nexaai 1.0.19rc7__cp310-cp310-macosx_14_0_universal2.whl → 1.0.19rc9__cp310-cp310-macosx_14_0_universal2.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of nexaai might be problematic. Click here for more details.

Files changed (200) hide show
  1. nexaai/_stub.cpython-310-darwin.so +0 -0
  2. nexaai/_version.py +1 -1
  3. nexaai/binds/libnexa_bridge.dylib +0 -0
  4. nexaai/mlx_backend/vlm/generate_qwen3_vl.py +14 -31
  5. nexaai/mlx_backend/vlm/generate_qwen3_vl_moe.py +15 -32
  6. nexaai/mlx_backend/vlm/modeling/models/qwen3_vl/qwen3vl.py +7 -23
  7. nexaai/mlx_backend/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +8 -24
  8. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/METADATA +1 -1
  9. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/RECORD +11 -200
  10. nexaai/binds/nexa_mlx/py-lib/asr/__init__.py +0 -12
  11. nexaai/binds/nexa_mlx/py-lib/asr/interface.py +0 -122
  12. nexaai/binds/nexa_mlx/py-lib/common/__init__.py +0 -0
  13. nexaai/binds/nexa_mlx/py-lib/common/utils.py +0 -25
  14. nexaai/binds/nexa_mlx/py-lib/cv/__init__.py +0 -0
  15. nexaai/binds/nexa_mlx/py-lib/cv/generate.py +0 -195
  16. nexaai/binds/nexa_mlx/py-lib/cv/interface.py +0 -151
  17. nexaai/binds/nexa_mlx/py-lib/cv/main.py +0 -81
  18. nexaai/binds/nexa_mlx/py-lib/cv/modeling/pp_ocr_v4.py +0 -1736
  19. nexaai/binds/nexa_mlx/py-lib/embedding/__init__.py +0 -0
  20. nexaai/binds/nexa_mlx/py-lib/embedding/generate.py +0 -333
  21. nexaai/binds/nexa_mlx/py-lib/embedding/interface.py +0 -617
  22. nexaai/binds/nexa_mlx/py-lib/embedding/main.py +0 -173
  23. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/__init__.py +0 -0
  24. nexaai/binds/nexa_mlx/py-lib/embedding/modeling/nexa_jina_v2.py +0 -399
  25. nexaai/binds/nexa_mlx/py-lib/image_gen/__init__.py +0 -1
  26. nexaai/binds/nexa_mlx/py-lib/image_gen/generate_sd.py +0 -244
  27. nexaai/binds/nexa_mlx/py-lib/image_gen/interface.py +0 -82
  28. nexaai/binds/nexa_mlx/py-lib/image_gen/main.py +0 -281
  29. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/__init__.py +0 -306
  30. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/clip.py +0 -116
  31. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/config.py +0 -65
  32. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/model_io.py +0 -386
  33. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/sampler.py +0 -105
  34. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/tokenizer.py +0 -100
  35. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/unet.py +0 -460
  36. nexaai/binds/nexa_mlx/py-lib/image_gen/stable_diffusion/vae.py +0 -274
  37. nexaai/binds/nexa_mlx/py-lib/llm/__init__.py +0 -0
  38. nexaai/binds/nexa_mlx/py-lib/llm/generate.py +0 -149
  39. nexaai/binds/nexa_mlx/py-lib/llm/interface.py +0 -764
  40. nexaai/binds/nexa_mlx/py-lib/llm/main.py +0 -68
  41. nexaai/binds/nexa_mlx/py-lib/rerank/__init__.py +0 -0
  42. nexaai/binds/nexa_mlx/py-lib/rerank/generate.py +0 -174
  43. nexaai/binds/nexa_mlx/py-lib/rerank/interface.py +0 -287
  44. nexaai/binds/nexa_mlx/py-lib/rerank/main.py +0 -127
  45. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/__init__.py +0 -0
  46. nexaai/binds/nexa_mlx/py-lib/rerank/modeling/nexa_jina_rerank.py +0 -330
  47. nexaai/binds/nexa_mlx/py-lib/sd/__init__.py +0 -1
  48. nexaai/binds/nexa_mlx/py-lib/sd/interface.py +0 -362
  49. nexaai/binds/nexa_mlx/py-lib/sd/main.py +0 -286
  50. nexaai/binds/nexa_mlx/py-lib/sd/modeling/__init__.py +0 -306
  51. nexaai/binds/nexa_mlx/py-lib/sd/modeling/clip.py +0 -116
  52. nexaai/binds/nexa_mlx/py-lib/sd/modeling/config.py +0 -65
  53. nexaai/binds/nexa_mlx/py-lib/sd/modeling/model_io.py +0 -385
  54. nexaai/binds/nexa_mlx/py-lib/sd/modeling/sampler.py +0 -105
  55. nexaai/binds/nexa_mlx/py-lib/sd/modeling/tokenizer.py +0 -100
  56. nexaai/binds/nexa_mlx/py-lib/sd/modeling/unet.py +0 -460
  57. nexaai/binds/nexa_mlx/py-lib/sd/modeling/vae.py +0 -274
  58. nexaai/binds/nexa_mlx/py-lib/tts/__init__.py +0 -12
  59. nexaai/binds/nexa_mlx/py-lib/tts/interface.py +0 -276
  60. nexaai/binds/nexa_mlx/py-lib/vlm/__init__.py +0 -3
  61. nexaai/binds/nexa_mlx/py-lib/vlm/generate.py +0 -572
  62. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl.py +0 -294
  63. nexaai/binds/nexa_mlx/py-lib/vlm/generate_qwen3_vl_moe.py +0 -276
  64. nexaai/binds/nexa_mlx/py-lib/vlm/interface.py +0 -504
  65. nexaai/binds/nexa_mlx/py-lib/vlm/main.py +0 -320
  66. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/__init__.py +0 -0
  67. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/convert.py +0 -68
  68. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/__init__.py +0 -0
  69. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/__init__.py +0 -8
  70. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/aya_vision.py +0 -193
  71. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/interpolate.py +0 -186
  72. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/language.py +0 -233
  73. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/aya_vision/vision.py +0 -503
  74. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/base.py +0 -202
  75. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/cache.py +0 -230
  76. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/__init__.py +0 -10
  77. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/conversation.py +0 -264
  78. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/deepseek_vl_v2.py +0 -472
  79. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/language.py +0 -591
  80. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/processing_deepsek_vl_v2.py +0 -526
  81. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/deepseek_vl_v2/vision.py +0 -356
  82. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/__init__.py +0 -8
  83. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/florence2.py +0 -366
  84. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/language.py +0 -488
  85. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/florence2/vision.py +0 -591
  86. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/__init__.py +0 -8
  87. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/gemma3.py +0 -213
  88. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/language.py +0 -315
  89. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3/vision.py +0 -238
  90. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/__init__.py +0 -2
  91. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/audio.py +0 -1038
  92. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/config.py +0 -139
  93. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/gemma3n.py +0 -322
  94. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/language.py +0 -629
  95. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/gemma3n/vision.py +0 -1022
  96. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/__init__.py +0 -9
  97. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/idefics2.py +0 -294
  98. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/language.py +0 -191
  99. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics2/vision.py +0 -267
  100. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/__init__.py +0 -8
  101. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/idefics3.py +0 -175
  102. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/language.py +0 -192
  103. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/idefics3/vision.py +0 -233
  104. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/__init__.py +0 -9
  105. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/internvl_chat.py +0 -140
  106. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/language.py +0 -220
  107. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/processor.py +0 -393
  108. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/internvl_chat/vision.py +0 -293
  109. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kernels.py +0 -307
  110. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/__init__.py +0 -8
  111. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/kimi_vl.py +0 -143
  112. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/language.py +0 -509
  113. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/kimi_vl/vision.py +0 -522
  114. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/__init__.py +0 -8
  115. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/language.py +0 -386
  116. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/llama4.py +0 -138
  117. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llama4/vision.py +0 -560
  118. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/__init__.py +0 -8
  119. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/language.py +0 -240
  120. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/llava.py +0 -153
  121. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava/vision.py +0 -259
  122. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/__init__.py +0 -9
  123. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/language.py +0 -236
  124. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/llava_bunny.py +0 -256
  125. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_bunny/vision.py +0 -303
  126. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/__init__.py +0 -8
  127. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/language.py +0 -230
  128. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/llava_next.py +0 -160
  129. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/llava_next/vision.py +0 -243
  130. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/__init__.py +0 -8
  131. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mistral3/mistral3.py +0 -283
  132. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/__init__.py +0 -8
  133. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/language.py +0 -416
  134. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/mllama.py +0 -172
  135. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/mllama/vision.py +0 -499
  136. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/__init__.py +0 -8
  137. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/language.py +0 -243
  138. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/molmo.py +0 -133
  139. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/molmo/vision.py +0 -465
  140. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/__init__.py +0 -10
  141. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/language.py +0 -230
  142. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/multi_modality.py +0 -385
  143. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/sam.py +0 -557
  144. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/multi_modality/vision.py +0 -526
  145. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/__init__.py +0 -8
  146. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/language.py +0 -282
  147. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/paligemma.py +0 -160
  148. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/paligemma/vision.py +0 -242
  149. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/__init__.py +0 -8
  150. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/language.py +0 -21
  151. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/phi3_v.py +0 -243
  152. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/su_rope.py +0 -71
  153. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/phi3_v/vision.py +0 -324
  154. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/__init__.py +0 -8
  155. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/language.py +0 -229
  156. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/pixtral.py +0 -161
  157. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/pixtral/vision.py +0 -320
  158. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/__init__.py +0 -2
  159. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/config.py +0 -108
  160. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/language.py +0 -490
  161. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/qwen2_5_vl.py +0 -168
  162. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_5_vl/vision.py +0 -414
  163. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/__init__.py +0 -2
  164. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/config.py +0 -104
  165. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/language.py +0 -490
  166. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/qwen2_vl.py +0 -167
  167. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen2_vl/vision.py +0 -312
  168. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/__init__.py +0 -0
  169. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/base.py +0 -117
  170. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/cache.py +0 -531
  171. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/generate.py +0 -701
  172. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/rope_utils.py +0 -255
  173. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/sample_utils.py +0 -303
  174. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/llm_common/tokenizer_utils.py +0 -407
  175. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/processor.py +0 -476
  176. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3_vl/qwen3vl.py +0 -1223
  177. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/__init__.py +0 -0
  178. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/base.py +0 -117
  179. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/cache.py +0 -531
  180. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/generate.py +0 -701
  181. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/rope_utils.py +0 -255
  182. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/sample_utils.py +0 -303
  183. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/llm_common/tokenizer_utils.py +0 -407
  184. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/processor.py +0 -476
  185. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/qwen3vl_moe.py +0 -1309
  186. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/qwen3vl_moe/switch_layers.py +0 -210
  187. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/__init__.py +0 -8
  188. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/models/smolvlm/smolvlm.py +0 -62
  189. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_5_vl.py +0 -209
  190. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/processing_qwen2_vl.py +0 -215
  191. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/prompt_utils.py +0 -474
  192. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/sample_utils.py +0 -39
  193. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/tokenizer_utils.py +0 -344
  194. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/__init__.py +0 -9
  195. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/lora.py +0 -70
  196. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/trainer.py +0 -296
  197. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/trainer/utils.py +0 -160
  198. nexaai/binds/nexa_mlx/py-lib/vlm/modeling/utils.py +0 -928
  199. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/WHEEL +0 -0
  200. {nexaai-1.0.19rc7.dist-info → nexaai-1.0.19rc9.dist-info}/top_level.txt +0 -0
@@ -1,386 +0,0 @@
1
- import inspect
2
- from dataclasses import dataclass
3
- from typing import Any, Optional
4
-
5
- import mlx.core as mx
6
- import mlx.nn as nn
7
- from mlx_lm.models.rope_utils import initialize_rope
8
- from mlx_lm.models.switch_layers import SwitchGLU
9
-
10
- from ..base import (
11
- LanguageModelOutput,
12
- create_attention_mask,
13
- scaled_dot_product_attention,
14
- )
15
- from ..cache import ChunkedKVCache, KVCache
16
-
17
-
18
- @dataclass
19
- class TextConfig:
20
- model_type: str
21
- hidden_size: int
22
- intermediate_size: int
23
- num_attention_heads: int
24
- rms_norm_eps: float
25
- vocab_size: int
26
- num_key_value_heads: int
27
- rope_theta: float = 500000.0
28
- num_hidden_layers: int = 48
29
- rope_traditional: bool = False
30
- rope_scaling: Optional[dict] = None # Add missing rope_scaling attribute
31
- tie_word_embeddings: bool = False
32
- head_dim: int = 128
33
- hidden_act: str = "silu"
34
- intermediate_size_mlp: int = 16384
35
- max_position_embeddings: int = 10485760
36
- num_experts_per_tok: int = 1
37
- num_local_experts: int = 16
38
- attention_dropout: float = 0.0
39
- use_qk_norm: bool = True
40
- bos_token_id: int = 200000
41
- eos_token_id: list = None
42
- pad_token_id: int = 200018
43
- attention_chunk_size: int = 8192
44
- attention_bias: bool = False
45
- interleave_moe_layer_step: int = 1
46
- no_rope_layers: list = 4
47
- output_router_logits: bool = False
48
- router_aux_loss_coef: float = 0.001
49
- router_jitter_noise: float = 0.0
50
- attn_temperature_tuning: int = 4
51
- floor_scale: float = 8192
52
- attn_scale: float = 0.1
53
- moe_layers: list = None
54
-
55
- @classmethod
56
- def from_dict(cls, params):
57
- return cls(
58
- **{
59
- k: v
60
- for k, v in params.items()
61
- if k in inspect.signature(cls).parameters
62
- }
63
- )
64
-
65
- def __post_init__(self):
66
- if self.num_key_value_heads is None:
67
- self.num_key_value_heads = self.num_attention_heads
68
-
69
-
70
- class Attention(nn.Module):
71
- def __init__(self, config: TextConfig, layer_idx: int):
72
- super().__init__()
73
-
74
- dim = config.hidden_size
75
- self.n_heads = n_heads = config.num_attention_heads
76
- self.n_kv_heads = n_kv_heads = config.num_key_value_heads
77
-
78
- self.use_rope = int((layer_idx + 1) % 4 != 0) # rope unused for dense layers
79
- self.attn_temperature_tuning = config.attn_temperature_tuning
80
- self.floor_scale = config.floor_scale
81
- self.attn_scale = config.attn_scale
82
-
83
- self.head_dim = head_dim = config.head_dim or config.hidden_size // n_heads
84
-
85
- self.scale = head_dim**-0.5
86
- if hasattr(config, "attention_bias"):
87
- attention_bias = config.attention_bias
88
- else:
89
- attention_bias = False
90
-
91
- self.q_proj = nn.Linear(dim, n_heads * head_dim, bias=attention_bias)
92
- self.k_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=attention_bias)
93
- self.v_proj = nn.Linear(dim, n_kv_heads * head_dim, bias=attention_bias)
94
- self.o_proj = nn.Linear(n_heads * head_dim, dim, bias=attention_bias)
95
-
96
- self.use_qk_norm = config.use_qk_norm and self.use_rope
97
-
98
- if self.use_rope:
99
- self.rope = initialize_rope(
100
- head_dim,
101
- config.rope_theta,
102
- traditional=True,
103
- scaling_config=config.rope_scaling,
104
- max_position_embeddings=config.max_position_embeddings,
105
- )
106
-
107
- def __call__(
108
- self,
109
- x: mx.array,
110
- mask: Optional[mx.array] = None,
111
- cache: Optional[Any] = None,
112
- ) -> mx.array:
113
- B, L, D = x.shape
114
-
115
- queries, keys, values = self.q_proj(x), self.k_proj(x), self.v_proj(x)
116
-
117
- queries = queries.reshape(B, L, self.n_heads, -1).transpose(0, 2, 1, 3)
118
- keys = keys.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
119
- values = values.reshape(B, L, self.n_kv_heads, -1).transpose(0, 2, 1, 3)
120
-
121
- if cache is not None:
122
- offset = cache.offset
123
- else:
124
- offset = 0
125
-
126
- if self.use_rope:
127
- queries = self.rope(queries, offset=offset)
128
- keys = self.rope(keys, offset=offset)
129
-
130
- if self.use_qk_norm:
131
- queries = mx.fast.rms_norm(queries, weight=None, eps=1e-6)
132
- keys = mx.fast.rms_norm(keys, weight=None, eps=1e-6)
133
-
134
- if self.attn_temperature_tuning and not self.use_rope:
135
- attn_scales = (
136
- mx.log(
137
- mx.floor(mx.arange(offset + 1, offset + L + 1) / self.floor_scale)
138
- + 1.0
139
- )
140
- * self.attn_scale
141
- + 1.0
142
- )
143
- attn_scales = attn_scales[:, None]
144
- queries = (queries * attn_scales).astype(queries.dtype)
145
-
146
- if cache is not None:
147
- keys, values = cache.update_and_fetch(keys, values)
148
-
149
- if self.use_rope and isinstance(mask, mx.array):
150
- key_len = keys.shape[-2]
151
- if mask.shape[-1] != key_len:
152
- mask = mask[..., -key_len:]
153
-
154
- output = scaled_dot_product_attention(
155
- queries, keys, values, cache, scale=self.scale, mask=mask
156
- )
157
- output = output.transpose(0, 2, 1, 3).reshape(B, L, -1)
158
- return self.o_proj(output)
159
-
160
-
161
- class MLP(nn.Module):
162
- def __init__(self, config: TextConfig, intermediate_size: int = None):
163
- super().__init__()
164
-
165
- dim = config.hidden_size
166
- hidden_dim = intermediate_size or config.intermediate_size
167
-
168
- self.gate_proj = nn.Linear(dim, hidden_dim, bias=False)
169
- self.down_proj = nn.Linear(hidden_dim, dim, bias=False)
170
- self.up_proj = nn.Linear(dim, hidden_dim, bias=False)
171
-
172
- def __call__(self, x) -> mx.array:
173
- return self.down_proj(nn.silu(self.gate_proj(x)) * self.up_proj(x))
174
-
175
-
176
- class MoE(nn.Module):
177
- def __init__(self, config):
178
- super().__init__()
179
- self.top_k = config.num_experts_per_tok
180
- self.num_experts = config.num_local_experts
181
- self.experts = SwitchGLU(
182
- config.hidden_size, config.intermediate_size, self.num_experts
183
- )
184
- self.router = nn.Linear(
185
- config.hidden_size, config.num_local_experts, bias=False
186
- )
187
- self.shared_expert = MLP(config)
188
-
189
- def __call__(self, x) -> mx.array:
190
- logits = self.router(x)
191
- k = self.top_k
192
- indices = mx.argpartition(-logits, kth=k - 1, axis=-1)[..., :k]
193
- scores = mx.take_along_axis(logits, indices, axis=-1)
194
- scores = mx.sigmoid(scores.astype(mx.float32)).astype(x.dtype)
195
-
196
- out = self.experts(x * scores, indices).squeeze(2)
197
- return out + self.shared_expert(x)
198
-
199
-
200
- class TransformerBlock(nn.Module):
201
- def __init__(self, config: TextConfig, layer_idx: int):
202
- super().__init__()
203
- self.num_attention_heads = config.num_attention_heads
204
- self.hidden_size = config.hidden_size
205
- self.self_attn = Attention(config, layer_idx)
206
- self.use_chunked_attention = int((layer_idx + 1) % 4 != 0)
207
- self.is_moe_layer = (layer_idx % config.interleave_moe_layer_step) == (
208
- config.interleave_moe_layer_step - 1
209
- )
210
- if self.is_moe_layer:
211
- self.feed_forward = MoE(config)
212
- else:
213
- self.feed_forward = MLP(config, config.intermediate_size_mlp)
214
-
215
- self.input_layernorm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
216
- self.post_attention_layernorm = nn.RMSNorm(
217
- config.hidden_size, eps=config.rms_norm_eps
218
- )
219
- self.config = config
220
-
221
- self.use_chunked_attention = int((layer_idx + 1) % 4 != 0) # <=> use rope
222
-
223
- def __call__(
224
- self,
225
- x: mx.array,
226
- mask: Optional[mx.array] = None,
227
- cache: Optional[Any] = None,
228
- ) -> mx.array:
229
-
230
- r = self.self_attn(self.input_layernorm(x), mask, cache)
231
- h = x + r
232
- r = self.feed_forward(self.post_attention_layernorm(h))
233
- out = h + r
234
- return out
235
-
236
-
237
- class LlamaModel(nn.Module):
238
- def __init__(self, config: TextConfig):
239
- super().__init__()
240
- self.config = config
241
- self.vocab_size = config.vocab_size
242
- self.num_hidden_layers = config.num_hidden_layers
243
- assert self.vocab_size > 0
244
- self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
245
- self.layers = [
246
- TransformerBlock(config, i) for i in range(config.num_hidden_layers)
247
- ]
248
- self.norm = nn.RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
249
-
250
- def create_chunked_attention_mask(
251
- self, seq_len: int, attention_chunk_size: int, start: int = 0, offset: int = 0
252
- ) -> mx.array:
253
- """
254
- Generate the following:
255
-
256
- 'What' : 0 ■ ⬚ ⬚ ⬚ ⬚ ⬚ |
257
- '▁is' : 1 ■ ■ ⬚ ⬚ ⬚ ⬚ |
258
- '▁ch' : 2 ■ ■ ■ ⬚ ⬚ ⬚ |
259
- 'unked' : 3 ⬚ ⬚ ⬚ ■ ⬚ ⬚ |
260
- '▁attention': 4 ⬚ ⬚ ⬚ ■ ■ ⬚ |
261
- '?' : 5 ⬚ ⬚ ⬚ ■ ■ ■ |
262
-
263
- If the chunk size is 3.
264
- This can just be appplied over the already created attention mask
265
- """
266
-
267
- end = offset + seq_len
268
- linds = mx.arange(start, end)
269
- rinds = mx.arange(offset, end)[:, None]
270
- block_pos = mx.abs(
271
- (linds // attention_chunk_size) - (rinds // attention_chunk_size)
272
- )
273
- token_pos = linds <= rinds
274
- mask = (block_pos == 0) & (token_pos)
275
- return mask
276
-
277
- def __call__(
278
- self,
279
- input_ids: mx.array = None,
280
- input_embeds: mx.array = None,
281
- mask: mx.array = None,
282
- cache=None,
283
- ):
284
- if input_embeds is None:
285
- h = self.embed_tokens(input_ids)
286
- else:
287
- h = input_embeds
288
-
289
- if mask is None:
290
- mask = create_attention_mask(h, cache)
291
-
292
- if cache is not None:
293
- for idx, c in enumerate(cache):
294
- if (idx + 1) % 4 != 0:
295
- c.maybe_trim_front()
296
- start = cache[0].start_position
297
- offset = cache[0].offset
298
- else:
299
- start = 0
300
- offset = 0
301
-
302
- # Create a mask for the chunked attention
303
- chunk_mask = self.create_chunked_attention_mask(
304
- h.shape[1], self.config.attention_chunk_size, start, offset
305
- )
306
-
307
- if cache is None:
308
- cache = [None] * len(self.layers)
309
-
310
- for idx, (layer, c) in enumerate(zip(self.layers, cache)):
311
- use_chunked_attention = (idx + 1) % 4 != 0
312
- if use_chunked_attention:
313
- local_mask = chunk_mask
314
- else:
315
- local_mask = mask
316
- h = layer(h, local_mask, cache=c)
317
-
318
- return self.norm(h)
319
-
320
-
321
- class LanguageModel(nn.Module):
322
- def __init__(self, config: TextConfig):
323
- super().__init__()
324
- self.config = config
325
- self.model_type = config.model_type
326
- self.model = LlamaModel(self.config)
327
- self.lm_head = nn.Linear(
328
- self.config.hidden_size, self.config.vocab_size, bias=False
329
- )
330
-
331
- def __call__(
332
- self,
333
- input_ids: mx.array = None,
334
- input_embeds: mx.array = None,
335
- mask: mx.array = None,
336
- cache=None,
337
- ):
338
- out = self.model(
339
- input_ids=input_ids,
340
- input_embeds=input_embeds,
341
- mask=mask,
342
- cache=cache,
343
- )
344
- out = self.lm_head(out)
345
- return LanguageModelOutput(logits=out)
346
-
347
- def sanitize(self, weights):
348
- # Rename expert weights for SwitchGLU
349
- for l in range(self.config.num_hidden_layers):
350
- prefix = f"language_model.model.layers.{l}.feed_forward.experts"
351
- if f"{prefix}.gate_up_proj" in weights:
352
- v = weights.pop(f"{prefix}.gate_up_proj")
353
- gate_k = f"{prefix}.gate_proj.weight"
354
- up_k = f"{prefix}.up_proj.weight"
355
- gate_proj, up_proj = mx.split(v, 2, axis=-1)
356
- weights[gate_k] = mx.swapaxes(gate_proj, 1, 2)
357
- weights[up_k] = mx.swapaxes(up_proj, 1, 2)
358
- if f"{prefix}.down_proj" in weights:
359
- down_proj = weights.pop(f"{prefix}.down_proj")
360
- weights[f"{prefix}.down_proj.weight"] = mx.swapaxes(down_proj, 1, 2)
361
- return weights
362
-
363
- @property
364
- def layers(self):
365
- return self.model.layers
366
-
367
- @property
368
- def n_kv_heads(self):
369
- return self.config.num_key_value_heads
370
-
371
- @property
372
- def head_dim(self):
373
- return (
374
- self.config.head_dim
375
- if self.config.head_dim
376
- else self.config.hidden_size // self.config.num_attention_heads
377
- )
378
-
379
- def make_cache(self):
380
- caches = []
381
- for i in range(self.config.num_hidden_layers):
382
- if (i + 1) % 4 != 0:
383
- caches.append(ChunkedKVCache(self.config.attention_chunk_size))
384
- else:
385
- caches.append(KVCache()) # no chunking for dense layers
386
- return caches
@@ -1,138 +0,0 @@
1
- import glob
2
- import inspect
3
- import json
4
- import re
5
- from dataclasses import dataclass
6
- from pathlib import Path
7
- from typing import Any, Callable, List, Optional, Tuple, Union
8
-
9
- import mlx.core as mx
10
- import mlx.nn as nn
11
- import numpy as np
12
-
13
- from .language import LanguageModel, TextConfig
14
- from .vision import Llama4MultiModalProjector, VisionConfig, VisionModel
15
-
16
-
17
- @dataclass
18
- class ModelConfig:
19
- text_config: TextConfig
20
- vision_config: VisionConfig
21
- model_type: str
22
- ignore_index: int = -100
23
- image_token_id: int = 200092
24
- image_token_index: Optional[int] = None
25
- eos_token_id: Optional[List[int]] = None
26
-
27
- def __post_init__(self):
28
- if self.image_token_index is None:
29
- self.image_token_index = self.image_token_id
30
-
31
- @classmethod
32
- def from_dict(cls, params):
33
- return cls(
34
- **{
35
- k: v
36
- for k, v in params.items()
37
- if k in inspect.signature(cls).parameters
38
- }
39
- )
40
-
41
-
42
- class Model(nn.Module):
43
- def __init__(self, config: ModelConfig):
44
- super().__init__()
45
- self.config = config
46
- self.vision_model = VisionModel(config.vision_config)
47
- self.multi_modal_projector = Llama4MultiModalProjector(config)
48
- self.language_model = LanguageModel(config.text_config)
49
- self.vocab_size = config.text_config.vocab_size
50
-
51
- def set_input_embeddings(self, value):
52
- self.language_model.set_input_embeddings(value)
53
-
54
- def get_output_embeddings(self):
55
- return self.language_model.get_output_embeddings()
56
-
57
- def set_output_embeddings(self, new_embeddings):
58
- self.language_model.set_output_embeddings(new_embeddings)
59
-
60
- def set_decoder(self, decoder):
61
- self.language_model.set_decoder(decoder)
62
-
63
- def get_decoder(self):
64
- return self.language_model.get_decoder()
65
-
66
- def get_image_features(
67
- self,
68
- pixel_values: mx.array,
69
- vision_feature_layer: Union[int, List[int]],
70
- vision_feature_select_strategy: str,
71
- **kwargs,
72
- ):
73
- if vision_feature_select_strategy not in ["default", "full"]:
74
- raise ValueError(
75
- f"Unexpected select feature strategy: {self.vision_feature_select_strategy}"
76
- )
77
- kwargs = {k: v for k, v in kwargs.items() if v is not None}
78
- hidden_state = self.vision_model(
79
- pixel_values, output_hidden_states=False, **kwargs
80
- )
81
- return hidden_state
82
-
83
- def get_input_embeddings(
84
- self,
85
- input_ids: Optional[mx.array] = None,
86
- pixel_values: Optional[mx.array] = None,
87
- **kwargs,
88
- ):
89
- if pixel_values is None:
90
- return self.language_model.model.embed_tokens(input_ids)
91
-
92
- # Get the input embeddings from the language model
93
- inputs_embeds = self.language_model.model.embed_tokens(input_ids)
94
-
95
- image_features = self.get_image_features(
96
- pixel_values=pixel_values,
97
- vision_feature_layer=kwargs.get("vision_feature_layer", -1),
98
- vision_feature_select_strategy=kwargs.get(
99
- "vision_feature_select_strategy", "default"
100
- ),
101
- )
102
-
103
- vision_flat = image_features.reshape(-1, image_features.shape[-1])
104
- projected_vision_flat = self.multi_modal_projector(vision_flat)
105
-
106
- # Insert special image tokens in the input_ids
107
- final_inputs_embeds = self._prepare_inputs_for_multimodal(
108
- projected_vision_flat, inputs_embeds, input_ids
109
- )
110
- return final_inputs_embeds
111
-
112
- def _prepare_inputs_for_multimodal(self, image_features, inputs_embeds, input_ids):
113
- image_token_index = self.config.image_token_index
114
-
115
- # Positions of <image> tokens in input_ids, assuming batch size is 1
116
- image_positions = np.where(input_ids == image_token_index)[1].tolist()
117
-
118
- inputs_embeds[:, image_positions, :] = image_features
119
-
120
- return inputs_embeds
121
-
122
- @property
123
- def layers(self):
124
- return self.language_model.model.layers
125
-
126
- def __call__(
127
- self,
128
- input_ids: mx.array,
129
- pixel_values: mx.array,
130
- cache=None,
131
- **kwargs,
132
- ):
133
-
134
- input_embeddings = self.get_input_embeddings(input_ids, pixel_values, **kwargs)
135
- logits = self.language_model(
136
- input_ids=input_ids, cache=cache, input_embeds=input_embeddings
137
- )
138
- return logits