, config, modules):
240
- """Updates configuration for model modules like text and vision modules.
241
-
242
- Args:
243
- model_config: The model configuration object that will be updated
244
- model_class: The model class containing component config classes
245
- config: Dictionary containing configuration parameters
246
- modules: List of module names to update configs for (e.g. ["text", "vision"])
247
-
248
- Returns:
249
- The updated model_config object
250
- """
251
- for config_name in modules:
252
- config_attr = f"{config_name}_config"
253
- if hasattr(model_config, config_attr):
254
- config_class = getattr(model_class, f"{config_name.title()}Config")
255
- setattr(
256
- model_config, config_attr, config_class.from_dict(config[config_attr])
257
- )
258
- return model_config
259
-
260
-
261
- def load(
262
- path_or_hf_repo: str,
263
- adapter_path: Optional[str] = None,
264
- lazy: bool = False,
265
- revision: Optional[str] = None,
266
- **kwargs,
267
- ) -> Tuple[nn.Module, Union[PreTrainedTokenizer, PreTrainedTokenizerFast]]:
268
- """
269
- Load the model and tokenizer from a given path or a huggingface repository.
270
-
271
- Args:
272
- path_or_hf_repo (Path): The path or the huggingface repository to load the model from.
273
- tokenizer_config (dict, optional): Configuration parameters specifically for the tokenizer.
274
- Defaults to an empty dictionary.
275
- adapter_path (str, optional): Path to the LoRA adapters. If provided, applies LoRA layers
276
- to the model. Default: ``None``.
277
- lazy (bool): If False eval the model parameters to make sure they are
278
- loaded in memory before returning, otherwise they will be loaded
279
- when needed. Default: ``False``
280
- revision (str, optional): A revision id which can be a branch name,
281
- a tag, or a commit hash. Default: ``None``.
282
- Returns:
283
- Tuple[nn.Module, TokenizerWrapper]: A tuple containing the loaded model and tokenizer.
284
-
285
- Raises:
286
- FileNotFoundError: If config file or safetensors are not found.
287
- ValueError: If model class or args class are not found.
288
- """
289
- force_download = kwargs.get("force_download", False)
290
- model_path = get_model_path(
291
- path_or_hf_repo, force_download=force_download, revision=revision
292
- )
293
- model = load_model(model_path, lazy, **kwargs)
294
- if adapter_path is not None:
295
- model = apply_lora_layers(model, adapter_path)
296
- model.eval()
297
-
298
- image_processor = load_image_processor(model_path, **kwargs)
299
-
300
- # Get the eos_token_id from the model config
301
- eos_token_id = getattr(model.config, "eos_token_id", None)
302
-
303
- processor = load_processor(model_path, True, eos_token_ids=eos_token_id, **kwargs)
304
-
305
- if image_processor is not None:
306
- processor.image_processor = image_processor
307
-
308
- return model, processor
309
-
310
-
311
- def load_config(model_path: Union[str, Path], **kwargs) -> dict:
312
- """Load model configuration from a path or Hugging Face repo.
313
-
314
- Args:
315
- model_path: Local path or Hugging Face repo ID to load config from
316
- **kwargs: Additional keyword arguments to pass to the config loader
317
-
318
- Returns:
319
- dict: Model configuration
320
-
321
- Raises:
322
- FileNotFoundError: If config.json is not found at the path
323
- """
324
- if isinstance(model_path, str):
325
- model_path = get_model_path(model_path)
326
-
327
- try:
328
- return AutoConfig.from_pretrained(model_path, **kwargs).to_dict()
329
- except ValueError:
330
- try:
331
- with open(model_path / "config.json", encoding="utf-8") as f:
332
- return json.load(f)
333
- except FileNotFoundError as exc:
334
- raise FileNotFoundError(f"Config not found at {model_path}") from exc
335
-
336
-
337
- def load_image_processor(model_path: Union[str, Path], **kwargs) -> BaseImageProcessor:
338
- if isinstance(model_path, str):
339
- model_path = get_model_path(model_path)
340
-
341
- if not kwargs:
342
- config = load_config(model_path, trust_remote_code=True)
343
- else:
344
- config = load_config(model_path, **kwargs)
345
-
346
- model_class, _ = get_model_and_args(config)
347
- image_processor = None
348
-
349
- if hasattr(model_class, "ImageProcessor"):
350
- init_signature = inspect.signature(model_class.ImageProcessor.__init__)
351
-
352
- if "config" in init_signature.parameters:
353
- image_processor = model_class.ImageProcessor(config=config)
354
- else:
355
- image_processor = model_class.ImageProcessor()
356
-
357
- return image_processor
358
-
359
-
360
- def load_processor(
361
- model_path, add_detokenizer=True, eos_token_ids=None, **kwargs
362
- ) -> Union[PreTrainedTokenizer, PreTrainedTokenizerFast]:
363
- #import ipdb; ipdb.set_trace()
364
- config = load_config(model_path, **kwargs)
365
-
366
- if "qwen2_5_vl" == str(config.get("model_type", "")):
367
- from .processing_qwen2_5_vl import Qwen2_5_VLProcessor
368
- processor = Qwen2_5_VLProcessor.from_pretrained(model_path, **kwargs)
369
- elif "qwen2_vl" == str(config.get("model_type", "")):
370
- from .processing_qwen2_vl import Qwen2VLProcessor
371
- processor = Qwen2VLProcessor.from_pretrained(model_path, **kwargs)
372
- else:
373
- processor = AutoProcessor.from_pretrained(model_path, **kwargs)
374
-
375
- if add_detokenizer:
376
- detokenizer_class = load_tokenizer(model_path, return_tokenizer=False)
377
-
378
- # Get the tokenizer object
379
- tokenizer_obj = (
380
- processor.tokenizer if hasattr(processor, "tokenizer") else processor
381
- )
382
-
383
- # Instantiate the detokenizer
384
- processor.detokenizer = detokenizer_class(tokenizer_obj)
385
-
386
- # Determine the EOS token IDs, prioritizing the function argument
387
- final_eos_token_ids = (
388
- eos_token_ids if eos_token_ids is not None else tokenizer_obj.eos_token_ids
389
- )
390
-
391
- # Create and assign the StoppingCriteria
392
- criteria = StoppingCriteria(final_eos_token_ids, tokenizer_obj)
393
- if hasattr(processor, "tokenizer"):
394
- processor.tokenizer.stopping_criteria = criteria
395
- else:
396
- processor.stopping_criteria = criteria
397
-
398
- return processor
399
-
400
-
401
- def fetch_from_hub(
402
- model_path: Path, lazy: bool = False, **kwargs
403
- ) -> Tuple[nn.Module, dict, PreTrainedTokenizer]:
404
- model = load_model(model_path, lazy, **kwargs)
405
- config = load_config(model_path, **kwargs)
406
- processor = load_processor(
407
- model_path,
408
- add_detokenizer=False,
409
- eos_token_ids=config.get("eos_token_id", None),
410
- **kwargs,
411
- )
412
- return model, config, processor
413
-
414
-
415
- def make_shards(weights: dict, max_file_size_gb: int = MAX_FILE_SIZE_GB) -> list:
416
- """
417
- Splits the weights into smaller shards.
418
-
419
- Args:
420
- weights (dict): Model weights.
421
- max_file_size_gb (int): Maximum size of each shard in gigabytes.
422
-
423
- Returns:
424
- list: List of weight shards.
425
- """
426
- max_file_size_bytes = max_file_size_gb << 30
427
- shards = []
428
- shard, shard_size = {}, 0
429
- for k, v in weights.items():
430
- if shard_size + v.nbytes > max_file_size_bytes:
431
- shards.append(shard)
432
- shard, shard_size = {}, 0
433
- shard[k] = v
434
- shard_size += v.nbytes
435
- shards.append(shard)
436
- return shards
437
-
438
-
439
- def upload_to_hub(path: str, upload_repo: str, hf_path: str):
440
- """
441
- Uploads the model to Hugging Face hub.
442
-
443
- Args:
444
- path (str): Local path to the model.
445
- upload_repo (str): Name of the HF repo to upload to.
446
- hf_path (str): Path to the original Hugging Face model.
447
- """
448
- import os
449
-
450
- from huggingface_hub import HfApi, ModelCard, logging
451
-
452
- from . import __version__
453
-
454
- card = ModelCard.load(hf_path)
455
- card.data.tags = ["mlx"] if card.data.tags is None else card.data.tags + ["mlx"]
456
- card.text = dedent(
457
- f"""
458
- # {upload_repo}
459
- This model was converted to MLX format from [`{hf_path}`]() using mlx-vlm version **{__version__}**.
460
- Refer to the [original model card](https://huggingface.co/{hf_path}) for more details on the model.
461
- ## Use with mlx
462
-
463
- ```bash
464
- pip install -U mlx-vlm
465
- ```
466
-
467
- ```bash
468
- python -m mlx_vlm.generate --model {upload_repo} --max-tokens 100 --temperature 0.0 --prompt "Describe this image." --image <path_to_image>
469
- ```
470
- """
471
- )
472
- card.save(os.path.join(path, "README.md"))
473
-
474
- logging.set_verbosity_info()
475
-
476
- api = HfApi()
477
- api.create_repo(repo_id=upload_repo, exist_ok=True)
478
- api.upload_folder(
479
- folder_path=path,
480
- repo_id=upload_repo,
481
- repo_type="model",
482
- )
483
- print(f"Upload successful, go to https://huggingface.co/{upload_repo} for details.")
484
-
485
-
486
- def apply_repetition_penalty(logits: mx.array, generated_tokens: Any, penalty: float):
487
- """
488
- Apply repetition penalty to specific logits based on the given context.
489
-
490
- Paper: https://arxiv.org/abs/1909.05858
491
-
492
- Args:
493
- logits (mx.array): The logits produced by the language model.
494
- generated_tokens (any): A list of N previous tokens.
495
- penalty (float): The repetition penalty factor to be applied.
496
-
497
- Returns:
498
- logits (mx.array): Logits with repetition penalty applied to generated tokens.
499
- """
500
- if len(generated_tokens) > 0:
501
- indices = mx.array([token for token in generated_tokens])
502
- selected_logits = logits[:, indices]
503
- selected_logits = mx.where(
504
- selected_logits < 0, selected_logits * penalty, selected_logits / penalty
505
- )
506
- logits[:, indices] = selected_logits
507
- return logits
508
-
509
-
510
- def save_weights(
511
- save_path: Union[str, Path],
512
- model: nn.Module,
513
- *,
514
- donate_weights: bool = False,
515
- ) -> None:
516
- """Save model weights into specified directory."""
517
- if isinstance(save_path, str):
518
- save_path = Path(save_path)
519
-
520
- weights = dict(tree_flatten(model.parameters()))
521
- del model
522
-
523
- save_path.mkdir(parents=True, exist_ok=True)
524
-
525
- shards = make_shards(weights)
526
- shards_count = len(shards)
527
- shard_file_format = (
528
- "model-{:05d}-of-{:05d}.safetensors"
529
- if shards_count > 1
530
- else "model.safetensors"
531
- )
532
-
533
- total_size = sum(v.nbytes for v in weights.values())
534
- index_data = {"metadata": {"total_size": total_size}, "weight_map": {}}
535
-
536
- # Write the weights and make sure no references are kept other than the
537
- # necessary ones
538
- if donate_weights:
539
- weights.clear()
540
- del weights
541
-
542
- for i in range(len(shards)):
543
- shard = shards[i]
544
- shards[i] = None
545
- shard_name = shard_file_format.format(i + 1, shards_count)
546
- shard_path = save_path / shard_name
547
-
548
- mx.save_safetensors(str(shard_path), shard, metadata={"format": "mlx"})
549
-
550
- for weight_name in shard.keys():
551
- index_data["weight_map"][weight_name] = shard_name
552
- del shard
553
-
554
- index_data["weight_map"] = {
555
- k: index_data["weight_map"][k] for k in sorted(index_data["weight_map"])
556
- }
557
-
558
- with open(save_path / "model.safetensors.index.json", "w") as f:
559
- json.dump(
560
- index_data,
561
- f,
562
- indent=4,
563
- )
564
-
565
-
566
- def save_config(
567
- config: dict,
568
- config_path: Union[str, Path],
569
- ) -> None:
570
- """Save the model configuration to the ``config_path``.
571
-
572
- The final configuration will be sorted before saving for better readability.
573
-
574
- Args:
575
- config (dict): The model configuration.
576
- config_path (Union[str, Path]): Model configuration file path.
577
- """
578
- # Clean unused keys
579
- config.pop("_name_or_path", None)
580
- config.pop("torch_dtype", None)
581
-
582
- # sort the config for better readability
583
- config = dict(sorted(config.items()))
584
-
585
- # write the updated config to the config_path (if provided)
586
- with open(config_path, "w") as fid:
587
- json.dump(config, fid, indent=4)
588
-
589
-
590
- def load_image(image_source: Union[str, Path, BytesIO], timeout: int = 10):
591
- """
592
- Helper function to load an image from either a URL or file.
593
- """
594
- if isinstance(image_source, BytesIO) or Path(image_source).is_file():
595
- # for base64 encoded images
596
- try:
597
- image = Image.open(image_source)
598
- except IOError as e:
599
- raise ValueError(
600
- f"Failed to load image from {image_source} with error: {e}"
601
- ) from e
602
- elif image_source.startswith(("http://", "https://")):
603
- try:
604
- response = requests.get(image_source, stream=True, timeout=timeout)
605
- response.raise_for_status()
606
- image = Image.open(response.raw)
607
- except Exception as e:
608
- raise ValueError(
609
- f"Failed to load image from URL: {image_source} with error {e}"
610
- ) from e
611
- else:
612
- raise ValueError(
613
- f"The image {image_source} must be a valid URL or existing file."
614
- )
615
-
616
- image = ImageOps.exif_transpose(image)
617
- image = image.convert("RGB")
618
- return image
619
-
620
-
621
- def resize_image(img, max_size):
622
- ratio = min(max_size[0] / img.width, max_size[1] / img.height)
623
- new_size = (int(img.width * ratio), int(img.height * ratio))
624
- return img.resize(new_size)
625
-
626
-
627
- def process_image(img, resize_shape, image_processor):
628
- if isinstance(img, str):
629
- img = load_image(img)
630
- if resize_shape is not None and not isinstance(image_processor, BaseImageProcessor):
631
- img = resize_image(img, resize_shape)
632
- return img
633
-
634
-
635
- def resample_audio(audio: np.ndarray, orig_sr: int, target_sr: int) -> np.ndarray:
636
- gcd = np.gcd(orig_sr, target_sr)
637
- up = target_sr // gcd
638
- down = orig_sr // gcd
639
- resampled = signal.resample_poly(audio, up, down, padtype="edge")
640
- return resampled
641
-
642
-
643
- def load_audio(
644
- file: str,
645
- sr: int,
646
- timeout: int = 10,
647
- ):
648
- """
649
- Helper function to load audio from either a URL or file.
650
- """
651
- if file.startswith(("http://", "https://")):
652
- try:
653
- response = requests.get(file, stream=True, timeout=timeout)
654
- response.raise_for_status()
655
- audio, sample_rate = sf.read(BytesIO(response.content), always_2d=True)
656
- except Exception as e:
657
- raise ValueError(
658
- f"Failed to load audio from URL: {file} with error {e}"
659
- ) from e
660
- else:
661
- audio, sample_rate = sf.read(file, always_2d=True)
662
-
663
- if sample_rate != sr:
664
- audio = resample_audio(audio, sample_rate, sr)
665
- return np.array(audio).mean(axis=1)
666
-
667
-
668
- def process_inputs(
669
- processor,
670
- prompts,
671
- images=None,
672
- audio=None,
673
- add_special_tokens=False,
674
- return_tensors="mlx",
675
- ):
676
- # Get the process method from the processor
677
- process_method = getattr(processor, "process", processor)
678
-
679
- # Prepare arguments
680
- args = {
681
- "text": prompts,
682
- "images": images,
683
- "padding": True,
684
- "return_tensors": return_tensors,
685
- }
686
-
687
- # Add special tokens if supported
688
- if "add_special_tokens" in inspect.signature(process_method).parameters:
689
- args["add_special_tokens"] = add_special_tokens
690
-
691
- # Add audio if provided and supported
692
- if audio is not None:
693
- if "audio" in inspect.signature(process_method).parameters:
694
- args["audio"] = audio
695
- else:
696
- raise ValueError(f"Processor {processor} does not support audio parameter")
697
-
698
- return process_method(**args)
699
-
700
-
701
- def process_inputs_with_fallback(
702
- processor, prompts, images, audio, add_special_tokens=False, return_tensors="mlx"
703
- ):
704
- # First attempt with specified return_tensors
705
- try:
706
- return process_inputs(
707
- processor,
708
- prompts=prompts,
709
- images=images,
710
- audio=audio,
711
- add_special_tokens=add_special_tokens,
712
- return_tensors=return_tensors,
713
- )
714
- except Exception as e:
715
- # Fallback to PyTorch tensors if MLX fails
716
- if return_tensors != "pt":
717
- try:
718
- return process_inputs(
719
- processor,
720
- prompts=prompts,
721
- images=images,
722
- audio=audio,
723
- add_special_tokens=add_special_tokens,
724
- return_tensors="pt",
725
- )
726
- except Exception as fallback_error:
727
- raise ValueError(
728
- f"Failed to process inputs with error: {fallback_error}"
729
- )
730
-
731
- raise ValueError(f"Failed to process inputs with error: {e}")
732
-
733
-
734
- def prepare_inputs(
735
- processor,
736
- images=None,
737
- audio=None,
738
- prompts=None,
739
- image_token_index=None,
740
- resize_shape=None,
741
- add_special_tokens=False,
742
- ):
743
-
744
- if not images and not audio:
745
- tokenizer = (
746
- processor.tokenizer if hasattr(processor, "tokenizer") else processor
747
- )
748
- inputs = tokenizer(prompts, add_special_tokens=add_special_tokens)
749
- input_ids = mx.array([inputs.input_ids])
750
- mask = mx.array([inputs.attention_mask])
751
- return {
752
- "input_ids": input_ids,
753
- "attention_mask": mask,
754
- }
755
-
756
- # Process images
757
- if images is not None:
758
- if not isinstance(images, list):
759
- images = [images]
760
-
761
- image_processor = (
762
- processor.image_processor if hasattr(processor, "image_processor") else None
763
- )
764
- images = [process_image(img, resize_shape, image_processor) for img in images]
765
-
766
- # Process audio
767
- if audio:
768
- if not isinstance(audio, list):
769
- audio = [audio]
770
-
771
- if len(audio) > 1:
772
- print(
773
- "\033[33mWarning\033[0m: Single prompt with multiple audio files is not supported yet. Using the first audio file.\n"
774
- )
775
- audio = audio[:1]
776
-
777
- audio = [
778
- load_audio(audio_file, sr=processor.feature_extractor.sampling_rate)
779
- for audio_file in audio
780
- ]
781
- else:
782
- audio = None
783
-
784
- model_inputs = {}
785
-
786
- if hasattr(processor, "image_processor") and isinstance(
787
- processor.image_processor, BaseImageProcessor
788
- ):
789
- if not isinstance(prompts, list):
790
- prompts = [prompts]
791
-
792
- processor.pad_token = processor.eos_token
793
- text_chunks = [
794
- [processor(chunk).input_ids for chunk in prompt.split("<image>")]
795
- for prompt in prompts
796
- ]
797
-
798
- # Find the maximum length for padding
799
- max_length = max(
800
- sum(len(chunk) for chunk in chunks) + 1 for chunks in text_chunks
801
- )
802
-
803
- # Pad and create input_ids
804
- input_ids = []
805
- for chunks in text_chunks:
806
- ids = chunks[0] + [image_token_index] + chunks[1]
807
- padding = [processor.pad_token_id] * (max_length - len(ids))
808
- input_ids.append(mx.array(ids + padding))
809
-
810
- model_inputs["input_ids"] = mx.array(input_ids)
811
- pixel_values = processor.image_processor.preprocess(images=images)
812
- model_inputs["pixel_values"] = mx.array(np.stack(pixel_values))
813
- model_inputs["attention_mask"] = mx.array(
814
- [(ids != processor.pad_token_id) for ids in input_ids]
815
- ).astype(mx.int32)
816
-
817
- else:
818
- if hasattr(processor, "tokenizer"):
819
- processor.tokenizer.pad_token = processor.tokenizer.eos_token
820
-
821
- inputs = process_inputs_with_fallback(
822
- processor,
823
- images=images,
824
- audio=audio,
825
- prompts=prompts,
826
- add_special_tokens=add_special_tokens,
827
- )
828
-
829
- if "images" in inputs:
830
- inputs["pixel_values"] = inputs["images"]
831
- inputs.pop("images")
832
-
833
- model_inputs["attention_mask"] = (
834
- mx.array(inputs["attention_mask"]) if "attention_mask" in inputs else None
835
- )
836
- # Convert inputs to model_inputs with mx.array if present
837
- for key, value in inputs.items():
838
- if key not in model_inputs and not isinstance(value, (str, list)):
839
- model_inputs[key] = mx.array(value)
840
-
841
- return model_inputs
842
-
843
-
844
- class StoppingCriteria:
845
- def __init__(self, eos_token_ids: List[int], tokenizer=None):
846
-
847
- if isinstance(eos_token_ids, int):
848
- self.eos_token_ids = [eos_token_ids]
849
- else:
850
- self.eos_token_ids = eos_token_ids
851
-
852
- self.tokenizer = tokenizer
853
-
854
- def add_eos_token_ids(self, new_eos_token_ids: Union[int, List[int]] = None):
855
- """
856
- Add new token IDs to the list of EOS token IDs.
857
-
858
- Args:
859
- new_eos_token_ids: Integer, string, or list of integers/strings representing token IDs to add.
860
- If strings are provided, they will be converted to integers if possible.
861
- """
862
- if new_eos_token_ids is None:
863
- return
864
-
865
- if self.tokenizer is None:
866
- raise ValueError("Processor is not provided")
867
-
868
- if new_eos_token_ids is not None:
869
- if isinstance(new_eos_token_ids, str):
870
- new_eos_token_ids = [new_eos_token_ids]
871
- new_eos_token_ids = [
872
- self.tokenizer.encode(" " + token, add_special_tokens=False)[-1]
873
- for token in new_eos_token_ids
874
- ]
875
- self.eos_token_ids.extend(new_eos_token_ids)
876
-
877
- def reset(self, eos_token_ids: List[int] = None):
878
- eos_token_ids = (
879
- eos_token_ids if eos_token_ids is not None else self.tokenizer.eos_token_ids
880
- )
881
-
882
- if isinstance(eos_token_ids, int):
883
- eos_token_ids = [eos_token_ids]
884
-
885
- if self.eos_token_ids != eos_token_ids:
886
- self.eos_token_ids = eos_token_ids
887
-
888
- def __call__(self, input_ids: mx.array) -> bool:
889
- return input_ids in self.eos_token_ids
890
-
891
-
892
- def print_array_report(t: mx.array, label: Optional[str]) -> dict:
893
- """
894
- Return a dictionary report of an MLX array similar to PyTorch's tensor representation.
895
- Args:
896
- arr: MLX array to analyze
897
- Returns:
898
- Dictionary containing shape, dtype, value representation, and statistics
899
- """
900
-
901
- from pprint import pprint
902
-
903
- # Get basic statistics
904
- mean_val = mx.mean(t)
905
- std_val = mx.std(t)
906
- min_val = mx.min(t)
907
- max_val = mx.max(t)
908
-
909
- report = {
910
- "shape": f"{tuple(t.shape)}",
911
- "dtype": str(t.dtype),
912
- "value": repr(t),
913
- "mean": f"array({mean_val}, dtype={t.dtype})",
914
- "std": f"array({std_val}, dtype={t.dtype})",
915
- "min": f"array({min_val}, dtype={t.dtype})",
916
- "max": f"array({max_val}, dtype={t.dtype})",
917
- "label": label if label else "array",
918
- }
919
-
920
- # Print each field, handling 'value' specially
921
- print("{")
922
- for key, value in report.items():
923
- if key == "value":
924
- print(f" '{key}': {value},") # No quotes around value
925
- else:
926
- print(f" '{key}': {repr(value)},")
927
- print("}")
928
- return report